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Abstract. Inverse modeling of nitrogen oxide (NOx) emis-
sions using satellite-based NO2 observations has become
more prevalent in recent years, but has rarely been ap-
plied to regulatory modeling at regional scales. In this study,
OMI satellite observations of NO2 column densities are used
to conduct inverse modeling of NOx emission inventories
for two Texas State Implementation Plan (SIP) modeling
episodes. Addition of lightning, aircraft, and soil NOx emis-
sions to the regulatory inventory narrowed but did not close
the gap between modeled and satellite-observed NO2 over
rural regions. Satellite-based top-down emission inventories
are created with the regional Comprehensive Air Quality
Model with extensions (CAMx) using two techniques: the
direct scaling method and discrete Kalman filter (DKF) with
decoupled direct method (DDM) sensitivity analysis. The
simulations with satellite-inverted inventories are compared
to the modeling results using the a priori inventory as well
as an inventory created by a ground-level NO2-based DKF
inversion. The DKF inversions yield conflicting results: the
satellite-based inversion scales up the a priori NOx emissions
in most regions by factors of 1.02 to 1.84, leading to 3–55 %
increase in modeled NO2 column densities and 1–7 ppb in-
crease in ground 8 h ozone concentrations, while the ground-
based inversion indicates the a priori NOx emissions should
be scaled by factors of 0.34 to 0.57 in each region. How-
ever, none of the inversions improve the model performance
in simulating aircraft-observed NO2 or ground-level ozone
(O3) concentrations.

1 Introduction

Nitrogen oxides (NOx = NO + NO2) in the troposphere are
primary air pollutants, emitted from both anthropogenic
sources like fossil-fuel combustion and biomass burning, and
natural sources such as soil microbial processes and light-
ning. NOx also acts as a precursor of a secondary air pol-
lutant, tropospheric O3, when it reacts with the oxidation
products of volatile organic compounds (VOCs) in the pres-
ence of sunlight. Oxidation with hydroxyl (OH) radical is
the dominant sink of NOx, leading to atmospheric nitric acid
(HNO3) formation. The atmospheric lifetime of tropospheric
NOx varies from a few hours in summer to a couple of days
in winter (Seinfeld and Pandis, 2006).

NOx emission inventories used in air quality modeling are
typically developed by a bottom-up approach based on esti-
mated activity rates and emission factors for each category.
Due to inaccuracies in determining these rates and factors,
the uncertainty in NOx emission inventories has been sug-
gested to be as high as a factor of two and classified as one
of the top uncertainties in ozone simulations and sensitivity
analysis (Hanna et al., 2001; Xiao et al., 2010).

Inverse modeling techniques can be used with atmospheric
models to estimate model variables that may not be directly
measurable (Gilliland and Abbitt, 2001). Inverse modeling
generates an optimized “top-down” NOx emission inventory
for air quality models by minimizing the difference between
observed and modeled NO2 concentrations, providing an op-
portunity to identify possible biases in the bottom-up NOx
emission inventory (Napelenok et al., 2008). However, as
uncertainties may also be associated with the measurement
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data and the inverse methods themselves, inverse modeling
has its own limitations. Hence, it is valuable to compare both
bottom-up and top-down NOx emission inventories in order
to improve the understanding of NOx emissions.

Several inverse modeling studies have used surface NO2
measurements (Mendoza-Dominguez and Russell, 2000;
Quélo et al., 2005; Pison et al., 2007) or aircraft NO2 mea-
surements (Brioude et al., 2011) to constrain NOx emissions.
Compared to ground and aircraft measurements, satellite-
based observations generate greater spatial coverage of NO2.
Studies on combining satellite NO2 measurements with in-
verse modeling techniques to create the top-down NOx emis-
sion inventories also have been conducted recently in both
global scale (Martin et al., 2003; Müller and Stavrakou,
2005; Jaeglé et al., 2005; Lin et al., 2010) and regional scale
modeling (Konovalov et al., 2006, 2008; Deguillaume et al.,
2007; Napelenok et al., 2008; Kurokawa et al., 2009; Zhao
and Wang, 2009; Chai et al., 2009).

Discrete Kalman filter (DKF) (Prinn, 2000) is an inverse
modeling method that solves the inverse problem iteratively,
and can be applied to the cases with linear or weakly non-
linear relationships between emissions and pollutants. It has
been used in several studies to constrain emissions of car-
bon monoxide (Mulholland and Seinfeld, 1995), chlorofluo-
rocarbons (Haas-Laursen et al., 1996), isoprene (Chang et al.,
1996) and ammonia (Gilliland et al., 2003). Most recently,
Napelenok et al. (2008) applied the DKF method to the re-
gional Community Multiscale Air Quality (CMAQ) model,
generating a top-down NOx emission inventory for the south-
eastern United States using Scanning Imaging Absorption
Spectrometer for Atmospheric Chartography (SCIAMCHY)
(Bovenmann et al., 1999) satellite NO2 data.

Despite the growing number of scientific studies conduct-
ing satellite-based inversions of NOx emissions, the applica-
bility of these methods to state-level regulatory attainment
modeling has not been widely explored. In this work, the
DKF method introduced by Napelenok et al. (2008) is ap-
plied with finer-resolution satellite NO2 data now available
from the Ozone Monitoring Instrument (OMI) as well as
ground-level NO2 observations, to constrain NOx emissions
for actual regulatory modeling episodes in Texas. Lightning
and aircraft NOx emissions are added to the base case NOx
emission inventory to address the bias noted by Napelenok
et al. (2008) of regional models underestimating upper tro-
pospheric NOx. The DKF inverted a posteriori emissions are
compared to the base case emissions, the a priori emissions
and a posteriori emissions derived by the inversion method
of Martin et al. (2003).

2 Methodology

2.1 Model inputs and configurations

Base case model inputs were taken from episodes devel-
oped by the Texas Commission on Environmental Quality
(TCEQ) for Texas ozone attainment planning. CAMx ver-
sion 5.3 (ENVIRON, 2010) was used in this study to sim-
ulate two modeling episodes in 2006 with high ozone con-
centrations in the Dallas–Fort Worth (DFW) region, from
31 May to 1 July, hereafter referred to as the June episode,
and in the Houston–Galveston–Brazoria (HGB) region, from
13 August to 15 September (Fig. 1), hereafter referred
to as August–September episode. The NCAR/Penn State
(National Center for Atmospheric Research/Pennsylvania
State University) Mesoscale Model, version 5, release 3.7.3
(MM5v.3.7.3) (Grell et al., 1994), conducted with the ACM2
scheme for the June episode and the Eta scheme for the
August–September episode, was used to generate the me-
teorological fields with 43 vertical layers. The preprocessor
MM5CAMx was used to convert MM5 outputs into CAMx-
ready meteorology inputs. The modeled meteorological pa-
rameters: temperature, wind speed, wind direction, and plan-
etary boundary layer (PBL) height in both episodes are eval-
uated as shown in the Supplementary Sect. 1. The vertical
configuration of CAMx modeling consists of 17 vertical lay-
ers for the August–September modeling episode, whereas
28 vertical layers were used for the June modeling episode.
Modeling was conducted with the Carbon Bond version 2005
(CB-05) chemical mechanism, PPM advection scheme, and
K-theory vertical diffusion scheme (TCEQ, 2010, 2011).
Boundary conditions for the 36 km eastern US domain were
generated by the Model for Ozone and Related Chemical
Tracers (MOZART) global model (ENVIRON, 2008).

2.2 Emission inventory

Base case emission inventories were provided by TCEQ
(Table 1). The point source emissions were from the State
of Texas Air Reporting System (STARS) database, which
collects emission information from approximately 2000
point sources annually, and the EPA’s acid rain database
(ARD), which contains emissions from electric generat-
ing units (EGUs). The on-road mobile emission inventory
was generated by Motor Vehicle Emission Simulator 2010a
(MOVES2010a), and the non-road mobile inventory was de-
veloped by National Mobile Inventory Model (NMIM) and
the Texas NONROAD (TexN) mobile source model. The
area source inventory was projected by the EPA Economic
Growth Analysis System (EGAS) model based on 2005
emissions from the Texas Air Emissions Repository (Tex-
AER) database. The Emission Processing System, version
3 (EPS3) (ENVIRON, 2007), was used for processing the
point, mobile, and area emissions to the model-ready format
(TCEQ, 2010, 2011). Biogenic emissions were generated
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Table 1.Categorized a priori NOx emission rates in inversion region for two modeling episodes.

Modeling Area Mobile Non-road Biogenic Aircraft Lightning Elevated points Total
episodes (tons day−1) (tons day−1) (tons day−1) (tons day−1) (tons day−1) (tons day−1) (tons day−1) (tons day−1)

Jun 453 760 374 474 172 434 543 3211
Aug–Sep 290 766 402 464 171 226 547 2866

 

Fig. 1. 12 km CAMx modeling domain for eastern Texas (black
square), inversion regions (shaded), ground AQS NO2 monitoring
sites (blue triangles), and Moody Tower (red circle).

by the Global Biosphere Emissions and Interactions System
(GloBEIS) biogenic emissions model, version 3.1 (Yarwood
et al., 1999), with soil NOx emissions estimated by the
Yienger and Levy method (Yienger and Levy, 1995).

Lightning and aircraft NOx emissions in the upper tro-
posphere were missing in the base case emission invento-
ries and should be added before conducting inversions. In
this study, lightning NO emissions were developed based
on National Lightning Detection Network (NLDN) data ob-
tained from Vaisala Inc., following the approach of Kay-
nak et al. (2008). Intra-cloud lightning flashes were treated
as three times the cloud-to-ground lightning flashes with
500 moles NO emission per flash. Lightning NO was
placed into the model to match the time and location of
NLDN flashes, and then distributed vertically based on
the profile obtained from the mean April to September
2003–2005 vertical distribution of VHF sources from the
Northern Alabama Lightning Mapping Array (Koshak et
al., 2004). Global aircraft NOx emissions of year 2005
in 0.1◦

× 0.1◦ resolution were obtained from the Emis-

sion Database for Global Atmospheric Research (EDGAR)
v4.1 (http://edgar.jrc.ec.europa.eu/datasets_grid_list41.php?
v=41&edgar_compound=NOx), mapped to our modeling
domain and placed at 9 km altitude.

2.3 Inversion regions

Five urban areas (Houston–Galveston–Brazoria (HGB),
Dallas–Fort Worth (DFW), Beaumont–Port Arthur (BPA),
northeast Texas (NE Texas), and Austin and San Antonio)
plus two surrounding rural areas (north rural area (N rural)
and south rural area (S rural)) (Fig. 1) were designed as in-
version regions for the DKF inversions of NOx emissions.
The five urban regions are all air quality planning areas in-
cluded in Texas SIP development (Gonzales and Williamson,
2011). HGB and DFW were classified by US EPA as ozone
nonattainment areas for violating the 1997 ozone National
Ambient Air Quality Standard (NAAQS) of 84 ppb. BPA was
designated as an ozone maintenance area, and NE Texas as
well as Austin and San Antonio were designated as ozone
early action compact areas under that standard. However,
the recent tightening of the NAAQS to 75 ppb has height-
ened interest in ozone reduction in all of these regions. The
sensitivities of NO2 concentrations to boundary conditions
and to NOx emissions from each inversion region and the
border region (the area between model boundary and inver-
sion regions) were computed through the decoupled direct
method (DDM). The border region minimizes the impacts
from boundary conditions on the inversion regions to the
level of only 2 %. The DDM sensitivities show that NOx
emissions from each urban region have the most impact on
NO2 concentrations within that region, and have less than
10 % influence on other regions.

2.4 Inversion method

Two methods were applied for inverse modeling: a direct
scaling method introduced by Martin et al. (2003), and the
DKF method. However, the direct scaling method creates
spatial smearing errors when applied to regional models with
fine resolution. It also assumes concentrations scale pro-
portionally with emissions; hence, the nonlinearity between
NO2 concentrations and NOx emissions becomes problem-
atic because NOx may influence its own lifetime by influ-
encing concentrations of OH radicals (Martin et al., 2003).
Thus, we present the direct scaling (DS) method and results
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Fig. 2.Schematic diagram of Kalman filter inversion process.

in the Supplement (Sect. 3), and focus our attention on the
DKF inversion.

The DKF inversion (Fig. 2) solves the spatial smearing
problem by taking the spatial relationship between NO2 con-
centrations and NOx emissions directly from model simu-
lations, and also reduces the nonlinearity issue by perform-
ing the inversion iteratively. To constrain NOx emissions, the
DKF inversion includes two processes at each time step: the
measurement update (correction) process and the time up-
date (prediction) process (Rodgers, 2000; Welch and Bishop,
2001). In the measurement update process at time stepk

(Eqs. 1–3), the inversion corrects the predicted NOx emis-
sion (E−

NOx,k
) and error covariance (P−

NOx,k
) by incorporating

the measurement data (Cmeasured
NO2,k

) and Kalman gain (Gk), and

then generates the corrected emission (ÊNOx,k) and error co-
variance (̂PNOx,k).

Gk = P−

NOx,k
ST

k (SkP−

NOx,k
ST

k + Rk)
−1 (1)

ÊNOx,k = E−

NOx,k
+ Gk(Cmeasured

NO2,k
− Cmodeled

NO2,k
) (2)

P̂NOx,k = (I − GkSk)P
−

NOx,k
(3)

S represents the NO2 sensitivity to NOx emissions.R is the
measurement error covariance, and it relates to the uncertain-
ties in OMI and ground NO2 measurements. In here, the un-
certainty for the AQS ground NO2 measurements was set to
0.15 (US EPA, 2006) and for the NASA standard OMI NO2,
version 2, was set to 0.3 (Bucsela et al., 2013) for all diago-
nal elements inR. The error covariance (P) relates to the un-
certainty in the NOx emission inventory, and the uncertainty
value of 2.0 (Napelenok et al., 2008) was chosen here for all
diagonal elements inP. To simplify, off-diagonal elements in
R andP were set to zero, because we assume each inversion
region is an independent element.

In the time update process at time stepk, the inversion
process predicts the emission (E−

NOx,k+1) and the error co-

variance (P−

NOx,k+1) for the measurement update process at

time stepk + 1, based on the corrected emission (ÊNOx,k)
and error covariance (P̂NOx,k) from the measurement update

process at time stepk (Eqs. 4–5).

E−

NOx,k+1 = M kÊNOx,k + εk (4)

P−

NOx,k+1 = M kP̂NOx,kMT
k + Qk (5)

M represents a transition matrix;ε andQ are process errors
which relate to errors in modeling processes, and are diffi-
cult to estimate. Since we assume the bias between modeled
and measured NO2 is mostly from errors in NOx emissions
(Prinn, 2000; Napelenok et al., 2008),ε andQ were set to
zero.

CAMx-DDM (Koo et al., 2007) calculates a semi-
normalized NO2 sensitivity to NOx emissions (unitless), as
shown in Eq. (6), replacing sensitivity elements inS in
Eq. (1),

SNO2 toNOx = ẼNOx

∂CNO2

∂ENOx

= ẼNOx

∂CNO2

∂((1+ x)ẼNOx)
=

∂CNO2

∂(1+ x)
=

∂CNO2

∂x
, (6)

whereẼ represents the unperturbed NOx emission field;x is
the perturbation factor. Hence, in this study, the DKF inver-
sion actually seeks the optimal perturbation factor (x) at each
iteration. The inversion processes will repeat iteratively un-
til the perturbation factor for each emission region converges
within a prescribed criterion,δ (Fig. 2), for which the value
of 0.01 was chosen in this study.

2.5 NO2 observations

2.5.1 Satellite NO2 measurements

The Dutch-Finnish OMI aboard NASA’s EOS Aura satel-
lite, launched on 15 July 2004, is a nadir-viewing UV–vis
spectrometer that measures solar backscattered irradiance in
the range of 270 nm to 500 nm. It has been utilized to re-
trieve atmospheric NO2 in the spectral range from 405 nm to
465 nm with spatial resolution down to scales of 13× 24 km2

at nadir view point (Levelt et al., 2006a, b). The EOS Aura
satellite follows a Sun-synchronous polar orbit at approx-
imately 705 km altitude with local Equator-crossing time
around 13:40 (Levelt et al., 2006b; Boersma et al., 2007). In
this study, the NASA standard product, version 2 (Bucsela et
al., 2013) retrieval of OMI NO2, gridded at 0.1◦ × 0.1◦ reso-
lution, was obtained from NASA Goddard Space Flight Cen-
ter and mapped to the 12 km CAMx modeling domain. OMI
pixels with cloud radiance fraction greater than 0.5 and sizes
of more than 20× 63 km2 at swath edges were excluded in
the dataset. The OMI averaging kernels (Eskes and Boersma,
2003) were interpolated into each CAMx model layer and
then applied to the modeled NO2 column density (Eq. 7), to
account for the influence of the a priori NO2 vertical profile
used in the OMI retrieval and the OMI measurement sensi-
tivities at each altitude:

Cmodeled
NO2

=

∑
Ai ∗ Xi, (7)

whereAi is the averaging kernel at pressure leveli, andXi

is the CAMx-modeled partial NO2 subcolumn density at the
corresponding pressure level.
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Table 2.Scaling factors for each region from different inversions.

Source

3 June to 1 July 2006 16 August to 15 September 2006

region

Base NOx Priori NOx

Scaling factor relative

Base NOx Priori NOx

Scaling factor relative

emission emissiona
to priori (unitless)

emission emission

to priori (unitless)

(tons day−1) (tons day−1) (tons day−1) (tons day−1)Posteriori
OMI-based
DKF inversion

Posteriori
ground-based
DKF inversionb

Posteriori
OMI-based
DKF inversion

Posteriori
ground-based
DKF inversion

HGB 374 455 1.12 0.36 382 436 1.03 0.54
DFW 335 435 1.02 0.33 314 412 1.14 0.46
BPA 81 97 1.83 0.47 86 98 1.75 0.40
NE Texas 141 164 1.84 0.47 155 174 0.56 0.47
Austin and
San Antonio

252 319 1.28 0.29 248 302 1.70 0.38

N rural 522 823 1.67 – 543 759 1.98 –
S rural 472 728 1.52 – 489 668 1.72 –

a Adds lightning and aircraft NOx and doubled soil NOx emissions to the base case
b Conducted with 24 h averaged ground-level NO2 data.

Table 3.Performance of CAMx in simulating OMI-observed NO2 column densities.

Statistical
3 June to 1 July 2006 16 August to 15 September 2006

parameters Base
case

Prioric Posteriori
OMI-based
DKF inversion

Base
case

Priori Posteriori
OMI-based
DKF inversion

R2 0.62 0.61 0.54 0.63 0.48 0.51
NMBa

−0.47 −0.30 −0.12 −0.54 −0.33 −0.12
NMEb 0.48 0.32 0.23 0.55 0.39 0.28

a Normalized mean bias
b Normalized mean error
c Adds lightning and aircraft NOx and doubled soil NOx emissions to the base case.

In order to reduce the OMI measurement uncertainties and
effects from invalid data points, monthly averaged OMI NO2
column densities were used in the DKF inversions.

2.5.2 Ground and other NO2 measurements

The US EPA Air Quality System (AQS) NO2 ground mon-
itoring network data (Fig. 1) (http://www.epa.gov/ttn/airs/
airsaqs/) were also used for inverse modeling. AQS moni-
tors are equipped with a heated molybdenum catalytic con-
verter that first transforms NO2 to NO, and then measures
the resultant NO using a chemiluminescence analyzer. NO2
is then calculated by subtracting NO measured in a separate
NO mode from the resultant NO (US EPA, 1975). Studies
(US EPA, 1975; Demerjian, 2000; Lamsal et al., 2008) in-
dicate that the catalytic converter also converts fractions of
other reactive nitrogen species (e.g. HNO3, PAN) into NO
during this measurement. Therefore, correction factors com-
puted from CAMx-modeled concentrations by the method of
Lamsal et al. (2008) (Eq. 8) are applied before deploying the
AQS NO2 data in the DKF inversion:

CF=
NO2

NO2 +
∑

AN + (0.95PAN) + (0.35HNO3)
. (8)

In Eq. (8),
∑

AN represents the sum of all alkyl nitrates and
PAN is peroxyacetyl nitrate. The CAMx model with CB05
mechanism does not output alkyl nitrates specifically, so the
difference between modeled total organic nitrates and PAN
was used to represent modeled alkyl nitrates.

The NOAA P-3 aircraft NO2 data (http://www.esrl.noaa.
gov/csd/tropchem/2006TexAQS/) and the Texas Radical and
Aerosol Measurement Program (TRAMP) NO2 data, mea-
sured at Moody Tower (Fig. 1), (http://geossun2.geosc.uh.
edu/web/blefer/TRAMP/Final%20data/) were used to evalu-
ate the inverse modeling results. The Moody Tower measure-
ment site located at the University of Houston campus is ap-
proximately 70 m above the ground (Luke et al., 2010), cor-
responding to the CAMx modeling layer 2, with hourly NO2
data available for the whole August–September episode, but
no coverage for the June episode. The P-3 aircraft measure-
ment was made from ground level to around 5000 m height
with 1 s resolution, but only available on 4 days (31 August,
11 September, 13 September, and 15 September 2006) dur-
ing our modeling period. Hourly averaged aircraft NO2 data
were used to compare with the hourly modeled NO2 at cor-
responding grid cells. Both P-3 aircraft and Moody Tower
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Table 4.Performance of CAMx in simulating AQS ground-level NO∗
2.

Statistical
3 June to 1 July 2006 16 August to 15 September 2006

parameters Base
case

Priori Posteriori
OMI-based
DKF inversion

Posteriori
ground-based
DKF inversion

Base
case

Priori Posteriori
OMI-based
DKF inversion

Posteriori
ground-based
DKF inversion

R2 0.56 0.56 0.53 0.54 0.52 0.52 0.46 0.49
NMB 0.89 0.98 1.39 −0.16 0.42 0.49 0.81 −0.23
NME 1.01 1.09 1.45 0.47 0.66 0.71 0.96 0.48

∗ Hourly AQS data were used to compare with modeled NO2 at corresponding locations.

Table 5.Performance of CAMx in simulating P-3 aircraft-observed NO2 and NOy.

Statistical
NO∗

2 NO∗
y

parameters Base
case

Priori Posteriori
OMI-based
DKF inversion

Posteriori
ground-based
DKF inversion

Base
case

Priori Posteriori
OMI-based
DKF inversion

Posteriori
ground-based
DKF inversion

R2 0.23 0.23 0.22 0.21 0.34 0.34 0.37 0.30
NMB 0.10 0.10 0.15 −0.15 0.65 0.68 0.84 0.46
NME 0.99 0.99 1.01 0.85 0.94 0.97 1.08 0.83

∗ Comparison available for only four days (31 August, 11, 13, and 15 September 2006).

NO2 measurements were made by using a photolytic con-
verter, and hence did not require corrections via Eq. (8).

3 Results and discussion

3.1 Pseudodata test for the DKF inversion with
CAMx-DDM

To evaluate the performance of the DKF inversion technique,
a controlled pseudodata test was performed for 10 modeling
days (31 May to 9 June, and 13 to 22 August) for each mod-
eling episode. The 10-day averaged modeled NO2 columns
at 13:00–14:00 LT from the base case were used as pseudo-
observations, and the model was rerun with NOx emissions
from each region perturbed by known factors ranging from
0.5 to 2.0 (Fig. 3). Applying the DKF inversion successfully
adjusted the perturbed NOx emissions from each region back
to their base values, converging in 4 iterations (Fig. 3). The
robustness of the DKF inversion was tested by varying the
uncertainty parameters, which were set to 2.0 for emissions
and 0.3 for observations in the initial pseudodata test. While
higher levels of the emission uncertainty parameter and lower
levels of the observation uncertainty parameter led to more
rapid adjustments, the final results of the DKF inversion were
insensitive to the assumed uncertainty parameters, and also
to the off-diagonal elements in the error covariance matrix.
Similar results were found by adjusting the assumed uncer-
tainty parameters and error covariance matrix in the actual
simulations (Supplement Fig. S3).

3.2 Additional NOx emissions

Since DKF inversions scale emissions from their original lev-
els, an appropriate a priori NOx emission inventory is es-
sential for obtaining reasonable results. The NASA Inter-
continental Chemical Transport Experiment (INTEX-A) air
quality study (Singh et al., 2006) found large discrepancies
between aircraft measurements and CMAQ simulations of
NO2 concentrations in the upper troposphere. Possible ex-
planations could be upper tropospheric NOx sources, such
as lightning and aircraft NOx emissions, that are often ne-
glected in emission inventories. Missing NOx sources in the
upper troposphere may bias the inversion on the remaining
emissions (Napelenok et al., 2008). At ground level, Hud-
man et al. (2010) found that the soil NOx emissions estimated
by the widely used Yienger and Levy method (Yienger and
Levy, 1995) were underestimated by a factor of 2 over the
United States. Therefore, in this study, the lightning and air-
craft NOx emissions were added in the upper troposphere as
described in the Sect. 2.2, and the soil NOx emissions were
doubled from base case levels (Table 1). The emission in-
ventory with added lightning and aircraft NOx and doubled
soil NOx (hereafter referred to as the a priori emission inven-
tory) was used for the following inversion studies. Inclusion
of these NOx sources improves the performance of the model
in simulating satellite-observed NO2 column densities, espe-
cially in the rural areas (Figs. 4c and 5c), and reduces the bias
and error by around 15 % (Table 3).
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Table 6.Performance of CAMx in simulating AQS hourly ground-level O3.

Statistical
3 June to 1 July 2006 16 August to 15 September 2006

parameters Priori Posteriori
OMI-based
DKF inversion

Posteriori
ground-based
DKF inversion

Priori Posteriori
OMI-based
DKF inversion

Posteriori
ground-based
DKF inversion

R2 0.61 0.63 0.57 0.50 0.51 0.46
NMB 0.01 0.02 0.04 0.38 0.41 0.40
NME 0.29 0.30 0.30 0.47 0.50 0.48

    (a)                                                                                           (b)                                                     
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Fig. 3. Pseudodata test showing that the DKF inversion accurately adjusts the NOx emissions from the perturbed case(a) to the a posteriori
case(b) to match the desired base NO2 column densities. Numbers indicate perturbation factors in the legend(a) and adjustment factors in
the legend(b). Similar performance is found for the 13–22 August test period.

3.3 Top-down NOx emissions using OMI NO2

DKF inversion using the OMI NO2 measurements was con-
ducted to constrain NOx emissions from the seven designated
regions. The monthly averaged (3 June to 1 July and 16 Au-
gust to 15 September) OMI and CAMx NO2 column densi-
ties at 13:00–14:00 were used in the inversion. All modeling
grids in the inversion area were covered by the OMI NO2
measurement data. The DKF inversions were performed with
2116 data points in one time step (13:00–14:00). The scaling
factors generated by inversion for each region were applied to
the NOx emission inventory hourly, since we assume that the
13:00–14:00 NO2 column density is contributed by the NOx
emissions from all previous hours, and the uncertainty in the
bottom-up NOx emission inventory should be the same for
every time step. The satellite-based DKF inversions scale a
priori NOx emissions by factors ranging from 1.02 to 1.84 in
almost all regions in both episodes (Table 2), adhering to the
specified uncertainty range of 0.5 to 2.0 (Hanna et al., 2001).
The scaling factors tend to be larger over the rural and small
urban regions than over the urban DFW and HGB ozone
nonattainment regions, where the inversions scale up emis-
sions only slightly (factors of 1.02 to 1.14). It results from

the inversion attempts to compensate for the large gap be-
tween higher observed than modeled NO2 over rural regions,
despite varied patterns over urban grid cells. One excep-
tion occurs in the NE Texas region in the August–September
episode (Table 2), which shows downward scaling (factor of
0.56). This reflects the inversion shifting emissions between
NE Texas and the much larger surrounding N rural region
(Fig. 1); taken together, the net scaling factor for the two re-
gions in the August–September episode is 1.72, consistent
with the upward scaling of rural emissions throughout the
two episodes. Apart from this anomaly, scaling factors for
most regions were consistent across the two episodes, vary-
ing by less than 15 %.

CAMx-modeled NO2 column densities with the inverted
NOx emissions (Figs. 4d and 5d) are increased by 3–55 %
in all regions, but the increments are much more moderate
compared to the DS method inversion (Fig. S4). The statisti-
cal results (Table 3) indicate that the DKF inversed NO2 are
closer to OMI observations than the a priori case in terms
of 20 % less in bias and 10 % less in error, but without im-
provements in the spatial distribution. The DS method scales
up NOx emissions more than the DKF inversion (Table S2),
making the inversed NO2 concentrations have slightly less
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(a)                                                                                                (b)                                                      

  

(c)                                                                                                 (d) 

 

 Fig. 4.Monthly averaged (3 June to 1 July) tropospheric NO2 vertical columns at 13:00–14:00 from(a) OMI observations, and from CAMx
simulations using(b) base case emission inventory,(c) a priori emission inventory (with additional lightning, aircraft, and soil NOx), and
OMI-based inverted NOx emissions using(d) the DKF method.

bias and error (Table S3). However, the DKF inverse NO2
has betterR2 than the DS method, indicating the DKF in-
version method has better ability to retain the spatial struc-
ture of NOx emissions. Each of the inversions using OMI
NO2 data actually worsens the model performance in simu-
lating ground-level NO2 concentrations (Table 4), since the
modeled ground NO2 using the base case emission inventory
had already been overestimated (Fig. 6). Similarly, since the
base model already overestimated P-3 aircraft observations
of NO2 and NOy , the DKF inversion worsens model bias rel-
ative to these measurements (Table 5). Greater deterioration
resulted from the DS inversion (Tables S3–S6).

3.4 Top-down NOx emissions using ground AQS NO2

Ground-level AQS NO2 measurements were also used to
drive DKF inversions of NOx emissions for the two mod-
eling episodes. There are 37 ground measurement sites in the
designated inversion regions (Fig. 1), mostly located in the
urban cores. The N rural and S rural regions were excluded
in this case because they contain too few measurement sites.
Correction factors from Eq. (8) were applied to the ground
NO2 before using the data in the inversion.

The base case simulations strongly overpredicted observed
NO2 in the early morning and late afternoon during both
modeling episodes (Fig. 6), when the model may underes-
timate PBL heights (Kolling et al., 2013). To alleviate the
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(a)                                                                                                  (b)                                                     

     

(c)                                                                                                   (d) 

  

Fig. 5.Same as Fig. 4, but for the August–September episode.

influence from PBL heights, daily 24 h averaged NO2 levels
were used in the inversions.

To address the overprediction of ground-level NO2, the
ground-based inversions sharply reduce a priori NOx emis-
sions by applying scaling factors of 0.30 to 0.57 (Table 2).
The reductions in NOx emissions reduce model error relative
to the AQS (Table 4) and Moody Tower NO2 observations on
an hourly basis, as well as NO2 and NOy observed by the P-3
aircraft (Table 5), but may be too sharp, as they lead negative
bias in predicting NO2 from the AQS monitors (Table 4) and
the P-3 aircraft NO2 measurements (Table 5). More moderate
scaling factors are obtained if the inversion is conducted with
data only from a midday window (9:00–14:00) when PBL
heights are less problematic (not shown). However, scaling
factors still remain far below 1.0 and show up to factor-of-
two inconsistencies between the two episodes.

3.5 Impacts on O3 simulations

O3 concentrations and their sensitivities to changes in emis-
sions are calculated for both modeling episodes using the a
priori and each of the a posteriori emission inventories. The
scaled-up NOx emissions from the satellite-based DKF in-
version (Table 2) lead to 1–7 ppb higher modeled 8 h (10:00–
18:00) O3 concentrations over most of the domain in the June
episode (Fig. 7, top row). Largest increases occur over NE
Texas and N rural regions (Fig. 1), where the a priori simu-
lation shows O3 to be most sensitive to NOx (Fig. 7, middle
row) and where the satellite-based DKF inversion scaled up
emissions by large amounts.

The a priori simulation shows O3 to be primarily sensi-
tive to NOx over most of the domain, but VOC-limited in the
core of the Houston region and with joint sensitivity to NOx
and VOC in Dallas, Austin, and San Antonio (Fig. 7, left
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Fig. 6. Daily variations of modeled (solid line) and observed
(dashed line) ground NO2 concentrations for the June (red) and
August–September (blue) episodes. Note: NO2 concentrations were
taken by averaging monthly data for all sites.

column). The satellite-based inversion increases NOx emis-
sions and thus shifts the O3 formation chemistry toward be-
ing more VOC sensitive (Fig. 7, middle column). Over much
of the domain, O3 sensitivity to VOC increases by a factor of
about 1.5. The slight increases in O3 sensitivity to NOx oc-
cur because the semi-normalized sensitivity coefficients rep-
resent the local slope of O3-emission response scaled to a
100 % change in emissions. As the satellite-based inversion
scales up NOx emissions, these semi-normalized coefficients
increase, even though the impacts per ton of NOx decrease.

The ground-based DKF inversion leads to O3 reductions
of 3–8 ppb over urban regions (Fig. 7, top right), where it
scales down emissions (Table 2), and less changes over rural
regions, where emissions were left unchanged due to lack
of NO2 monitors. The reduction in urban NOx makes O3
less sensitive to VOC emissions as expected (Fig. 7, bottom
right). However, the impact on sensitivity to NOx is mixed.
In urban areas which are transitional between NOx-limited
and NOx-saturated conditions, the reduction in NOx emis-
sions pushes the chemistry toward more NOx-limited condi-
tions and thus increases the sensitivities. In downwind re-
gions which are already NOx-limited, the sensitivities de-
cline because there are now less NOx emissions contributing
to the semi-normalized coefficients.

Model performance in simulating hourly AQS ground-
level observations of O3 indicates that the bias and error
slightly worsened when each of the a posteriori inventories
are used in place of the a priori inventory (Table 6). The
largest deterioration comes from the DS inversion as the bias
and error increase by around 10 % (Table S5), likely because
this inversion method does not retain the spatial structure of
emissions from the a priori inventory. For the other inver-
sions, the changes in bias and error are too slight to determine
if performance is meaningfully impacted.

4 Conclusions

Inverse modeling has been performed using either NO2 col-
umn densities observed by OMI satellite or ground-level
NO2 concentrations observed by AQS monitors to constrain
the NOx emissions for two regulatory attainment modeling
episodes in Texas. Two inversion methods, DS and DKF, are
applied to the OMI NO2 data, and the DKF method is also
applied to the ground-level NO2 data. Pseudodata test results
validate that the DKF method effectively captures known
perturbations in CAMx simulations.

Two missing NOx sources in the upper troposphere, light-
ning and aircraft NOx emissions, are added into the base case
NOx emission inventory, contributing 14 % and 6 % to the to-
tal NOx emissions for the June episode, and 7 % and 6 % for
the August–September episode, respectively. The underesti-
mated soil NOx emissions are doubled from the base case,
adding an additional 8 % NOx emission to the base case for
both episodes. The additional NOx emissions increase the
modeled NO2 column densities mostly at rural areas and im-
prove the inversion performance with the OMI NO2, but not
with the ground NO2.

The DS method was originally pursued to provide an al-
ternate approach featuring more spatial heterogeneous ad-
justments to emissions. However, it tends to overshoot the
OMI-observed NO2 column densities since this linear inver-
sion method ignores the nonlinear influence of NOx on its
own lifetime. The iterative approach of the DKF inversion
avoids this problem, but fails to substantially improve the
spatial correlation of modeled and observed NO2 levels since
it applies only a single scaling factor to each inversion region.

The overall tendency of the model to underpredict OMI-
observed NO2 column densities and to overpredict AQS-
observed ground NO2 concentrations leads to conflicting re-
sults between the inversions. It is difficult to determine which
observations provide a more reliable basis for the inversions,
since none of the inversions improve model performance
against independent data such as aircraft-observed NO2 or
ground-level O3 concentrations. Whether this indicates that
the a priori inventory is the best available representation of
NOx emissions, or that tuning of the base model led to its
better performance, is impossible to determine. Nevertheless,
this suggests that inverse modeling of NOx emissions should
for now remain a complement to SIP modeling efforts rather
than a substitute for traditional bottom-up inventories.

The AQS ground NO2 measurements face limitations due
to the inaccuracies of the molybdenum converter method.
Furthermore, the mostly urban locations of measurement
sites may be unrepresentative of the entire region, and do not
capture the rural areas where OMI observations suggest NO2
is underestimated. In addition, model shortcomings in sim-
ulating PBL heights in the early morning and late afternoon
may contribute to the low scaling factors in the ground-based
inversions.
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 Fig. 7. Monthly 8 h (10:00–18:00) averaged ground-level O3 concentrations (top), O3 sensitivity to NOx (middle), and O3 sensitivity to
VOC (bottom) for the a priori case (left column), and differences (a posteriori minus a priori) for the OMI-based (middle column) and
ground-based (right column) DKF inversions in the June episode. The August–September episode shows similar results.

For the satellite data, several factors could explain the
more spatially smeared and higher rural NO2 in the satel-
lite observations than the base model which drove the up-
ward scaling of emissions. Our inclusion of lightning and
aircraft NOx emissions and doubling of soil NOx emissions
narrowed but did not eliminate the discrepancy. A higher-
resolution OMI NO2 product (retrieved with small pixels and
high-resolution a priori profile) has been shown to enhance
NO2 column densities in urban areas and reduce them in ru-
ral areas (Russell et al., 2011), which would more closely
resemble the modeled distribution. Lin et al. (2012) high-
lighted several uncertain model parameterizations that im-
pact model predictions of NO2 column density for a given
emission inventory. For example, lowering the rate constant
of the NO2 + OH reaction to match the rate of Mollner et
al. (2010) would lead to a longer NOx lifetime and reduce the
gap between modeled urban and rural NO2 concentrations.

Henderson et al. (2011) suggested that better representation
of acetone and organic nitrates in the CB05 mechanism could
help address its underprediction of NO2 in the remote upper
troposphere. Future work could explore how combinations of
these adjustments influence satellite-based inversions.

The DISCOVER-AQ campaign by NASA in fall 2013 will
provide vertically resolved measurements of NOx from re-
peated aircraft spirals in the Houston region. This may help
resolve some of the discrepancies noted here between inver-
sions driven by ground-based and satellite-based NO2 ob-
servations. The future Tropospheric Emissions: Monitoring
of Pollution (TEMPO) mission, using a geostationary satel-
lite with high spatial and temporal measurement capabilities,
could provide a richer data source to drive the NOx inver-
sions. Future work could also conduct inversions based on
emission categories rather than emission regions, to explore
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potential errors in the emission inventory on a component
rather than location basis.

Supplementary material related to this article is
available online athttp://www.atmos-chem-phys.net/13/
11005/2013/acp-13-11005-2013-supplement.pdf.
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