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Abstract. Isoprene epoxydiol (IEPOX) isomers are key
gas-phase intermediates of isoprene atmospheric oxidation.
Secondary organic aerosols derived from such intermedi-
ates have important impacts on air quality and health. We
report here convergent and unambiguous pathways devel-
oped for the synthesis of isomeric IEPOX species and
the rearrangement productscis- and trans-3-methyl-3,4-
dihydroxytetrahydrofuran in good yield. The availability of
such compounds is necessary to expedite research on iso-
prene atmospheric oxidation mechanisms and subsequent
aerosol formation as well as the toxicological properties of
the aerosols.

1 Introduction

Isoprene (2-methyl-1,3-butadiene,1), the most abundant
non-methane biogenic hydrocarbon emitted into the Earth’s
atmosphere (Guenther et al., 2006), undergoes extensive
atmospheric oxidation. The resulting secondary organic
aerosol (SOA) contributes significantly to the overall atmo-
spheric aerosol budget (Claeys et al., 2004; Carlton et al.,
2009), which affects regional air quality and global climate.
Isoprene-derived SOA is also a major contributor to fine par-
ticulate matter (PM2.5), which adversely impacts respiratory
and cardiovascular systems of exposed populations (Pope III
and Dockery, 2006). Under low nitric oxide (NO) condi-
tions, gas-phase oxidation of isoprene yields four epoxy-
diol (IEPOX) isomers (Eddingsaas et al., 2010; Lin et al.,
2012; Paulot et al., 2009; Surratt et al., 2010; Wang et al.,

2005) (Fig. 1;IEPOX-1–4). Although epoxides have been
suggested as possible precursors for SOA (Paulot et al.,
2009; Surratt et al., 2010), the reaction pathways leading to
aerosol formation are unknown. The gas-phase formation of
the IEPOX isomers in high yield can provide suitable pre-
cursors for SOA and elucidation of the reaction pathways in-
volved in this chemistry will contribute to resolving an out-
standing puzzle in atmospheric aerosol chemistry. Recently,
we have synthesized the four IEPOX isomers and in a series
of controlled dark chamber studies have demonstrated that
their reactive uptake onto pre-existing acidic seed aerosols
yielded SOA (Lin et al., 2012). We have in addition, identi-
fied two previously unreported direct rearrangement products
of the IEPOX isomers on uptake by acidic seed particles,cis-
andtrans-3-methyl-3,4-dihydroxytetrahydrofuran (Lin et al.,
2012; Chan et al., 2010). Comparison of the chemical com-
position of the IEPOX-derived SOA with that of fine aerosol
samples collected from the rural Southeastern US has con-
firmed the atmospheric relevance of our chamber findings,
providing substantial support for the role of IEPOX in form-
ing organic aerosol in the troposphere (Lin et al., 2012).

Our published study (Lin et al., 2012) demonstrates that
availability of authentic, pure and rigorously-characterized
intermediates and standards is critical for investigations into
the generation and subsequent reactions of the IEPOX iso-
mers leading to SOA and the identification and quantita-
tion of aerosol components. In addition, availability of these
compounds is essential for evaluation of their toxicologi-
cal properties in order to assess the impact of isoprene-
derived aerosols on human health. The IEPOX isomers and
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Figure 1. Structures and abbreviations for IEPOX isomers.  411	
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Fig. 1.Structures and abbreviations for IEPOX isomers.

other putative components of isoprene-derived SOA are not
at present commercially available and no streamlined syn-
thetic routes to these compounds in quantity and high purity
have yet been reported. Investigation into the chemistry of
IEPOX has to date relied upon the simpler surrogate butadi-
ene epoxydiol (Eddingsaas et al., 2010; Paulot et al., 2009;
Surratt et al., 2010) to explore reaction pathways, and on sur-
rogate standards for quantitation of key isoprene tracers. We
report here the convenient synthesis of regioisomersIEPOX-
1–4, and the isomeric tetrahydrofurans that are the immediate
rearrangement products of IEPOX isomers on contact with
acidic seed aerosols (Lin et al., 2012).

2 Experimental section

2.1 Instrumentation

All the nuclear magnetic resonance (NMR) spectra were
recorded on a Varian INOVA 400 MHz spectrometer, with
chemical shifts reported in ppm relative to tetramethylsilane.
Splitting patterns are reported as: m (multiplet), s (singlet), d
(doublet), t (triplet) and dd (doublet of doublets). Gas chro-
matography/electron impact ionization mass spectrometry
(GC/EI-MS) was performed with prior trimethylsilylation.
Samples were trimethylsilylated by treatment withN,O-
bis(trimethylsilyl)trifluoroacetamide and trimethylchlorosi-
lane (BSTFA + TMCS) (99: 1, 100 µl v/v, Supelco) and
pyridine (50 µl anhydrous, 99.8 %, Sigma-Aldrich) at 70 °C
for 1 h, and analyzed on a Hewlett-Packard (HP) 5890 Series
II Gas Chromatograph with an Econo-Cap™-EC™ Capil-
lary Column (30 m× 0.25 mm i.d.; 0.25 µm film thickness)
coupled to an HP 5971A Mass Selective Detector. Operat-
ing conditions and temperature program were as described
previously (Surratt et al., 2010).

2.2 IEPOX-1 (erythro- and threo- 1-(2-methyloxiran-2-
yl)ethane-1,2-diol)

To 2-methyl-2-vinyloxirane (2, 1.3 g, 14.8 mmol, Alfa Ae-
sar) in acetone (50 ml, Fisher Scientific), OsO4 (2 ml,
1 % in water, Aldrich) andN -methylmorpholineN -oxide
(3.46 g. 29.6 mmol, Aldrich) were added and the reac-
tion stirred at room temperature (RT) until the starting
material was completely consumed. Progress was moni-
tored by the disappearance of the three-proton vinylic sig-
nals (5.64 ppm, dd,J = 17.6, 10.7 Hz; 5.35 ppm, dd,J =

17.6, 1.1 Hz; 5.23 ppm, dd,J = 10.7, 1.1 Hz) in the1H
NMR spectrum of reaction mixture aliquots. Upon com-

pletion, the reaction mixture was diluted with ethyl acetate
(50 ml, Acros), quenched with saturated Na2S2O3 (2 ml,
Aldrich), dried over anhydrous Na2SO4 (Acros) and fil-
tered. The filtrate was concentrated under reduced pressure,
and the residue purified by flash chromatography (SiO2 –
Aldrich, diethyl ether – Fisher) to give the mixture of enan-
tiomeric IEPOX-1 diastereomers as a colorless oil (1.19 g,
68 %). IEPOX-1 is a racemic mixture of diasteromersery-
thro-IEPOX-1 ([(2′R)-1S]/[(2′S)-1R]-1-(2-methyloxiranyl)-
1,2-ethanediol) andthreo-IEPOX-1 ([(2′S)-1S]/[(2′R)-1R]-
1-(2-methyloxiranyl)-1,2-ethanediol). (erythro/threo, 2 : 1).
GC/EI-MS.m/z, 231, 217, 205, 191, 177, 159, 147.erytho-
IEPOX-1: 1H NMR (400 MHz, CDCl3, Cambridge Isotope
Laboratories): 3.87–3.58 (m, 3H, H1+ C2H2); 2.96 (d, 1H,
J = 4.6 Hz, C1′H2); 2.65 (d, 1H,J = 4.6 Hz, C1′H2); 1.38
(s, 3H, CH3) ppm (Fig. S1).13C NMR (100 MHz, CDCl3):
72.4, 63.5, 57.3, 50.6, 18.5 ppm (Fig. S2).threo-IEPOX-
1: 1H NMR (400 MHz, CDCl3): 3.87–3.58 (m, 3H, H1
+ C2H2); 2.89 (d, 1H,J = 4.7 Hz, C1′H2); 2.63 (d, 1H,
J = 4.7 Hz, C1′H2); 1.35 (s, 3H, CH3) ppm (Fig. S1).13C
NMR (100 MHz, CDCl3): 74.0, 63.7, 58.0, 51.5, 17.43 ppm
(Fig. S2).

2.3 IEPOX-2 (erythro- and threo-2-(oxiran-2-yl)
propane-1,2-diol)

Compound2 (210 mg, 2 mmol) was dissolved in water
acidified with HCl (0.1 N, 2 ml, Fisher) and the mix-
ture was heated in a water bath at 50 °C for 30 min and
then lyophilized. The residue was dissolved in acetoni-
trile (ACN, Fisher) (5 ml), cooled in an ice-water bath
andm-chloroperoxybenzoic acid (mCPBA) (540 mg, 70 %,
2.4 mmol, Aldrich) was added. The clear solution was stirred
in the ice-water bath for 2 h and then at RT until transforma-
tion of the starting material as monitored by thin layer chro-
matography (TLC) was complete. The mixture was cooled
at 4◦C and the resulting precipitate separated by filtration to
remove the bulk of the 3-chlorobenzoic acid. The filtrate was
concentrated under reduced pressure and the residue was pu-
rified by flash chromatography (SiO2, diethyl ether) to afford
IEPOX-2 (150 mg, 62 %). The1H NMR spectrum (Fig. S3)
is identical to published spectra (Adam and Nestler, 1993;
Adam et al., 1997).

2.4 IEPOX-3 (cis-2-methyl-2,3-epoxy-1,4-butanediol)

3-Methyl furan-2(5H )-one (7) (2.11 g, 21.5 mmol) in diethyl
ether (10 ml) was added to a suspension of lithium alu-
minum hydride (LAH) (1.02 g, 31.6 mmol, Aldrich) in di-
ethyl ether (50 ml) at 0 °C. Following the completion of ad-
dition, the mixture was stirred at RT for 2 h and quenched
with water (1 ml) followed by the addition of 15 % (w/w)
NaOH (1 ml, Fisher) and water (3 ml) and stirred at RT for
0.5 h. The organic layer was filtered, then dried with an-
hydrous Na2SO4 and concentrated under reduced pressure.
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The residue was purified by chromatography (SiO2, hex-
ane (Acros)/diethyl ether, 1: 1) to afford 2-methyl-2-butene-
1,4-diol (8) (0.6 g, 27 %) (Duvold et al., 1997).1H NMR
(400 MHz, CDCl3): 5.65 (t,J = 7.6 Hz, 1H), 4.19–4.09 (m,
4H), 1.84 (s, 3H) ppm (Fig. S4).

Compound8 (0.6 g, 5.9 mmol) was dissolved in ACN
(20 ml) and cooled in an ice-water bath.mCPBA (1.6 g,
70 %, 7.2 mmol) was added and the clear solution was stirred
in the ice-water bath for 2 h and then at RT until com-
plete transformation of the starting material as monitored
by TLC. The mixture was cooled at 4◦C and the result-
ing precipitate separated by filtration to remove the bulk
of the 3-chlorobenzoic acid. The filtrate was concentrated
under reduced pressure and the residue dissolved in water
(20 ml) and washed repeatedly with chloroform until no 3-
chlorobenzoic acid was detected by TLC. The aqueous so-
lution was lyophilized to giveIEPOX-3 as colorless oil
(488 mg, 70 %). GC/EI-MS:m/z 244, 231, 217, 205, 191,
159, 147.1H NMR (400 MHz, D2O): 3.94 (dd, 1H,J = 12.2,
6.0 Hz, H4), 3.82–3.74 (m, 2H, H1 and H4), 3.68 (d, 1H,
J = 11.9 Hz, H1), 3.09 (t, 1H,J = 5.8 Hz, H3), 1.44 (s, 3H,
CH3) ppm (Fig. S5);13C NMR (100 MHz, D2O): 64.4, 63.4,
61.4, 61.1, 20.5 ppm (Fig. S6).

2.5 trans-4-((t-Butyldimethylsilyl)oxy)-2-methyl-2-
buten-1-ol (11)

SeO2 (0.85 g, 7.7 mmol, Aldrich) was added to a solution of
9 (3.06 g, 16.4 mmol) in dichloromethane (DCM) (100 ml,
Aldrich) cooled in ice-water. A solution oft-BuOOH (3 ml,
5.5 M in decane, 16.5 mmol, Aldrich) was added and the re-
action mixture was stirred at 0 °C for an additional 2 h be-
fore being warmed to RT and stirred for an additional 1 h at
RT. The reaction was then quenched with saturated NaHCO3
(25 ml, Fisher), separated and the organic layer washed with
brine and evaporated to dryness. The residue was taken up
in ethanol (50 ml, Fisher) and cooled in an ice bath. NaBH4
(0.5 g, 9.2 mmol, Aldrich) was added portionwise and the
reaction mixture stirred for 15 min. Acetone (1 ml, Acros)
was added and the reaction was stirred for another 15 min.
Bulk solvent was then removed under reduced pressure; the
residue was partitioned between water (25 ml) and ethyl ac-
etate (50 ml), and the aqueous layer extracted with ethyl ac-
etate (2×25 ml). The combined organic extracts were washed
with brine, dried over Na2SO4, filtered and concentrated. The
resulting oil was purified by flash chromatography (SiO2,
hexane/ethyl acetate, 10: 1) to give 11 (1.76 g, 8.7 mmol,
53 % over two steps).1H NMR (400 MHz, CDCl3): 5.53–
5.59 (m, 1H), 4.25 (dd, 2H,J = 6.3, 0.8 Hz), 4.03 (d, 2H,
J = 5.2 Hz), 1.68 (s, 3H), 0.92 (s, 9H); 0.87 (s, 6H) ppm
(Fig. S9); 13C NMR (100 MHz, CDCl3): 136.35, 125.44,
68.49, 60.09, 26.19, 18.62, 14.00, 4.93 ppm.

2.6 (3-(((t-Butyldimethylsilyl)oxy)methyl)-2-
methyloxiran-2-yl)methanol (12)

Compound11 (0.7 g, 3.5 mmol) was dissolved in DCM
(20 ml),mCPBA (0.9 g, 77 %, 3.9 mmol) was added and the
mixture stirred at RT over night. The reaction mixture was
then concentrated under reduced pressure and the residue
dissolved in diethyl ether (80 ml) and washed with satu-
rated solutions of Na2S2O3, Na2CO3 (Fisher) and brine con-
secutively, and dried over anhydrous MgSO4 (Fisher). Fol-
lowing filtration and concentration, the residue was puri-
fied by chromatography (SiO2, hexane/ethyl acetate, 10: 1)
to provide12. 1H NMR (400 MHz, CDCl3): 3.82 (dd, 1H,
J = 11.7, 4.8 Hz), 3.76 (dd, 1H,J = 11.7, 5.8 Hz), 3.64 (dd,
2H, J = 12.6 Hz), 3.20 (dd, 1H,J = 5.7, 4.8 Hz), 1.30 (s,
3H), 0.92 (s, 9H); 0.09 (s, 6H) ppm (Fig. S10).

2.7 IEPOX-4 (trans-2-methyl-2,3-epoxybutane-1,4-diol)

Compound12was dissolved in tetrahydrofuran (THF) (6 ml,
Aldrich), cooled in ice water, then Bu4NF (6 ml, 1 M,
Aldrich) was added and the mixture was stirred for 1 h, con-
centrated and the residue purified by chromatography (SiO2,
diethyl ether) to affordIEPOX-4 (308 mg, 82 %). GC/EI-
MS: 24.44 minm/z 244, 205, 191, 159, 147.1H NMR
(400 MHz, CDCl3); 3.92 (dd, 1H,J = 12.5, 4.5 Hz, H4),
3.75–3.68 (m, 2H, H4+H1), 3.58 (d, 1H,J = 12.6 Hz, H1),
3.28 (dd, 1H,J = 7.1, 4.5 Hz, H3), 1.36 (s, 3H, CH3) ppm
(Fig. S11).13C NMR (100 MHz, CDCl3): 65.2, 61.4, 61.1,
59.9, 14.4 ppm (Fig. S12).

2.8 cis-3-Methyltetrahydrofuran-3,4-diol (14) and
trans-3-methyltetrahydrofuran-3,4-diol (15):
method 1

IEPOX-1 (200 mg, 1.7 mmol) in water (4 ml) was stirred at
80 °C for 4 h with p-toluenesulfonic acid (6 mg, Aldrich)
to give a mixture of diastereomeric 2-methylbutane tetrols.
The reaction mixture was lyophilized and the residue mixed
with toluene (15 ml, Fisher) and refluxed overnight. Fol-
lowing removal of the solvent under reduced pressure, the
residue was purified by column chromatography (SiO2, hex-
ane/diethyl ether, 2: 1) to give14as the early-eluting isomer
and15 as the late-eluting isomer:14 (25 mg, 14 %). GC/EI-
MS: m/z 262, 247, 231, 218, 204, 147.1H NMR (400 MHz,
CDCl3): 4.04 (dd, 1H,J = 9.8, 5.8 Hz, H5), 3.92–3.86 (m,
1H, H4), 3.76 (d, 1H,J = 9.2 Hz, H2), 3.73 (dd, 1H,J =

9.8, 4.3 Hz, H5). 3.62 (d, 1H,J = 9.2 Hz, H2), 1.35 (s,
3H, CH3) ppm (Fig. S19).13C NMR (100 MHz, CDCl3):
77.43, 76.92, 76.50, 73.87, 23.48 ppm (Fig. S20).15 (49 mg,
29 %): GC-EIMS.m/z 262, 247, 231, 218, 204, 147.1H
NMR (400 MHz, D2O): 4.27 (dd,J = 10.1, 4.5 Hz, 1H,
H5), 3.99 (dd,J = 4.6, 1.8 Hz, 1H, H4), 3.75–3.68 (m, 3H,
C2H2 + H5), 1.35 (s, 3H, CH3) ppm (Fig. S22).13C NMR
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(100 MHz, CDCl3): 80.54, 79.13, 75.26, 74.56, 18.30 ppm
(Fig. S23).

2.9 cis-3-Methyltetrahydrofuran-3,4-diol (14) and
trans-3-methyltetrahydrofuran-3,4-diol (15):
method 2

2.9.1 4-(Benzyloxy)tetrahydrofuran-3-ol (17)

1,4-Anhydroerythritol (16) (3.1 g, 29.8 mmol, Aldrich) was
added to a solution of Bu2SnO (7.6 g, 30.5 mmol, Aldrich)
and Bu4NI (12.2 g, 33.1 mmol, Aldrich) in toluene (150 ml)
and heated at reflux for 1 h. After the reaction mixture was
cooled to RT, BnBr (4 ml, 33.7 mmol, Aldrich) was added
and the mixture was maintained at∼ 100 °C for 4 h and then
cooled to RT. After dilution with diethyl ether, the mixture
was washed with aqueous Na2S2O3, water and brine succes-
sively and dried over anhydrous MgSO4. The solvent was
removed under reduced pressure, and the residue purified by
column chromatography (SiO2, hexane/ethyl diethyl ether,
2 : 1) to give17 (5.1 g, 88 %).1H NMR (400 MHz, CDCl3):
7.42–7.28 (m, 5H, phenyl-H), 4.61 (s, 2H, benzyl-CH2)
4.29–4.22 (m, 1H), 4.11–4.04 (m, 1H), 3.93–3.84 (m, 2H),
3.82–3.71 (m, 2H), 2.81–2.74 (m, 1H, OH) ppm (Fig. S15).
13C NMR (100 MHz, CDCl3): 137.34, 128.79, 128.37,
128.06, 78.45, 73.61, 72.74, 70.52, 70.16 ppm (Fig. S16).

2.9.2 4-(Benzyloxy)dihydrofuran-3(2H )-one (18)

To a mixture of pyridine (14.0 ml, Aldrich) and Ac2O
(8.25 ml, Aldrich) in DCM (50 ml) cooled in an icewater
bath, CrO3 (8.4 g, 84 mmol, Aldrich) was added, followed
by 17 (5.1 g, 26.3 mmol). The mixture was stirred at RT for
1.5 h, poured in to ethyl acetate (300 ml) and filtered through
silica gel. The filtrate was concentrated under reduced pres-
sure and the residue purified by chromatography (SiO2, hex-
ane/diethyl ether, 2:1) to give18 (1.4 g, 28 %).1H NMR
(400 MHz, CDCl3): 7.43–7.29 (m, 5H, phenyl-H), 4.92 (d,
1H, J = 11.8 Hz, benzyl-CH) 4.68 (d, 1H,J = 11.8 Hz,
benzyl-CH) 4.29 (dd, 1H,J = 9.8, 7.5 Hz), 4.06 (t, 1H,
J = 7.5 Hz), 4.03, 3.98 (q, 2H,JAB = 17.6 Hz, COCH2),
3.871 (dd, 1H,J = 9.8, 7.6 Hz) ppm (Fig. S17).13C NMR
(100 MHz, CDCl3): 213.07, 137.08. 128.73, 129.39, 129.32,
76.22, 72.80, 70.93, 70.18 ppm (Fig. S18).

Compound18 (1.2 g, 6.3 mmol) was added to a solution
of CH3MgCl in THF (3 M, 1.5 eq, Aldrich) cooled in an ice-
water bath. The reaction mixture was stirred at RT for 1 h,
quenched with saturated NH4Cl (Aldrich) and diluted with
diethyl ether. The organic layer was separated and the aque-
ous layer extracted with diethyl ether. The combined organic
phases were washed with brine and dried over anhydrous
MgSO4. After filtration and evaporation of the solvent un-
der reduced pressure, the residue was dissolved in methanol
(50 ml, Fisher). Pd-C (10 %, 200 mg, Aldrich) was added and
the reaction mixture was hydrogenated overnight. The reac-

 412	
  

 413	
  

 414	
  

 415	
  

 416	
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Fig. 2. Scheme for synthesis ofIEPOX-1 and IEPOX-2. The
scheme within the box represents a multi-step procedure (Cole-
Filipiak, 2010) for synthesis ofIEPOX-1 in lower overall yield than
in the present work. (Abbreviations: NMO,N -methylmorpholine
oxide;mCPBA,m-chloroperbenzoic acid.)

tion mixture was filtered through silica gel, concentrated un-
der reduced pressure and the residue purified by chromatog-
raphy (SiO2, hexane/diethyl ether, 2: 1) to give14 (190 mg,
27 %) and15 (300 mg, 41 %). The1H and13C NMR spectra
were identical to those obtained by method 1.

3 Results and discussion

3.1 Synthesis

Syntheses of the mixtures of racemicerythro and threo
diastereomers ofIEPOX-1 (1-(2-methyloxiran-2-yl)ethane-
1,2-diol) andIEPOX-2 (2-oxiranyl-propane-1,2-diol) have
been reported in different contexts (Cole-Filipiak et al., 2010;
Adam et al., 1997; Chiappe et al., 2000), all based on the
epoxidation of butendiol4 or 3, respectively (Scheme 1).
Compound3 is readily available through hydrolysis of com-
mercially available 2-methyl-2-vinyloxirane (2). An excel-
lent yield of a 9: 1 erythro/threo mixture of IEPOX-1 has
been reported via a titanium-catalyzed epoxidation of pre-
cursor4 (Adam et al., 1997) obtained through hydroxyla-
tion of 2-(prop-1-en-2-yl)oxirane (6). Although there are a
number of methods for the preparation of6, including cat-
alytic epoxidation of isoprene (Sheng and Zajacek, 1970;
Brill and Indictor, 1964; Indictor et al., 1965; Rasmussen et
al., 1995), methylene addition to methacrolein (Welzel et al.,
1987; Harwood et al., 1990), and a multi-step pathway start-
ing from isoprene (Suzuki et al., 1986), these routes all suffer
from poor yield and lack of convenience, limiting the over-
all yield for the preparation ofIEPOX-1. Using 2 as start-
ing material, we have designed a convergent synthesis for
IEPOX-1 andIEPOX-2 as diastereomeric mixtures (Fig. 2)
which significantly simplifies preparation and improves over-
all yields. IEPOX-1 was obtained as a mixture of diastere-
omers in 68 % yield through direct dihydroxylation of2 with
OsO4. Acid hydrolysis of2 followed by epoxidation with
mCPBA gave the diastereomeric mixtureIEPOX-2 in 62 %
yield. The 1H NMR spectrum ofIEPOX-1 is identical to
published spectra (Chiappe et al., 2000; Adam and Nestler,
1993) in which assignment of NMR signals was based on
the spectral characteristics of close structural analogs (Adam
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Fig. 3. Scheme for synthesis ofIEPOX-3. (Abbreviation: LAH,
lithium aluminium hydride.)

and Nestler, 1993). In the13C NMR spectrum ofIEPOX-1,
two sets of signals in a 2: 1 ratio are assigned to theerythro
andthreodiastereomers, respectively, based on the13C NMR
shifts which are in accord with the published report. Corre-
spondingly, in the1H NMR, the resolved signals with higher
intensity were assigned toerythrodiastereomer. ForIEPOX-
2, the1H NMR spectrum of the mixture was identical to the
reported spectrum in which, however, theerythro and threo
diastereomers were not assigned. The tentative assignment
for the two sets of NMR signals toerythro and threo di-
astereomers in this work is based on the NMR spectrum of
the close structural analog linalool epoxide for which the ab-
solute stereochemistry has been established (Morales et al.,
2011; Khomenko et al., 2002).

Synthesis of a mixture ofIEPOX-3 andIEPOX-4 in 11 %
overall yield starting with isoprene has been reported (Cole-
Filipiak et al., 2010). Since the authors did not specify that
their product was a mixture, we have deduced the composi-
tion by comparison of the published1H NMR spectrum with
the1H NMR spectra of the racemates of the pure geometric
isomers from our syntheses described below. Thecis isomer
IEPOX-3 was prepared by the unambiguous pathway shown
in Fig. 3. Commercially available 3-methyl furan-2(5H )-one
(7) was reduced with LAH to affordcis-2-methyl-2-butene-
1,4-diol (8), which was then epoxidized withmCPBA to
give IEPOX-3. While some over-reduction of7 to the cor-
responding butanediol appears difficult to avoid, isolation of
8 could be achieved through chromatographic separation. To
ensure the purity of the targetIEPOX-3, the fully reduced
butanediol side product was more efficiently removed fol-
lowing treatment of7 with LAH, rather than following the
epoxidation. The overall yield for this sequence was 19 %,
further optimization was not attempted. Thecis geometry of
IEPOX-3 was confirmed by 1D nuclear Overhauser effect
spectroscopy (1D NOESY) (Fig. S8), which showed strong
dipolar coupling between the methyl group and the oxirane
proton.

IEPOX-4 was prepared according to the scheme in Fig. 4.
3-Methyl-2-buten-1-ol (9) was protected with TBDMS and
a hydroxyl group introduced by SeO2 oxidation followed by
reduction with NaBH4. The resulting 2-buten-1-ol (11) was
epoxidized and deprotected to giveIEPOX-4 in 43 % yield.
The trans-configuration was confirmed by the absence of
a nuclear Overhauser effect correlation between the methyl
group and the oxirane proton in the 1D NOESY spectrum
(Fig. S14).
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Figure 4. Scheme for synthesis of IEPOX-4. (Abbreviations: TBDMS, tert-butyldimethylsilyl; 430	
  

TBAF, tetrabutylammonium fluoride.) 431	
  

Fig. 4. Scheme for synthesis ofIEPOX-4. (Abbreviations: TB-
DMS, tert-butyldimethylsilyl; TBAF, tetrabutylammonium fluo-
ride.)
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Figure 5. Scheme for preparation of a mixture of 14 and 15 (Method 1). (Abbreviation: TSA, 436	
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Fig. 5.Scheme for preparation of a mixture of14and15(method 1).
(Abbreviation: TSA, toluenesulfonic acid.)

The preparation ofcis-3-methyltetrahydrofuran-3,4-diol
(14) has been reported in two steps starting with 4-methyl-
1,2-dioxine (Robinson et al., 2009). Since this route leads
only to the cis isomer and the overall yield, taking into
account the photolytic synthesis of the dioxine from iso-
prene (Motsumoto et al., 1985), is moderate, we devised two
routes to a the synthesis of14 and 15 as a readily separa-
ble mixture. First, taking advantage ofIEPOX-1 on hand,
we prepared the mixture according to the scheme in Fig. 5
by acid-catalyzed hydrolysis ofIEPOX-1 to the 2-methyl-
erythritol/threitol mixture13 followed by a second acid-
catalyzed cyclization of13 to the desired mixture isolated
as the pure targets by column chromatography. It is worth
noting that while the process is simple and can be carried
out in one-pot, the isolation is complicated by side prod-
ucts. The combined yield for the purified isomers14 and15
(1 : 2, respectively) was 43 % starting fromIEPOX-1. Al-
ternatively, the isomers14 and 15 can be obtained via the
scheme in Fig. 6. Dihydroxytetrahydrofuran16was partially
protected by benzylation (17) and oxidized to dihydrofura-
none18. The methyl substituent was introduced by a Grig-
nard reaction, and following deprotection, purified isomers
14and15 (1 : 1.6, respectively) were obtained in a combined
yield of 68 % from18. Through the latter method, the purifi-
cation of the final products to a high standard was facilitated.

In the 1H NMR of 14 and15, the signal for H4 displays
a broadened pattern, distinct from other non-exchanging
protons, which display well-resolved first order doublet-of-
doublet signal patterns. The1H NMR of 14 was identical to
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Figure 6. Scheme for preparation of a mixture of 14 and 15 (Method 2). (Abbreviation: Bu2SnO, 441	
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Fig. 6. Scheme for preparation of a mixture of14 and15 (method
2). (Abbreviation: Bu2SnO, dibutyltin oxide; Bu4NI, tetrabutylam-
monium iodide; BnBr, benzyl bromide.)

that reported for thecis isomer (Robinson et al., 2009), and
the cis-isomeric structure was further confirmed by the 1D
NOESY spectrum (Fig. S21), in which the signal for carbinyl
H4 is strongly enhanced on irradiation of the neighboring 3-
methyl signal. In the case of15, irradiation of the methyl sig-
nal produces a much smaller enhancement of the H4 signal in
the 1D NOESY spectrum in accordance with expectation for
the trans-geometry. The GC/EI-MS of thebis-TMS deriva-
tives of 14 and15 provides additional evidence supporting
the assignment of14 as thecis isomer. Fragmentation to the
product ion [Me3Si-O= SiMe2]+ (m/z 147) is significantly
more pronounced for14 than for15, as would be expected
for thecis isomer (Diekman et al., 1968; Pierce et al., 1968).

3.2 Purity of synthetic targets

The purity of the IEPOX and 3-methyl-3,4-
dihydroxytetrahydrofuran isomers was evaluated by
both the GC/EI-MS spectra and total ion chromatograms
(TICs) of the TMS-derivatized standards and the1H- and
13C NMR traces. The TICs and GC/EI-MS spectra of the
TMS-derivatized standards demonstrate high purity (Lin et
al., 2012). No extraneous resonances were observed in the
NMR spectra. Since a proton signal integrating to> 1 % of
a proton signal of the target compounds would have been
detectable in the NMR spectra, the targets were isolated in
> 99 % purity.

3.3 Stability of stock solutions

The stability of the isomericIEPOX and tetrahydrofuran iso-
mers is of interest with regard to the preparation and storage
of stock solutions. Stock solutions ofIEPOX-1, IEPOX-
3 and the THF isomers in ethyl acetate (100 ng µl−1) were
prepared and stored at−20◦C for use in chamber experi-
ments and as standards. Over a period of 1 yr, no deteriora-
tion was observed for any of the compounds in analyses of
the stock solutions by derivatization GC/EI-MS (Figs. S26,
S27). Thus, both the IEPOX and THF isomers can be stored
for long periods at subambient temperature in an aprotic sol-
vent.

4 Conclusions

We have reported convenient synthetic routes to the IEPOX
isomers that are key intermediates in the formation of
isoprene-derived SOA, as well as to the 3-methyl-3,4-
dihydroxytetrahydrofuran isomers that are the initial rear-
rangement products of IEPOX on contact with acidic seed
aerosols. The availability of these compounds will be critical
in further investigation into the influence of environmental
conditions on SOA formation and composition and will also
be important in assessing the impact of isoprene SOA on hu-
man health.

Supplementary material related to this article is
available online at:http://www.atmos-chem-phys.net/12/
8529/2012/acp-12-8529-2012-supplement.pdf.
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