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Abstract. The chemistry of submicron particles was investi-
gated at San Pietro Capofiume (SPC) measurement station in
the Po Valley, Italy, in spring 2008. The measurements were
performed by using both off-line and on-line instruments. Or-
ganic carbon (OC) and elemental carbon, organic acids and
biomass burning tracers were measured off-line by using a
24-h PM1 filter sampling. More detailed particle chemistry
was achieved by using a Aerodyne high resolution time-of-
flight aerosol mass spectrometer (HR-ToF-AMS) and ana-
lyzing the data by positive matrix factorization (PMF). Ox-
alic acid had the highest concentrations of organic acids
(campaign-average 97.4 ng m−3) followed by methane sul-
fonic, formic, malonic, and malic acids. Samples were also
analyzed for glyoxylic, succinic, azelaic and maleic acids.
In total, the nine acids composed 1.9 and 3.8 % of OC and
water-soluble OC, respectively (average), in terms of car-
bon atoms. Levoglucosan concentration varied from 17.7 to
495 ng m−3 with the concentration decreasing in the course
of the campaign most likely due to the reduced use of do-
mestic heating with wood. Six factors were found for organic
aerosol (OA) at SPC by PMF: hydrocarbon-like OA (HOA),
biomass burning OA (BBOA), nitrogen-containing OA (N-
OA) and three different oxygenated OAs (OOA-a, OOA-b
and OOA-c). Most of the OA mass was composed of OOA-
a, HOA and OOA-c (26, 24 and 22 %, respectively) followed
by OOA-b (13 %), BBOA (8 %) and N-OA (7 %). As ex-
pected, OOAs were the most oxygenated factors with organic

matter:organic carbon (OM : OC) ratios ranging from 1.9 to
2.2. The diurnal variability of the aerosol chemical compo-
sition was greatly affected by the boundary layer meteorol-
ogy. Specifically, the effect of the nocturnal layer break-up in
morning hours was most evident for nitrate and N-OA indi-
cating that these compounds originated mainly from the local
sources in the Po Valley. For sulfate and OOA-a the concen-
tration did not change during the break-up suggesting their
origin to be mostly regional. That resulted in much more ox-
idized OA in the daytime mixing layer than in the noctur-
nal surface layer. In this study, the high mass resolution and
source-related aerosol chemistry from the HR-ToF-AMS was
combined with the filter measurements in a total new extent
elucidating novel features and sources of organic aerosol in
the Po Valley region.

1 Introduction

The Po Valley is located in the Northern Italy between two
mountain ranges, the Alps in the north and west and the
Apennines in the south. It is characterized by a high density
of anthropogenic emissions and by the frequent occurrence
of stagnant meteorological conditions. There are many large
industrial, urban and agricultural areas within the Po Valley,
resulting in pollution with diverse composition. The area has
been identified as one hot spot place where pollutant levels
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remain problematic in spite of the application of the current
European legislation devoted to air pollution control. In gen-
eral, long-range transport represents less than half of the air
pollution in the Po Valley region (Sofiev et al., 2011), empha-
sizing the importance of local control measures in the area to
efficiently reduce the impact of air pollution.

Globally, one major air pollution factor is particulate mat-
ter. In many locations organic aerosol (OA) makes up a large
fraction (20–90 %) of the submicron particulate mass (Sil-
lanp̈aä et al., 2005; Zhang et al., 2007) whereas the rest of
the mass consist of soot, inorganic salts, metals and elements.
The inorganic and elemental fraction of the particle mass has
been characterized well, while much less is known about the
composition of the organic fraction. OA is a complex mix-
ture of many classes of organic compounds, which makes
tracking of its sources, atmospheric processing, and removal
challenging.

OA quantification and chemical composition analysis
methods can be divided into two categories: off-line and
on-line techniques. Off-line techniques, e.g., gas chro-
matography/mass spectrometry (GC/MS), liquid chromatog-
raphy/MS (LC/MS), nuclear magnetic resonance (NMR) and
fourier transform infrared (FTIR) spectroscopy, provide de-
tailed information on individual chemical species or func-
tional groups but require large amounts of sample, result-
ing in low time-resolution (hours to days). On-line tech-
niques (e.g., aerosol mass spectrometry, AMS) usually pro-
vide less specific information on the composition, i.e., some
level of chemical characterization without details on individ-
ual species, but have the advantage of fast acquisition times
providing near real-time data.

The measurements and models reveal organic aerosol to
be a highly dynamic system, tightly coupled to gas-phase ox-
idation chemistry (Jimenez et al., 2009). Gas-phase reactions
transform OA constituents, and OA itself is an intermediate,
often forming from gas-phase precursors and ultimately re-
turning, in part, to gas-phase products. Based on the AMS
measurements, OA can be separated into oxygenated OA
(OOA), hydrocarbon-like OA (HOA), and sometimes other
components such as biomass burning OA (BBOA) in most
places. It has been found that the majority of OA mass is
OOA which can be further deconvolved into low-volatility
OOA (LV-OOA) and semi-volatile OOA (SV-OOA) (Ng et
al., 2010). There have been some studies in which only one
type of OOA has been observed (Allan et al., 2010; Lanz et
al., 2010; Slowik et al., 2010) showing that the split between
OOA factors depends not only on chemical heterogeneity but
also on the degree of covariance between the factors, and thus
on the conditions of the experiment. Increases in OOA are
strongly correlated with photochemical activity (Volkamer et
al., 2006) and other secondary species (Lanz et al., 2007) in-
dicating that most atmospheric OOA is secondary, formed
from either gas-to-particle conversion or oxidized primary
OA.

The aim of this study was to characterize the chemistry
of submicron particles in the Po Valley region in spring-
time 2008 using a combination of on-line (mass spectro-
metric) and off-line analytical methods for organic source
identification. The off-line methods were designed for oxy-
genated organic tracers, providing source information for ox-
idized organic aerosols in an area affected by both biomass
burning and fossil fuel combustion sources. Earlier publica-
tions from the Po Valley region have focused on e.g. water-
soluble organic compounds (Decesari et al., 2001, Matta et
al., 2003), nucleation (Hamed et al., 2007), aerosol compo-
sition measurements conducted on airplane (Crosier et al.,
2007) and sources of carbonaceous aerosols using a com-
bined14C – macro tracer analysis (Gilardoni et al., 2011). In
this study, the off-line filter measurements for organic acids
and biomass burning tracers were combined with the on-line
measurement by an Aerodyne high-resolution time-of-flight
aerosol mass spectrometer (HR-ToF-AMS). That enabled to
(i) explore the sources of organic aerosol in the Po Valley re-
gion, (ii) characterize the detailed chemistry of the aerosol in
various meteorological conditions and (iii) in different time
of the day. This was the first time when high time resolution
and source-related aerosol chemistry was examined in the Po
Valley region with this extent.

2 Experimental methods

2.1 Measurement site

The measurements were conducted at the San Pietro Capofi-
ume (SPC) measurement station (44°39′0′′ N, 11°37′0′′ E;
Decesari et al., 2001) from 30 March to 20 April 2008. The
station is located about 30 km northeast from the city of
Bologna, area open to Adriatic Sea to the east side, but en-
closed by densely populated areas on its southern, western
and northern sides.

2.2 PM1 filter measurements

2.2.1 Sampling

PM1 particles were collected using a filter cassette system
(Gelman Sciences) similar to that described in Saarikoski et
al. (2007). Briefly, four upper stages (8–11) of the Berner
low-pressure impactor (BLPI; Berner and Lürzer, 1980) were
used prior to the filter cassette at a flow rate of 80 l min−1

in order to remove particles with an aerodynamic diame-
ter larger than 1 µm from the sample. The nominal cut-off
diameter (D50) for the stage 8 is 2 µm with a flow rate of
24.5 l min−1. Filter cassette had two quartz filters (Whatman)
back-to-back in order to take into account the gas-phase ar-
tifacts. The sampling duration for the PM1 was 24 h with the
filter change taking place at 09:00 at local time. The total
number of the PM1 samples was 23. The samples were stored
at−20◦C prior to the chemical analyses.
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2.2.2 OC, EC and WSOC analyses

PM1 filter samples were analyzed for organic carbon (OC)
and elemental carbon (EC) by using a thermal-optical carbon
analyzer of Sunset Laboratory Inc., Oregon. The temperature
program was similar to the method developed by the National
Institute for Occupational Safety and Health (NIOSH), ex-
cept for the last temperature step in the helium phase that
was decreased from 850 to 800 °C (Saarikoski et al., 2007).
For the analysis, a 1 cm2 sample piece was punched from the
quartz filters. For OC the ratio of back-up filter to front filter
ranged from 5.1 to 16 % being on average 8.1 % whereas for
EC there were no detectable concentrations on the back-up
filter.

Water-soluble organic carbon (WSOC) was analyzed from
the PM1 filters with a Total Organic Carbon Analyzer
equipped with a high sensitive catalyst (TOC-VCPH, Shi-
madzu). For the analysis a 1 cm2 sample piece was punched
from the quartz filters. Prior to the WSOC analysis sam-
ples were extracted by shaking the filter piece with 15 ml
of Milli-Q water for 15 min. TOC method is described in
detail in Timonen et al. (2008). Briefly, the method used
was the Non-Purgeable Organic Carbon (NPOC) method in
which the sample solution is first drawn to syringe where
inorganic carbon (carbonates, hydrogen carbonates and dis-
solved carbon dioxide) is converted to carbon dioxide, and
subsequently evaporated from the sample, by adding HCl
(1 %) to the sample and bubbling it with helium. After that,
the sample is injected into an oven, where it is catalytically
oxidized to carbon dioxide at 680 °C and detected by a non-
dispersive infrared (NDIR) detector. For WSOC the ratio of
front-to-back-up filter varied from 2 to 16 % with an average
of 7.0 %. OC and WSOC concentrations were corrected for
blanks by subtracting the concentration on the back-up filter
from that on the front filter.

2.2.3 IC-CD, IC-MS and HPAEC-MS analyses

Inorganic ions and organic acids were determined from the
PM1 filters by using an ion chromatograph (IC) connected to
a conductivity detector (CD) and a mass spectrometer (MS).
1 cm2-piece was punched from the quartz fibre filter and
extracted into 5.0 ml of deionised water by a short manual
shaking followed by 15 min of gentle rotation. The extract
was filtered through an IC Acrodisc® syringe filter (13 mm,
0.45-µm Supor® (PES) membrane, Pall Sciences) that was
washed with deionised water freshly prior to the filtering.

Concentrations of major inorganic ions (chloride, nitrate,
sulfate, sodium, ammonium, and potassium) were measured
using a Dionex ICS-3000 ion chromatography system. An-
ion analyses were made using a Dionex AG11 guard col-
umn (2 mm i.d. × 50 mm length) and a Dionex AS11 analyti-
cal column (2 mm i.d. × 250 mm length), a 2-mm ASRS-300
suppressor, a CR-ATC anion trap column and a potassium
hydroxide (KOH) eluent generator. The eluent flow rate was

0.3 ml min−1 and the total run time was 13 min. Gradient run
was used for the anion analyses (2–25 mM). Cations were
analyzed using a CG12A guard column and CS12A ana-
lytical column, a 2-mm CSRS-300 suppressor, a CR-CTC
cation trap column and methane sulfonate eluent generator.
Isocratic run (23 mM) was used for the cation analyses with
the flow rate of 0.3 ml min−1 and the total run time of 13 min.
The sample loop size was 50 µl for both the anion and cation
analyses and a conductivity detector was used for the detec-
tion of these ions. For the inorganic ions the percentages of
back-up to front filters were 4.6 (± 3.8), 3.3 (± 3.1), 0.070
(± 0.081), 1.0 (± 0.94) and 0.35 (± 0.42) % (average (± SD))
for chloride, nitrate, sulfate, ammonium and potassium, re-
spectively. For sodium the ratio could not be determined due
to its high blank values for the quartz filters.

In order to measure the concentrations of organic acids,
the ICS-3000 system was coupled with a quadrupole mass
spectrometer (Dionex MSQ®). Ionization technique used
was electrospray ionization in which the operating parame-
ters were chosen so that the minimum fragmentation and the
best sensitivity were achieved. The probe temperature was
set to 500◦C, needle voltage to−3 kV, and cone voltage to
−40 V. The molecular ions were monitored using selected
ion mode. There are two major advantages of using the mass
spectrometer as the detector of the ion chromatograph. First,
the use of mass spectrometer as a second detector allows the
determination of the concentrations of organic acids which
co-elute from the analytical column but can be separated ac-
cording to their differentm/z ratios. Second, lower detec-
tion limits are achieved for organic acids when they are de-
tected by a mass spectrometer. The percentages of the back-
up to front filters for the identified organic acids were 9.9
(± 8.8), 0.33 (± 1.1), 2.0 (± 2.5), 2.3 (± 1.6), 11.7 (± 13.2),
11.3 (± 9.4), 13.7 (± 9.4), 0.62 (± 1.3) and 5.3 (± 11.4) % for
formic, methane sulfonic, glyoxylic, oxalic, malonic, maleic,
succinic, malic and azelaic acids, respectively. For the rest of
the organic acids (acetic, adipic, pinonic and pinic acid) the
back-up concentrations were close to their detection limits.
Similar to OC and WSOC, inorganic ion and organic acid
concentrations were corrected for blanks.

The concentrations of monosaccharide anhydrides (MAs;
levoglucosan, mannosan and galactosan) were measured
using a high-performance anion-exchange chromatogra-
phy coupled to electrospray ionization mass spectrometry
(HPAEC-MS) modified from the IC-MS system that was
used for the organic acids (Dionex ICS-3000 and Dionex
MSQ®). The method is described in more detail in Saarnio et
al. (2010). The preparation of the PM1 samples for levoglu-
cosan, mannosan and galactosan analyses was similar to that
of the ions. Levoglucosan, mannosan and galactosan were
not analyzed from the back-up filters because in the previ-
ous studies levoglucosan has not been found on the back-up
filters (Yttri et al., 2005).
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2.3 Berner low-pressure impactor

Size-segregated aerosol samples were collected using a
Berner low-pressure impactor (flow rate 4.84 m3 h−1) in
which particles were classified into five size fractions ac-
cording to the following equivalent aerodynamic cut-off di-
ameters at 50 % efficiency: 0.05, 0.14, 0.42, 1.2, 3.5 and
10 µm. Aluminum and Tedlar foils were used simultaneously
as sampling substrates for the determination of total carbon
(TC) and of water-soluble components, respectively (Matta
et al., 2003). Daytime and night-time samples were collected
separately between approximately 08:00 and 20:00 at local
time. Consequently, the sampling time of each PM1 filter
(Sect. 2.2.1) overlapped approximately with two consecutive
BLPI samples.

BLPI samples were analyzed for ions with ion chro-
matography (Dionex) and WSOC by using an Analytik Jena
multiN/C 2100 analyzer. The results are discussed exten-
sively in a companion paper (Paglione et al., 2012), and are
used in this study mainly as supporting data for the compari-
son and validation of the parallel measurements with the PM1
filters and AMS. To this aim, the concentrations determined
on each BLPI sample were cumulated over the three finest
size ranges (up to 1.2 µm of particle diameter).

2.4 High-resolution time-of-flight aerosol mass
spectrometry

The particle chemical composition was measured by using
a high-resolution time-of-flight aerosol mass spectrometer
(Aerodyne Research Inc., USA; DeCarlo et al., 2006). The
operation of the HR-ToF-AMS is given here only shortly.
The AMS has three main sections: an aerosol inlet, particle
sizing chamber and particle detection section. The aerosol
inlet samples submicron particles into the AMS through
an aerodynamic lens forming a narrow particle beam. The
beam is transmitted into the detection chamber in which
non-refractory components of aerosol are flash vaporized
upon impact on hot surface (∼ 600 °C) under high vacuum
(∼ 10−5 Pa). After that the components are ionized by elec-
tron impact ionization and the ions are detected by a mass
spectrometer. The transmission of the particle beam to the de-
tector is modulated with a mechanical chopper. The chopper
has three positions. An “open” position transmits the beam
continuously, “closed” position blocks the beam completely,
and “chopped” position modulates the beam transmission
with a 1–4 % duty cycle which is determined by the width
of the slit in chopper (Jayne et al., 2000).

AMS alternates between two modes of operation: mass
spectrum (MS) and particle-Time-of-Flight (PToF) mode. In
the MS mode the chopper is in open position to obtain an
ensemble-average MS of the sampled air. Signal from the
background gases is accounted for by subtracting the MS ob-
tained with the chopper in closed position. The particle size
is determined in the PToF mode. When the chopper is oper-

ating in the chopped mode, the particle velocity is measured
from its flight time between a chopper and the vaporizer sur-
face. The HR-ToF-AMS has ion optics for two modes of op-
eration: V- and W-mode. In the V-mode ions follow the tra-
ditional reflection path whereas in the W-mode the ions exit-
ing the reflector are directed into a hard mirror that focuses
them back into the reflector for a second time before trav-
elling to a multichannel plate detector. The mass resolving
power of the ToF-MS increases as the flight path is length-
ened but the lateral broadening of the ions increases over a
longer flight path and reduces the total signal as fewer ions
struck the detector. Therefore the V-mode is more sensitive
but the W-mode offers higher mass resolution. The resolu-
tions for the V-mode and W-mode are typically∼ 2000 and
4000, respectively (DeCarlo et al., 2006). In this study the
time-resolution for the AMS was set to 5 min as one single
measurement consists of 2.5 min of V-mode and 2.5 min of
W-mode measurements. PTof was measured only in the V-
mode (2/3 of time).

2.4.1 Collection efficiency

In general a constant collection efficiency (CE) of 0.5 is ap-
plied to the AMS data (e.g. Allan et al., 2004; Sun et al.,
2009; Canagaratna et al., 2007). However, CE can also be
a function of particle phase and chemical composition (Al-
lan et al., 2004; Huffman et al., 2005; Crosier et al., 2007;
Matthew et al., 2008; Takegawa et al., 2009; Middlebrook et
al., 2012). Aerosol particles sampled from inlets with high
relative humidity and particles with high ammonium nitrate
or acid content, for example, have CE values approaching 1.
In general, for nitrate fraction< 0.25 a CE of 0.5 is used
whereas for fraction> 0.25 CE increases linearly to 1. In
this study the observed aerosol was neutralized (Supplement
Fig. S1) and the nitrate mass fraction ranged from 0.06 to
0.58 with an average of 0.31.

A collection efficiency of 0.5 was applied for the whole
data set as a first guess. With a CE of 0.5, a comparison be-
tween the total mass from the AMS (sum of organics, nitrate,
sulfate, ammonium and chloride), that from the PM1 (sum
of OC× 1.77; the factor will be calculated in Sect. 3.2.2, ni-
trate, sulfate, ammonium, chloride) and corresponding size
fraction of the BLPI measurements (sum of WSOC× 1.8;
Docherty et al., 2008, nitrate, sulfate, ammonium, chloride)
is shown in Fig. S2 together with the comparison of AMS
to BLPI/PM1 for nitrate, organics, sulfate and ammonium.
In general, the ratio of AMS-to-BLPI was higher than that
of AMS-to-PM1 but both the ratios changed during the cam-
paign. AMS mass concentrations calculated with a CE= 0.5
value reproduced both the BLPI and PM1 during the latter
portion of the campaign, but showed a systematic under-
prediction for the aerosol mass concentrations measured by
both the instruments during the first weeks of the campaign.
Since both instrument intercomparisons showed this under-
prediction, the AMS mass concentrations calculated with a
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CE= 0.5 from the beginning of the campaign until 9 April,
11:33 (LT) were increased by multiplying them by an ad-
ditional factor of 1.67. However, the exact reason for this
under-prediction is not clear. The under-prediction in abso-
lute AMS mass concentrations does not clearly correlate with
any changes in the aerosol composition but concerning the
meteorology relative humidity was slightly lower from the
beginning of the campaign to midday on 9 April (average
RH 64 %) than after that until the end of the campaign (aver-
age RH 76 %). It is also useful to note that the deviations be-
tween the AMS and PM1 or BLPI for individual 12 h (BLPI)
or 24 h (PM1) periods include uncertainties in the estimated
filter mass. For example, the conversion used to calculate or-
ganic matter may be higher or lower than the used value of
1.77 (or 1.8 for WSOC).

Supplement Table S1 shows a summary of the intercom-
parison between the AMS mass concentrations (calculated
with a CE= 0.5 and corrected for apparent systematic bias
before 9 April, 11:33) and the PM1 and BLPI based mass
concentrations. For nitrate the AMS gave slightly higher con-
centrations than the BLPI (2 %) or the PM1 (16 %) whereas
for ammonium the concentrations obtained from the AMS
were higher than those from the BLPI (3 %) but lower than
from the PM1 (8 %). Sulfate from the AMS was consider-
ably lower than that from the BLPI (64 %) or PM1 (51 %)
but the reason for the low sulfate concentrations measured by
the AMS couldn’t be found. However, one explanation could
be that the vaporizer temperature was actually slightly lower
than indicated by the thermo-couple temperature measure-
ment (600 °C). This would have an effect on less-volatile sul-
fate but not affecting semi-volatiles like ammonium nitrate or
most of organics. Organics from the AMS were compared ei-
ther with WSOC from the BLPI or OC from the PM1 filters.
Organics had 2.22 times higher concentrations than WSOC
from the BLPI, which makes sense since AMS organics in-
clude also water-insoluble organic carbon as well as other
atoms than carbon (hydrogen, oxygen, nitrogen, sulfur). The
ratio of AMS organics to OC from the PM1 filters was 1.49
on average. The ratio of organic matter to organic carbon at
SPC will be discussed later in this paper. The concentrations
of the chemical species from the AMS agreed well with those
from the PM1 or BLPI samples (R = 0.83–0.94) except sul-
fate (R = 0.69 for AMS vs. BLPI).

2.4.2 Data analysis

All data was analyzed using a standard AMS data analy-
sis software (SQUIRREL v1.49 and PIKA v.1.08B; Sueper,
2008) within Igor Pro 6 (Wavemetrics, Lake Oswego, OR).
Positive matrix factorization (PMF, Paatero and Tapper,
1994; Lanz et al., 2007; Ulbrich et al., 2009) was conducted
on high-resolution mass spectra of organics (W-mode) with
m/z below 100.

PMF was applied to the high-resolution mass spectra of
OA by varying the number of factors from three to ten. The

plot of Q/Qexp vs. number of factors (nF,n = 3–10) shows
that when the number of factors was increasedQ/Qexp de-
creased (Fig. S3). PMF solutions from 5F to 7F (MS and
time series) are shown in Supplement (Fig. S4). Of those, 6F-
solution seemed to be the most reasonable. In 6F-solution the
organic aerosol components were identified as HOA, BBOA,
three OOAs (OOA-a, OOA-b and OOA-c) and nitrogen-
containing OA (N-OA). The factors were identified accord-
ing to their MS signatures, diurnal cycles and the correlation
of their time series with other aerosol chemical components.

Compared to 6F-solution, in 4F-solution BBOA could not
be separated from the other factors asm/z 60.021 (C2H4O+

2 )

and 73.029 (C3H5O+

2 ), which are known to be tracers for
BBOA, were included in HOA. Starting from 5F-solution,
there was a separate factor for BBOA that had the biomass
burning-relatedm/z’s (60.021 and 73.029), however, in 5F-
solution BBOA did not correlate with levoglucosan (R =

0.39) (or mannosan or galactosan) from the PM1 filter sam-
ples (Fig. S5b). In 6F- and 7F-solutions BBOA agreed well
with levoglucosan (R = 0.81 and 0.84, respectively). Sim-
ilarly to levoglucosan the correlation between BBOA and
WSOC, EC, K and most of the organic acids, analyzed from
the PM1 filters, increased going from 5F- to 6F-solution.
These correlations were even slightly better in 7F-solution.

The other factors did not change as much as BBOA
when the number of factors changed. The contributions of
HOA and OOA-a to total OA decreased slightly going from
4F-solution to 7F-solution as the new factors were added
(Fig. S6a). The correlation between HOA and levoglucosan
decreased when the number of factors increased whereas the
correlation of HOA with nitrogen oxides (NOx, NO2 and
NO) increased until 6F after which it collapsed (Fig. S5a).
OOA-c had little higher contributions in 4F- and 7F- than
in 5F- and 6F-solutions. N-OA lost some mass from going
from 4F to 6F-solution but its contribution increased again in
7F-solution. Compared to 6F-solution, in 6F-solution there
was an additional OOA-factor (OOA-b in Fig. S4b) that had
MS resembling the two other OOAs (especially OOA-a) with
a lot of oxygenated fragments that were shifted from both
BBOA and N-OA. However, the time series and diurnal trend
of OOA-b were different from OOA-a and OOA-c. In 7F-
solution the additional factor (Factor 6 in Fig. S4c) had sim-
ilar time series with N-OA and its MS had signal from vari-
ous nitrogen-containing compounds (Figs. S4c and S6b; ad-
ditional factor labeled as N-OAx in Figs. S5–S6). That ad-
ditional N-OAx factor had very low contribution to the total
mass (3.5 % on average; Fig. S6a).

OOA-a and OOC-c were slightly more oxidized when
the number of factors increased whereas OOA-b had lower
O : C ratio in 7F- than in 6F-solution (Fig. S6b). The ratio
of H : C increased for HOA going from 4F- to 7F-solution.
Even though the correlations between PMF factors and PM1
filters were slightly better in 7F-solution compared to that of
6F-solution, the difference was rather small. Also the seventh
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factor (N-OAx in Fig. S5–S6) seemed to be quite unimpor-
tant since its contribution was low and the resemblance to N-
OA was large (especially in time series and diurnal trends).
Thus, 6F-solution was selected for further analysis.

f-Peak values were tested to explore the possibility of lo-
cal minima in the Q-space. The value for the f-Peak (Fig. S7)
was chosen to be 0. f-Peak had slightly lowerQ/Qexp val-
ues for−0.4,−0.2 and 0.2 than for 0 but the difference was
small. However, there was a significant difference in the com-
parison of BBOA to levoglucosan for different values of f-
Peaks. For the f-Peak value of 0 the correlation coefficient
(R) was 0.813 (Table S2) whereas for f-Peak of−0.2 and
0.2 the coefficients were 0.412 and 0.336, respectively. Boot-
strapping was used to evaluate the statistical uncertainty of
6F-solution. The results from the bootstrapping analysis for
MS and time series are shown in Fig. S8. The minimum er-
ror value for the error matrix was calculated as the average
noise value observed for ions during low signal time periods
(Huang et al., 2010).

2.5 Auxiliary data

Micro-meteorological parameters were monitored with a
WXT510 (Vaisala) station. Gaseous ammonia concentra-
tions were measured on-line using an automatic denuder-
based system (AMANDA, ECN) while time-resolved con-
centrations of NO, NOx and ozone were furnished by the
Emilia-Romagna monitoring network for atmospheric pol-
lution. SO2 was measured by using a Monitor Labs model
8850. LD-40 lidar-ceilometer (Vaisala, Finland) was oper-
ated in elastic backscatter at the wavelength of 855 nm to
study the aerosol vertical distribution in the first 4000 m
above ground level. Signal profiles are averaged every 15 min
and have a vertical resolution of 7.5 m. Minima in the first
derivative of the intensity of the signal were used to identify
aerosol stratifications, including the top of the mixing layer
or of the nocturnal stable surface layer.

3 Results and discussion

3.1 General description of the measurement campaign

Meteorological conditions during the campaign are pre-
sented in Fig. 1. Temperature and wind speed had clear di-
urnal cycles with higher values observed during the day-
time. Relative humidity had peak values in the night. Dur-
ing the campaign temperature varied from 3 to 21 °C with
the campaign-average of 12.2 °C. Relative humidity was in
the range of 28–98 % averaging at 70.1 %. There were some
showers during the campaign, especially on the second half
of the campaign. Wind speed varied from 0.5 to 8.7 m s−1

with an average of 2.9 m s−1 but wind direction had not em-
phasis on any particular sector.

Fig. 1.Meteorological parameters (wind speed, wind direction, rel-
ative humidity, precipitation and temperature) at SPC during the
campaign.

The concentrations of inorganic gases are shown in
Fig. S9. At the beginning of the campaign (until 5 April)
the concentrations of NOx, NO and NO2 were significantly
higher than during the rest of the campaign. For the other
gases same kind of time trend could not be observed even
though for SO2 there were several periods when the concen-
trations increased considerably.

In general the measurement campaign can be divided into
five distinct time periods. During the first period (Period I),
from 30 March to 6 April, the pollutant levels were quite high
and there were clear diurnal cycles in the aerosol concentra-
tion and composition. According to the backward trajectories
(HYSPLIT) air masses came to SPC mostly from the north-
east or north. The second period (Period II), 7 April, was
characterized by low background conditions and a significant
transport from outside of the Po Valley. Air masses arrived in
SPC from south-west, from Mediterranean. The third period
(Period III), from 8 April to noon on 11 April, had the high-
est concentrations levels observed during the campaign with
only a little diurnal variation. According to the trajectories
air masses came from south and south-west during Period
III. The fourth period (Period IV), from noon 11 to noon 12
April, was the second background period. Similar to the first
background period the air masses came from the Mediter-
ranean. The fifth period (Period V) was from noon 12 April
to the end of the campaign, and it was characterized by the
high variability in the concentrations and intermittent scav-
enging. During Period V the air masses arrived in SPC from
south-west sector.
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Fig. 2. Time series(a), average chemical composition(b), size-distribution(c) and diurnal variation(d) of HR-ToF-AMS species at SPC.
In (b) and(d) the data was averaged over the whole campaign, from 31 March to 21 April, and in(c) from 9 April to 21 April 2008. Asterisks
and arrows in(a) present the cases with the nocturnal surface layer break-up discussed in Sect. 3.4. Note that sulfate concentrations from the
HR-ToF-AMS were much smaller than those from the BLPI or PM1 filter measurements probably due to the instrumental issues. See details
in Sect. 2.4.1.

3.2 Chemical composition of fine particles

3.2.1 Non-refractory species from the HR-ToF-AMS

Fine particles at SPC were mostly composed of nitrate fol-
lowed by organics (Fig. 2). For nitrate the concentrations
ranged from 0.03 to 43.7 µg m−3 whereas the concentrations
of organics varied from 0.2 to 42.8 µg m−3 (15 min averages).
Nitrate concentration was at its highest between 9 and 11
April (Period III). During that time also the ammonium and
organics concentrations were elevated. The highest organics
concentrations (42.8 µg m−3) were measured in the late night
on 4 April (Period I), however, none of the other species
measured by the HR-ToF-AMS increased at the same time.
The peak concentration of organics was most likely caused
by a vehicle bypassing the site indicated by a high signal at
m/z 55 and 57 (Canagaratna et al., 2004). The campaign-
average concentrations for organics, nitrate, ammonium, sul-

fate and chloride were 3.8 ± 2.7, 4.4 ± 5.3, 1.9 ± 1.8, 0.9 ± 0.5,
and 0.14 ± 0.2 µg m−3, respectively. The measured ammo-
nium concentrations matched with ammonium required to
fully neutralize sulfate, nitrate and chloride with a linear cor-
relation coefficient (R) of 0.99 and a slope of 0.88 (Fig. S1).

On average, 39 % of the particle mass was made of nitrate,
33 % of organics, 18 % of ammonium, 9 % of sulfate and 1 %
of chloride (Fig. 2b). The mass contributions of sulfate and
nitrate varied during the campaign in contrast to the contri-
butions of organics, ammonium and chloride that were more
steady (Fig. 2a). In general, the contribution of sulfate was
larger when the absolute concentrations were low whereas
the large relative contributions of nitrate corresponded to
large absolute concentrations of nitrate.

The campaign-average diurnal trends for organics, ni-
trate, sulfate, ammonium and chloride are presented in
Fig. 2d. Largest diurnal variation was observed for nitrate.
Nitrate had clearly higher concentrations from early morning
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(∼ 04:00) to noon (∼ 12:00) peaking at 10:00. After 10:00
the concentrations started to decrease due to the transfer of
ammonium nitrate from particles to gas-phase and the de-
velopment of mixing layer. The early morning increase can
be explained by the local sources of nitrate precursors (traf-
fic) and the poor mixing of pollutants in nighttime. The di-
urnal trend for ammonium followed closely that of nitrate.
The concentration of organics was quite stable in the night
and early morning but it decreased∼ 10:00 and stayed at a
lower level until the evening (∼ 20:00) reflecting the change
in the boundary layer height and the mixing of pollutants but
also the evaporation of semivolatile components due to the
higher ambient temperature. The formation of secondary or-
ganic aerosol (SOA), that would have peaked in the after-
noon (Zhang et al., 2005; Plaza et al., 2006; Takegawa et
al., 2006), was not observed in the concentration of organics.
However, regarding the elemental composition of organics
(Sects. 3.2.2 and 3.4) the formation of SOA could be spec-
ulated. Regarding sulfate the diurnal trend was almost the
opposite of organics. The concentration of sulfate increased
slightly in the afternoon, which suggests that the origin of
sulfate was mostly regional since its concentration increased
when the mixing layer was developed. Moreover, ammonium
sulfate is a non-volatile component meaning that there is
not significant evaporation from particles to gas-phase with
higher temperatures in the afternoon. For chloride there was
a peak in the morning (∼ 06:00–12:00) that coincided with
the trend of ammonium suggesting that chloride might be in
the form of ammonium chloride. Even though all the species
had a diurnal trend, their diurnal mass contributions were
fairly steady throughout the day (Fig. 2d). For the nitrate
mass contribution the diurnal pattern followed that of the
concentration with slightly larger contributions from 04:00
to 14:00 whereas the contribution of organics had just the
opposite trend. The mass contribution of sulfate was highest
in the afternoon. The effect of nocturnal surface layer break-
up on particle chemical composition will be discussed more
detailed in Sect. 3.4.

The average mass size-distributions from 9 to 20 April are
shown in Fig. 2c for organics, nitrate, sulfate, ammonium and
chloride. There was no size-distribution data before 9 April
because of the incorrect chopper parameters of PToF. The
shape of the size-distributions was very similar for nitrate,
sulfate and ammonium suggesting that they were internally
mixed. On average, they all had an accumulation mode peak-
ing at the size of 500 nm, but besides that, there was an ad-
ditional mode peaking at∼ 100 nm being either large Aitken
or small accumulation mode. Similar to inorganics, organics
had also an accumulation mode at 500 nm, however, organ-
ics had more particulate mass at the size range of 30–350 nm
compared to the peak of the mode. Obviously, the size dis-
tribution of organics is multi-modal and besides the domi-
nant accumulation mode at 500 nm it probably has two addi-
tional modes; second accumulation mode at∼ 200 nm and an
Aitken mode below 100 nm. Broader distribution for organ-

ics has been found previously for both the urban and rural
locations (Alfarra et al., 2004; Zhang et al., 2005, Allan et
al., 2006; Huang et al., 2010). Time evolution for the size-
distributions revealed that the distributions did not change
much during the campaign (not shown), however, the con-
centration level had a slight effect on the size-distribution.
When the concentrations were very low (Periods II and IV),
nitrate, ammonium and organics peaked at 550 nm but the
peak shifted to 500 nm when the concentrations increased
(especially in Period III). For sulfate the shift could not be
seen as its concentration level was quite stable throughout
the campaign. For chloride the concentrations were too low
for the proper size distribution measurements.

3.2.2 Elemental composition

High resolution mass spectra obtained in this study enabled
the investigation of the molecular ratios of O, C, H, N and S
in organic aerosol. O : C ratio varied from 0.25 to 0.75 with
an average of 0.47 (Fig. 3a). It had a clear diurnal variation
with the smallest ratio in the morning (08:00–10:00) and the
largest ratio in the afternoon (13:00–17:00; Fig. 3b). Higher
O : C ratios in the afternoon can be explained by several fac-
tors. Increased contribution of oxygen in OA can result from
the oxidation of OA (SOA formation) in the afternoon but
also from the mixing of nocturnal surface layer aerosol with
the aerosol aloft, that is more oxidized, with the mixing layer
development. That will be discussed later with the PMF fac-
tors and in Sect. 3.4. The campaign-average H : C ratio was
1.49. For H : C ratio the diurnal trend was just the opposite
of O : C ratios having the largest ratio in the morning (08:00–
10:00) and smallest in the afternoon (14:00–17:00).

Only few sulfur-containing organic compounds were de-
tected at SPC (e.g. MSA, Sect. 3.3) resulting in a very low
campaign-average S : C ratio (0.0014). However, there was
a notable amount of nitrogen-containing organic compounds
(CxHyN) and therefore a clear N : C ratio for OA. The highest
N : C ratios observed were∼ 0.04. The diurnal trend for the
N : C ratio followed roughly the trend of H : C (Fig. 3b) and
nitrate (Fig. 2d) with the morning maximum. That suggests
the nitrogen-containing compounds to be related to vehicle
traffic but the morning peak can also originate from a contin-
uous accumulation of aerosol in the nocturnal surface layer,
followed by their dispersion once the mixing layer develops.
In this case, the N-containing compounds could come from
any sources at the ground, including the emission from soil,
or from livestocks, etc. Compared to the H : C ratio, N : C ra-
tio did not decrease steeply after the morning maximum, it
rather decreased slowly towards the night minimum. On av-
erage, the ratio of N : C was 0.018. Nitrogen-containing or-
ganic compounds will be discussed later in this paper.

The organic mass : organic carbon (OM : OC) ratio var-
ied from 1.4 to 2.1 during the campaign with an average
of 1.77 (Fig. 3a). It had a similar diurnal pattern to that of
O : C in line with the previous results that showed the O : C
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Fig. 3. Elemental analysis of HR-ToF-AMS-data. Time series for OM : OC, H : C, O : C and N : C ratios(a) and their average diurnal
trends(b).

ratio being the term that governs the OM : OC ratio (Pang et
al., 2006). The concentration of organics was divided by the
OM : OC ratio in order to get the concentration of OC from
the HR-ToF-AMS. That HR-ToF-AMS OC was compared to
the OC concentrations obtained by analyzing the 24-h PM1
filters by thermal-optical method in the laboratory (Fig. 4).
The two measurements of OC agreed well (R = 0.926) with
the HR-ToF-AMS giving 14 % lower values. That could be
due to several things i.e. the gas-phase artifacts in the filter
sampling or the collection efficiency applied for the HR-ToF-
AMS data.

3.2.3 Organic acids from the PM1 samples

Organic acids were analyzed from the 24-h PM1 filter sam-
ples. The highest concentrations were measured for oxalic
acid with an average of 97.4 ng m−3 during the campaign
(Fig. 5). Oxalic acid comprised roughly half of the to-
tal amount of all organic acids determined. The concentra-
tions of formic, malonic and malic acid were much lower
than those of oxalic acid but on average they were higher
than those of glyoxylic, succinic and azelaic acids. Maleic
acid concentrations were barely above the detection limit in
many samples. Methane sulfonic acid had smaller concen-
trations than oxalic acid but larger concentrations than the

Fig. 4. Carbon from the HR-ToF-AMS vs. OC from the PM1 fil-
ter sampling. Markers are colored by the dates with the color scale
ranging from 1 to 19 April 2008.
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Fig. 5. The concentrations of formic, methane sulfonic, glyoxylic,
oxalic, malonic, maleic, succinic, malic and azelaic acids from 28
March to 20 April 2008 analyzed from the 24-h PM1 samples.

other acids its campaign-average concentration being equal
to 38.7 ng m−3. Individually organic acids comprised from
0.0091 to 0.97 % of OC and from 0.018 to 1.9 % of WSOC
in terms of carbon atoms. In total, the nine acids composed
1.9 and 3.8 % of OC and WSOC, respectively (campaign-
average).

Oxalic, malonic and succinic acid concentrations at SPC
were at the same level with those measured previously in Puy
de Dôme, France but the concentration of glyoxylic acid was
much larger at SPC than at any of the seven European sites
participating the CARBOSOL project (Legrand et al., 2007).
Also the concentrations of formic and malic acids were much
larger at SPC than those measured earlier in Zurich, however,
in the same Zurich study the concentration of maleic acid was
close to that measured at SPC (Fisseha et al., 2006).

The daily variation of formic, glyoxylic, oxalic, malonic
and succinic acids was remarkably similar (Fig. 5). They all
have the highest concentrations in the first two samples (31
March–1 April and 1–2 April) and in the second polluted pe-
riod (Period III). Their concentrations compared well with
each other (PearsonR = 0.76–0.94), which suggests that
these acids were either primarily emitted (or fast secondar-
ily produced) together or formation processes of these acids
were somehow related. However, since they also had sim-
ilar trends with inorganic compounds, nitrate, sulfate, am-
monium, and potassium, as well as with OC analyzed from
the PM1 filters, it seems that more than indicating similar
sources/atmospheric processing the correlations displayed
the difference between polluted air masses coming from the

urban areas in the Po Valley and the cleaner air masses com-
ing from the Mediterranean. Malic acid had somewhat sim-
ilar time evolution with formic, glyoxylic, oxalic, malonic
and succinic acids (Fig. 5). Its concentration was the highest
for the first two samples, however, during the second polluted
period malic acid did not increase noticeably.

Maleic acid had slightly different behavior from formic,
glyoxylic, oxalic, malonic, succinic and malic acids. It also
had the highest concentrations in the first sample (31 March–
1 April) and Period III but it compared weaker with other
acids (R = 0.18–0.77) as well as inorganic components, OC
and EC in the PM1 filters. In addition to different sources
and/or formation processes weak correlation could be due to
the high uncertainty associated with its concentrations dur-
ing the clean period. Also the time evolution of azelaic acid
was different from the other organic acids since its concen-
trations did not increase during the polluted period (Period
III). Actually, the highest concentration of azelaic acid was
detected on 7–8 April that was a background period (Period
II) when none of the other aerosol components analyzed had
elevated concentrations. Azelaic acid is formed from unsat-
urated fatty acids, e.g. oleic acid, by oxidation. These unsat-
urated acids are found in marine phytoplankton and terres-
trial higher plant leaves but they are also emitted by anthro-
pogenic sources such as meat cooking (Rogge et al., 1991)
and wood burning processes (Rogge et al., 1998). Methane
sulfonic acid agreed moderately with the other acids, how-
ever, it compared well with PM1 filter chloride since it is
most likely an oxidation product of dimethyl sulfide (DMS)
which is produced by ocean phytoplankton (Seinfeld and
Pandis, 1998).

Kawamura and Ikushima (1993) proposed that malonic
acid is produced by photochemical oxidation of succinic acid
in the atmosphere, and hence malonic-to-succinic acid ra-
tio has been used as an indicator of enhanced photochemical
production of diacids (Kawamura et al., 1996; Pavuluri at al.,
2010). At SPC the average ratio of malonic-to-succinic acid
was 1.74 ranging from 0.83 (first sample) to 2.83 (last sam-
ple). In general, the trend was that the ratio increased as the
spring progressed.

3.2.4 Biomass burning tracers from the PM1 samples

Three monosaccharide anhydrides, levoglucosan, mannosan
and galactosan, were analyzed from the PM1 filter samples.
They are all produced exclusively during the pyrolysis of cel-
lulose and hemicellulose, which makes them specific atmo-
spheric tracers for biomass combustion emissions (Simoneit
et al., 1999; Nolte et al., 2001).

The concentration of levoglucosan varied from 17.7 to
495 ng m−3 during the campaign with the highest concen-
trations observed in the first sample (31 March–1 April) and
the sixth sample (5–6 April; Fig. 6). In general, the concen-
tration decreased in the course of the campaign. That was
most likely due to the reduced use of domestic heating with
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Fig. 6. The concentration of levoglucosan, mannosan, galactosan
and potassium from 28 March to 20 April 2008 analyzed from the
24-h PM1 samples.

wood due to slightly higher night temperatures, although the
daily-averaged ambient temperature was rather stable during
the campaign (Fig. 1). The lifetime of levoglucosan can be
prone to hydroxyl radical exposure (Hennigan et al., 2010)
but the degradation of levoglucosan was not assumed to be
the reason for the decreased concentrations as the intensity
of the solar radiation did not show any trend in the course of
the campaign.

The campaign-average concentration of levoglucosan was
176 ng m−3 that corresponded to 2.7 % of OC and 4.1 %
of WSOC in terms of carbon atoms. Those were in the
range of values obtained earlier in Europe (Saarikoski et al.,
2008). The concentrations of mannosan and galactosan were
much smaller than that of levoglucosan having the campaign-
averages of 19.3 and 12.8 ng m−3, respectively. The con-
centrations of the three biomass tracers followed each other
closely (Fig. 6) with the proportions of 84.4 (± 1.34), 9.56
(± 0.92) and 6.0 (± 0.90) % for levoglucosan, mannosan and
galactosan, respectively (average ± std). These proportions
were close to those measured in Helsinki, Finland (Saarnio
et al., 2010) but somewhat different from those detected in
Norway (Yttri et al., 2005). In Norway the proportions of lev-
oglucosan and galactosan were lower whereas that of man-
nosan was more than twice that measured at SPC. The agree-
ment between the three tracers was strong (R = 0.98–0.99)
but they also compared well with OC (R = 0.82–0.87) and
EC (R = 0.76–0.79) analyzed from the PM1 filters. There
were moderate relationships of biomass burning tracers with
WSOC, water-soluble potassium (R = 0.55–0.65; Fig. 6)
and gaseous NOx, NO, NO2 (R = 0.61–0.75).

The time series of levoglucosan, mannosan and galactosan
did not agreed with those of the organic acids. That finding
is in line with the results of Legrand et al. (2007) who found
that regional emissions from vehicles and wood burning are
the major sources of carboxylic acids in winter in Europe.
In summer, the contribution of the anthropogenic processes
to acid concentrations is weaker whereas the contribution of
biogenic emissions becomes more important.

3.3 AMS-PMF factors

PMF was applied to the high-resolution mass spectra of
OA by varying the number of factors from three to ten.
6F-solution seemed to be the most representative based on
Fig. S3–S8 and the discussion given in Sect. 2.4.2. PMF fac-
tors were denoted as hydrocarbon-like OA, biomass burn-
ing OA, nitrogen-containing OA and three oxygenated OAs
(OOA-a, OOA-b and OOA-c). There is also a simple esti-
mation method based on the unit mass resolution (UMR)
tracerm/z’s that can provide a first-order approximation of
the PMF components (Aiken et al., 2009; Ng et al., 2011).
The comparison of PMF factors to the rapid estimation of
AMS-PMF components from UMR tracerm/z for the SPC
data is shown in Fig. S10.

MS profiles and time series of the PMF factors are shown
in Fig. 7. Largest concentrations were detected for OOA-
a (26 %), HOA (24 %), and OOA-c (22 %; Fig. 8a). OOA-
b constituted 13 % of OA whereas BBOA and N-OA com-
posed 8 and 7 % of OA, respectively. HOA spectra was some-
what similar to that measured in Pittsburgh, Zurich and Mex-
ico city (Zhang et al., 2005; Lanz et al., 2007; Aiken et al.,
2009) with the MS dominated by the ion series of Cn H+

2n−1
and Cn H+

2n+1, characteristics of OA mass spectra from pri-
mary emission sources (Canagaratna et al., 2004; Mohr et al.,
2009). Compared with a standard UMR mass spectra pro-
file for HOA obtained from 15 urban data sets (Ng et al.,
2011), HOA was more oxidized in this study (higherm/z 44
in Fig. S11).

HOA had a high H : C ratio and low O : C and OM : OC
ratios being the least oxygenated PMF factor (Fig. 8b). HOA
had a clear diurnal trend with the highest concentration de-
tected at 10:00 (Fig. 8c). After that the concentration de-
creased sharply likely caused by the break-up of the noc-
turnal inversion layer. The concentrations started to build up
again∼ 19:00. HOA concentration did not agree with any
of the AMS species but it agreed well with EC analyzed
from the PM1 filters (Table S2). It also compared well with
WSOC and potassium (BLPI and PM1 filters) as well as
biomass burning tracers, levoglucosan mannosan and galac-
tosan (PM1 filters), suggesting that HOA probably had some
connection to BBOA. The correlation coefficients between
HOA and NOx/NO/NO2 were quite small (R = 0.46–0.54)
but almost all the details of the time trends of HOA were cap-
tured by the variability of NOx, NO and NO2 (not shown). It
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Fig. 7.High-resolution mass spectra for HOA, BBOA, three OOAs, and N-OA(a), their time series and the contribution to total organics(b).

seems that HOA mostly originated from the fossil fuel com-
bustion.

All three OOAs had quite similar mass spectra but as their
time series and diurnal trends were rather different, they were
considered as separate PMF factors instead of combining
them all to one OOA. In terms of MS all OOAs had the
strongest signal atm/z 27.995 (CO+) and 43.99 (CO+2 ) but
the fraction of CO+2 was highest for OOA-a and lowest for
OOA-b. OOA-a had also more signal at 43.018 (C2H3O+)

being overall more oxidized factor than OOA-b and OOA-
c (higher O : C and OM : OC ratios, Fig. 8b). Compared with
the standard UMR mass spectra profiles from urban sites (Ng
et al., 2011) all OOAs had MS similar to LV-OOA (Fig. S11).

OOA-a had only a small diurnal variation with slightly
higher concentrations and mass contributions in the after-
noon than in the morning and in the evening (Fig. 8c). The
concentrations of OOA-a were low in Period I because in
those days background air was very clean. Concentrations
were high in Period III when local sources (traffic, biomass
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Fig. 8.Campaign-mean contributions(a), elemental composition(b) and diurnal trends for six PMF factors.

burning) and a regional component coexisted. OOA-a had
high background concentrations in Period V and also en-
hancements during the mixing layer formation (Sect. 3.4).
OOA-b had a lot of short-term variation but on average, the
concentrations of OOA-b were quite even at different peri-
ods. OOA-c concentration clearly decreased over the course
of the campaign. The highest concentrations for OOA-c were
observed in the first two days of the campaign but after that
the concentrations declined gradually. The diurnal trends for
OOA-b and OOA-c indicated them to be mostly from local
sources. OOA-b had the highest concentrations in the morn-
ing and during the night with a clear dip during the day. Sim-
ilar to OOA-b, OOA-c also had the largest concentration in
the morning, but differently from OOA-b, the concentration
did not increase after sunset. Instead it started to rise after
midnight. In terms of diurnal contributions, the contribution
of OOA-c to OA was stable throughout the day whereas the
contribution of OOA-b was lower in the afternoon than in the
other times of the day.

As expected for a regional component, the concentration
of OOA-a agreed better with the concentration of sulfate than
other OOAs (Table S2). OOA-a also compared well with
MSA and chloride suggesting it to originate from sources
in the Mediterranean basin rather than in continental Europe.
Of all OOAs, OOA-a had clearly smallest correlation coef-
ficient with the carbonaceous species WSOC, EC and OC
analyzed from the PM1 filters but it had a good agreement
with maleic acid that had different time trends from the other

acids (Sect. 3.2.2). OOA-b agreed with the semivolatile in-
organic compounds, nitrate and ammonium. OOA-c had the
largest correlation coefficients with WSOC, EC, OC, organic
acids, except maleic acid, and biomass burning components,
levoglucosan, mannosan and galactosan and potassium.

BBOA had the strongest signals atm/z 29.003 (CHO+)

39.023 (C3H+

3 ) and 41.039 (C3H+

5 ; Fig. 7a). There was also a
high signal atm/z 60.021 (C2H4O+

2 ) and 73.029 (C3H5O+

2 )

that are characteristicm/z’s for biomass combustion (Alfarra
et al., 2007). Compared to the UMR profile of BBOA from
Ng et al. (2011), BBOA had lower signal atm/z 43 and
44 (Fig. S11). Regarding biomass burning-relatedm/z’s, the
fraction of m/z 60 was similar to that of Ng et al. (2011)
whereasm/z 73 was higher at SPC. BBOA had quite low
OM : OC and O : C ratios (1.45 and 0.23, respectively) but
slightly larger H : C ratio than OOAs (1.53; Fig. 8b). Com-
pared to BBOA factor observed in Mexico (Aiken et al.,
2009), BBOA at SPC was slightly less oxygenated than in
Mexico City (OM : OC and O : C ratios of 1.55 and 0.30 in
Mexico City, respectively). Similarly to HOA and OOA-b,
the lowest BBOA concentrations were observed in the after-
noon whereas the highest concentrations were obtained dur-
ing the late evening (∼ 23:00).

The concentration of BBOA agreed well with OC, WSOC
and most of the organic acids, except maleic and azelaic
acid. It also had a good agreement with the biomass burn-
ing tracers, MAs (levoglucosan, mannosan and galactosan)
and potassium. The relationship between BBOA and the sum
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Fig. 9.Time series of three PMF factors compared with the sum of monosaccharide anhydrides (MA; levoglucosan, mannosan and galactosan)
analyzed from the PM1 filters (a) and the comparison of anhydrosugars analyzed from the PM1 filters with the hypothetical anhydrosugars
computed from the AMS data by using C2H4O+

2 (b). HR-ToF-AMS data was averaged over the PM1 filter sampling periods.

of MAs is shown in Fig. 9a. On average, levoglucosan was
present at∼ 61 % of BBOA which was a much higher per-
centage than obtained previously for ambient aerosol (e.g.
6.1 % in Mexico city; Aiken et al., 2009) or typically found
in biomass burning emissions (Schmidl et al., 2008). As al-
ready mentioned, levoglucosan compared well with HOA
(R = 0.837) and OOA-c (R = 0.820). OOA-c was likely to
be either oxygenated fraction of biomass burning primary
OA, that was only slightly processed, or very freshly formed
SOA with a timescale of a few hours. The good agreement
between HOA and levoglucosan concentrations probably re-
sulted from the fact that they were both primary compo-
nents. They had similar mechanisms of accumulation in the
boundary layer and therefore alike diurnal trends. Regarding
the correlations between levoglucosan and PMF factors, it
should be noted here that the sampling time for the PM1 fil-

ters was 24 h meaning that all the details of the levoglucosan
concentrations were lost in the filter sampling. Besides sim-
ilar sources or atmospheric processing, correlations between
levoglucosan and PMF factors may also indicate the differ-
ence between the air masses or meteorological conditions.

The concentration of anhydrosugars (sum of levoglucosan,
mannosan and galactosan) was constructed from the AMS
data by using only C2H4O+

2 (m/z 60.021; Lee et al., 2010).
It was assumed that C2H4O+

2 was present at 0.3 % of OA
without biomass burning influence (Aiken et al., 2009), and
therefore that fraction was subtracted from the concentration
of C2H4O+

2 . In the study of Aiken et al. (2009) they measured
that C2H4O+

2 comprised 14.1, 13.8 and 12.1 % of the total
ion fragment pattern for levoglucosan, mannosan and galac-
tosan, respectively. These ratios were used together with the
ratios of levoglucosan, mannosan and galactosan obtained
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from the PM1 filter samples to reconstruct anhydrosugar con-
centration from the AMS data. On average AMS anhydro-
sugars contributed 25 % of the anhydrosugars determined
from the filter samples (Fig. 9b). They had somewhat cor-
relation, but especially for the large concentrations, the devi-
ation between two measurements was notable. Lower AMS
anhydrosugars than anhydrosugars analyzed from the filters
was in contrast to the study of Lee et al. (2010) in which
they found that C2H4O+

2 signal was clearly higher than can
be explained by the three anhydrosugars in the laboratory
studies indicating that there were other structurally similar
molecules that produce C2H4O+

2 . It is very difficult to try to
explain the lack of C2H4O+

2 in our study since standard an-
hydrosugar compounds have not been analyzed with the in-
strument. However, this discrepancy raises a question about
the similarity of AMS instruments and the need of instrument
intercomparisons.

The sixth factor was identified as nitrogen-containing OA
based on its mass spectra. In N-OA MS the highest signal
was atm/z 29.003 (CHO+), 41.039 (C3H+

5 ) and 43.018
(C2H3O+) but the highest nitrogen-containing fragments
were at m/z 27.011 (CHN+), 29.027 (CH3N+), 30.034
(CH4N+; Fig. S12a), 31.042 (CH5N+), 41.027 (C2H3N+),
42.034 (C2H4N+; Fig. S12b), 43.042 (C2H5N+), 44.05
(C2H6N+), 45.058 (C2H7N+), 56.05 (C3H6N+) and 58.066
(C3H8N+). In total, these eleven nitrogen-containing frag-
ments comprised 14 % of the total N-OA signal. Highest
concentration of N-OA was observed during Period III, on
9 April, together with the elevated concentrations of nitrate
and ammonium. Overall, N-OA compared well with nitrate
and ammonium throughout the campaign (Table S2) with a
similar diurnal trend having the accumulation of N-OA in
the morning and the sharp decrease during the nocturnal sur-
face layer break-up suggesting a local source. Comparing
N-OA to the compounds analyzed from the BLPI and PM1
samples, N-OA concentration agreed with that of chloride
(PM1), potassium (PM1) and MSA (BLPI and PM1). The
correlations with those components, however, indicate some
contribution from the marine sources. Previously, a nitrogen-
containing OA-PMF factor has been found in e.g. Mexico
City (Aiken et al., 2009) and New York (Sun et al., 2011).

As already mentioned, both OOA-a and N-OA agreed
well with MSA. They both have a signal for CH3SO+

2 at
m/z 78.985 with its contribution to the total OA signal being
0.11 and 0.075 % for N-OA and OOA-a, respectively. Those
fractions were more than 100 times higher than the fraction
of CH3SO+

2 for the other PMF factors. N-OA had also a sig-
nal for CHS+ at m/z 44.9799 with a similar contribution to
CH3SO+

2 but the signal of CHS+ was not pronounced for
OOA-a. MSA has previously measured by a unit mass res-
olution AMS over the north Pacific Ocean (Phinney et al.,
2006).

As expected, N-OA had the highest N : C ratio (0.078)
but it also had a large H : C ratio (1.91; Fig. 8b) indicat-

ing a notable contribution from hydrocarbon fragments. Both
the N : C and H : C ratios were higher than those found for
nitrogen-containing factor in Mexico City (0.06 and 1.80;
Aiken et al., 2009) and in New York (0.053 and 1.50; Sun
et al., 2011). In the study conducted in South China, The
Pearl River Delta, they did not found a separate factor for
nitrogen-containing OA, however, their BBOA factor had a
large N : C ratio (0.053; Huang et al., 2011). N-OA was more
oxygenated at SPC than in Mexico City indicated by higher
OM : OC and O : C ratios at SPC (1.55 and 0.22 at SPC, re-
spectively). Besides N-OA, also OOA-c had some nitrogen-
containing fragments with a clear N : C ratio (0.036).

The fractions ofm/z 44 and 43 (f44 and f43, respectively)
from the unit mass resolution AMS data can be used to as-
sess the aging of the OA components in the atmosphere. f44
and f43 data from SPC is shown in Fig. S13. As it can be
seen from Fig. S13, f44 and f43 ranged from 0.05 to 0.20
and 0.03 to 0.1, averaging at 0.12 and 0.067, respectively,
for the whole OA. At the beginning of the period (blue) f43
was slightly higher than at the end of the campaign (red). For
f44 there was no clear evolution during the campaign. The lo-
cations of the PMF factors in f44, f43 space show how much
their oxidation properties vary. As expected, OOAs had large
f44 values whereas f44 was significantly smaller for BBOA,
HOA and N-OA. N-OA had much larger f43 than BBOA.
Compared to the results of Ng et al. (2010), all OOAs were
located in LV-OOA region. At the same area there were also
HULIS samples that consist of organic macromolecular com-
pounds possessing similar properties to those of fulvic and
humic acids (Graber and Rudich, 2006).

3.4 Mixing layer development

The effect of boundary layer meteorology on aerosol chemi-
cal composition was investigated in detail by selecting three
representative days when the break-up of nocturnal sur-
face layer occurred almost at the same time of the day at
10:00 UTC+1 h (11:00 at local summer time). These days
were selected based on the time series of the AMS species
and the mixing layer height from the lidar measurements. Se-
lected days were 4, 5 and 17 April, and they are indicated as
arrows and asterisks in Fig. 2a.

The time evolution from 06:00 to 14:00 is presented for
the mixing layer height, HR-ToF-AMS species, PMF factors
and elemental ratios in Fig. 10. The selected three days were
averaged together in Fig. 10 but in Table 1 the concentration
ratios for before-to-after the break-up are shown for each day
separately. Of the AMS species, the concentration of nitrate
decreased most significantly during the break-up (Fig. 10a)
suggesting that all nitrate was from the local sources. Ni-
trate concentration was 17 times lower after the break-up,
on average, however, there was a large case-to-case variation
(Table 1). For organics, ammonium and chloride the effect
of break-up was large but significantly less pronounced than
for nitrate whereas for sulfate only during the first case day
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Fig. 10.HR-ToF-AMS species concentrations(a) and contributions(b), PMF factor concentrations(c) and contributions(d), and elemental
ratios(e–f) during the nocturnal surface layer break-up. The development of the mixing layer height (Hmix) is shown in(a). Three cases,
indicated as arrows in Fig. 2a, were averaged.

Table 1.The ratios of concentrations and species mass contributions before and after the nocturnal surface layer break-up. Three days (4, 5
and 17 April) were selected. Concentrations/ratios before the break-up were calculated by averaging the data before the break-up from 06:00
to 09:30 and after the break-up from 11:30 to 14:00.

Species before/after Ratio Ratios before/after Ratio

µg m−3 4 April 5 April 17 April 4 April 5 April 17 April

NO3 31.4 2.76 17.4 NO3 to mass 3.16 1.16 1.56
SO4 2.32 0.85 1.04 SO4 to mass 0.21 0.35 0.38
Org 7.93 3.44 4.08 Org to mass 0.74 1.41 0.79
NH4 9.39 1.50 5.96 NH4 to mass 0.87 0.63 0.99
Chl 7.32 1.71 2.94 Chl to mass 1.52 1.28 1.74
BBOA 10.83 5.33 5.15 BBOA to OA 1.32 1.52 1.19
HOA 9.03 11.60 6.18 HOA-b to OA 1.38 3.48 1.46
OOA-a 1.20 0.64 1.91 OOA-a to OA 0.14 0.19 0.45
OOA-b 5.71 2.91 14.34 OOA-b to OA 0.80 0.88 3.39
OOA-c 10.52 2.88 3.61 OOA-c to OA 1.49 0.81 0.88
N-OA 10.09 8.58 23.68 N-OA to OA 1.27 2.41 5.48

OM : OC 0.92 0.86 0.91
O : C 0.76 0.62 0.77
H : C 1.04 1.11 1.09
N : C 1.14 0.93 1.64
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(4 April) the concentration decreased because of the break-up
of the stable nocturnal surface layer. The behavior of sulfate
can be seen even more clearly from the species-to-mass ra-
tios. The contribution of sulfate to mass (sum of AMS nitrate,
sulfate, organics, ammonium and chloride) was three times
larger after the break-up than before the break-up on aver-
age (Fig. 10b; Table 1). As speculated earlier in Sect. 3.2.1,
the origin of sulfate was mostly regional since its concen-
tration remained rather even when a well-mixed layer was
developed.

Of six PMF factors, N-OA had the largest change caused
by the nocturnal surface layer break-up followed by HOA
(Table 1). That was expected since N-OA and HOA were as-
sumed to originate from local traffic emissions. Of OOAs,
OOA-b decreased substantially because of the break-up
whereas OOA-a showed hardly any change. The contribu-
tion of OOA-a to OA was four times higher after the break-
up compared to that before it, on average (Fig. 10d). That
resulted in much more oxidized OA in the mixing layer
than in the nocturnal surface layer (OM : OC and O : C ra-
tios in Fig. 10e–f and Table 1). The air above thermal in-
versions is unaffected by fresh emissions at nighttime and
early morning, and therefore its constituents are more aged
and oxidized. Nevertheless, the OM : OC and elemental ra-
tios (Fig. 10e–f) did not change sharply during the break-up.
The change of OM:OC and elemental ratios was more grad-
ual that indicates that they were affected by other factors than
just the development of mixing layer, e.g. SOA formation.
The concentrations of BBOA and OOA-c also decreased dur-
ing the nocturnal surface layer break-up but the change was
smaller than for HOA, N-OA and OOA-b.

It is very difficult to quantify the timing and the impact of
the entrainment of air from the free troposphere in the sur-
face layer. Probably, the progressive entrainment is a good
explanation, considering also the small decrease of sulfate
followed by a slow raise. This is likely due to the initial start-
ing of the convection, but when the upper air gets gradually
entrained in the mixing layer the concentrations return to the
typical mean values.

4 Summary and conclusions

In this study, the chemistry of submicron particles was in-
vestigated in the Po Valley region, Italy in spring 2008. Or-
ganic acids and biomass burning tracers were measured off-
line by using 24-h filter sampling. More comprehensive parti-
cle chemistry was achieved by using the Aerodyne HR-ToF-
AMS and analyzing the AMS data by PMF. Combining the
filter and AMS results elucidated new features and sources
of organic aerosol in the Po Valley region. This was the
first time when the high mass resolution and source-related
aerosol chemistry was examined in the Po Valley region with
this extent.

The oxidation state of organic aerosol in the Po Valley re-
gion was examined by studying the PMF factors from the
AMS data as well as analyzing the organic acids from the
filter samples. On average, the OM : OC ratio was 1.77 for
OA, the oxidation state depending on the time of the day
and varying from one PMF factor to another. In total, six
PMF factors were obtained for organic aerosol at SPC: HOA,
BBOA, N-OA and three different OOAs (OOA-a, OOA-b
and OOA-c). As expected, the three OOAs were the most
oxygenated factors. OOA-c that was the least oxygenated
factor of OOAs but it had the largest correlation coefficient
with the organic acids. It was speculated that OOA-c was as-
sociated with biomass burning supported by the fact that also
levoglucosan agreed well with OOA-c. OOA-a was the most
oxygenated OA-factor and it has similar time series with
the marine-related components: sulfate, chloride and MSA.
The mass spectra of OOA-a had fragments from the organic
sulfur compounds, CHS+ and CH3SO+

2 . Sulfur components
were also found in the MS of N-OA but overall, N-OA had
more significant contribution from the nitrogen-containing
fragments like CH4N+, C2H4N+ and C2H6N+. To conclude,
OA in the Po Valley region was a complex mixture of compo-
nents from both local and regional sources. A large fraction
of it originated from anthropogenic sources, like traffic and
biomass burning, but a considerable part of it was likely to
be e.g. marine-related.

One special feature at SPC, that has not been studied much
in terms of aerosol chemical composition, was a break-up of
the nocturnal surface layer in a daytime. The effect of the
break-up was most evident for nitrate and N-OA suggesting
the similarity of their sources or formation processes. For sul-
fate and OOA-a the fraction in the submicron particle mass
or OA was three times larger after the break-up than before it.
The origin of sulfate and OOA-a was mostly regional since
their concentration was rather constant even when the noctur-
nal surface layer air was diluted with aloft layers by turbulent
mixing at late morning. That resulted in much more oxidized
OA in the daytime mixing layer than in the nocturnal surface
layer. Particles above the surface layer were aged and there-
fore also suspected to be more oxidized than the aerosol in
the surface layer.

The most important new finding of this investigation was
the detailed, high time resolution, source apportionment of
organic aerosol in the Po Valley, with links to the different
meteorological conditions and the time of the day (photo-
chemical conditions and PBL evolution). This study showed
that a large fraction of aerosol was from local sources, i.e.,
providing particles reaching the site after a few hours trans-
port at surface level in weak wind conditions, but even in
a highly polluted area like Po Valley, there is a contribu-
tion from a regional origin, especially evident in the hours
of the day when the PBL was well developed and entrained
air from the layers traveling aloft. These findings have impli-
cations on air pollution and related health issues as the under-
standing of the origin of pollution was greatly improved. The
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composition and sources of atmospheric aerosol has been ex-
amined in the Po Valley region for decades, however, most
of the studies rest on the filter measurements collected on
daily basis. This paper enhances the time scale by explaining
the chemistry on hourly basis and over the variation in the
boundary layer height.

This study did not include time resolved black carbon
measurements. As black carbon is known to be a crucial com-
ponent in terms of climate change and air quality, future re-
search in Po Valley should be aimed, in addition to organic
aerosol, also at the sources and the composition of black car-
bon. At the moment, there are methods available that enable
the detailed investigation of the chemical and physical prop-
erties of particles containing black carbon (Onasch et al.,
2012).

Supplementary material related to this article is
available online at:http://www.atmos-chem-phys.net/12/
8401/2012/acp-12-8401-2012-supplement.pdf.
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