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Abstract. The stratosphere is thought to play a central role in
the atmospheric response to solar irradiance variability. Re-
cent observations suggest that the spectral solar irradiance
(SSI) variability involves significant time-dependent spec-
tral variations, with variable degrees of correlation between
wavelengths, and new reconstructions are being developed.
In this paper, we propose a simplified modelling framework
to characterise the effect of short term SSI variability on
stratospheric ozone. We focus on the pure photochemical ef-
fect, for it is the best constrained one. The photochemical ef-
fect is characterised using an ensemble simulation approach
with multiple linear regression analysis. A photochemical
column model is used with interactive photolysis for this
purpose. Regression models and their coefficients provide a
characterisation of the stratospheric ozone response to SSI
variability and will allow future inter-comparisons between
different SSI reconstructions. As a first step in this study, and
to allow comparison with past studies, we take the represen-
tation of SSI variability from theLean(1997) solar minimum
and maximum spectra. First, solar maximum-minimum re-
sponse is analysed for all chemical families and partition-
ing ratios, and is compared with past studies. The ozone re-
sponse peaks at 0.18 ppmv (approximately 3 %) at 37 km alti-
tude. Second, ensemble simulations are regressed following
two linear models. In the simplest case, an adjusted coeffi-
cient of determination̄R2 larger than 0.97 is found through-
out the stratosphere using two predictors, namely the pre-
vious day’s ozone perturbation and the current day’s solar
irradiance perturbation. A better accuracy (R̄2 larger than

0.9992) is achieved with an additional predictor, the previ-
ous day’s solar irradiance perturbation. The regression mod-
els also provide simple parameterisations of the ozone per-
turbation due to SSI variability. Their skills as proxy models
are evaluated independently against the photochemistry col-
umn model. The bias and RMS error of the best regression
model are found smaller than 1 % and 15 % of the ozone re-
sponse, respectively. Sensitivities to initial conditions and to
magnitude of the SSI variability are also discussed.

1 Introduction

Solar variability has gained much attention over the past
decade for its potential effect on the Earth climate and as a
natural modulator of anthropogenic climate change. The de-
tailed mechanisms involved in this modulation are currently
not well understood. However, the stratosphere may play a
central role, possibly through dynamical coupling with the
troposphere (e.g.Egorova, 2005; Semeniuk et al., 2011). The
stratosphere is most sensitive to the ultra-violet (UV) range
of the solar spectrum. The magnitude of variability in the UV
is wavelength-dependent and is between one and two orders
of magnitude larger than the variability of the total solar irra-
diance (TSI). As a result, numerical models need to incorpo-
rate some spectral dependence in their representation of solar
variability. Most past numerical studies have been performed
with a representation of spectral solar irradiance (SSI) vari-
ability based upon pre-defined solar irradiance spectra, such
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as 11-yr solar maximum and minimum spectra or monthly
spectra. The temporal SSI variability is then simply obtained
by keeping the different wavelengths linearly related. Un-
der this assumption of linear wavelength time variability, the
photolysis can be simplified in CCMs to a linear combination
of two pre-calculated photolysis look-up tables (e.g.Austin
et al., 2007). This however ignores any decorrelation of vari-
ability between different wavelengths occurring on shorter
time scales. Such decorrelations on time scales shorter than
dynamical ones might have significant impacts.

However, the solar irradiance variability involves sig-
nificant time-dependent spectral variations (where different
wavelengths can be decorrelated) which is explained by the
fact that different parts of the spectra are generated at dif-
ferent altitudes in the solar atmosphere that correspond to
different conditions of temperature in the Sun (seeDeLand
and Cebula, 1993, and more recentlyThuillier et al., 2012).
Recent measurements of SSI by the Solar Radiation and Cli-
mate Experiment (SORCE) satellite showed disagreement
with previous measurements (Harder et al., 2009). In par-
ticular, SORCE observations show three to five times more
variability in UV radiation than predicted by proxy model.
This opened a rich debate around SSI time series reconstruc-
tions.

As a consequence of this non-linear wavelength time de-
pendence in the solar irradiance variability, CCMs might
need to allow for arbitrary spectrally resolved irradiance
variability (SPARC CCMVal, 2010). This however adds a
large weight to the computational cost of CCMs and im-
poses stronger limits to their utilisation for long time peri-
ods. But robust separation of the response to solar variability
from other sources of variability in Climate-Chemistry Mod-
els (CCMs) requires the simulation of time periods that are
long enough to sufficiently reduce the large unforced vari-
ability. It remains to be determined how detailed a repre-
sentation of solar variability is needed in CCMs in order to
both assure reliability and keep CCMs appropriate for long
simulations. In parallel, different approaches of reconstruct-
ing/modelling SSI time series are currently emerging (e.g.
Thuillier et al., 2012; Bolduc et al., 2012) and need to be eval-
uated. Evaluation against solar observations is possible with
some acceptable reliability for recent times (from 1978 on,
e.g.DeLand and Cebula, 2008). An alternative approach is
to evaluate the reconstructed/modelled SSI time series from
the perspective of their effects on the stratosphere (e.g.Haigh
et al., 2010; Merkel et al., 2011).

Here we propose a simple modelling framework to char-
acterise the effect of SSI variability on the stratosphere. This
framework will allow to evaluate and inter-compare the ef-
fect of different SSI reconstructions on the stratosphere. We
focus on the pure photochemical response of the stratosphere
to short-term solar variability. This response can not be di-
rectly compared to observations since it does not take into ac-
count dynamical and radiative feed-back. However, this pure
photochemical response is well constrained and should have

a high degree of similarity among numerical models. It there-
fore represents a robust step in the evaluation of SSI recon-
structions from a stratospheric perspective. Although the fo-
cus is on short-term solar variability, the results are expected
to be of relevance for long-term solar variability too, since
the photochemical mechanisms are identical. We use a com-
prehensive photochemistry column model which includes a
fully interactive photolysis scheme. In order to simulate the
pure photochemical response, the chemistry is left to evolve
alone with time as an initial condition problem, without any
external sources/sinks nor any diffusion/advection represen-
tation. This imposes atransientchemistry approach with a
limit to the duration of the numerical experiments of about
ten days (see Sect.2.2), after which the chemical concentra-
tions have deviated away and are not relevant anymore for
stratospheric purposes.

In order to characterise the effect of SSI variability on this
time scale, we use an ensemble simulation approach. We per-
form large ensembles of 10-day simulations, each driven by
an independent time series of daily-varying SSI. The number
of simulations in the ensemble must be large to cover with
enough detail the space of possible conditions. The effect of
the SSI on stratospheric ozone is then captured statistically
from the ensemble of simulations by using a multiple linear
regression. Here, the multiple regression model needs to be
carefully chosen such that it provides an as complete as pos-
sible characterisation of the ozone response. In this study,
we test two regression models with two and three predictors,
respectively. The simplest one has as predictors the solar ir-
radiance perturbation on the current day and the concentra-
tion of ozone on the previous day. The most accurate one has
in addition the irradiance perturbation of the previous day
as predictor. The coefficients of the regression model pro-
vide a characterisation of the response of stratospheric ozone
to the type of SSI variability reconstruction chosen. Inter-
comparison between different types of SSI variability recon-
struction can then be done by simply comparing the regres-
sion coefficients and/or the results of the regression models
in simple cases. For instance, the magnitude of the response
to a 27-day cycle can be retrieved from the regression models
alone.

Once the regression model is completed, it can also be
used as a proxy model for the effect of SSI on stratospheric
ozone. This offers a simple parameterisation of the effect of
the SSI on stratospheric ozone which can be used to minimal-
ize the computational burden of incorporating SSI variability
in CCMs, and including non-linear wavelength dependences.
A particular application of this parameterization is antici-
pated for mechanistic or sensitivity studies that involve long
simulations since it can be used with simplified stratospheric
chemistry schemes too (e.g.Taylor and Bourqui, 2005). We
evaluate in this study the performance of the proposed regres-
sion models when used to represent the ozone perturbation
due to SSI variability in our photochemical column model
experiments. This provides a proof-of-concept for such a
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simple parameterisation, but further development in this di-
rection is beyond the scope of this paper.

In a first step, we limit the study to the pre-defined so-
lar maximum and minimum spectra fromLean(1997) and
assume that the SSI follows a linear wavelength time vari-
ability between these two spectra. This allows comparison
with previous studies in the context of constant solar max-
imum/minimum simulations. This first application of this
simplified modelling framework presented in this paper pro-
vides a reference for further studies that will apply this
framework to more advanced SSI variability reconstructions.

The next section describes the numerical model employed,
the initial conditions, the simulations and the ensemble sim-
ulation approach. Section3 presents the stratospheric chemi-
cal state for an average solar activity and discusses the results
from the fixed solar minimum and maximum simulations for
all relevant chemical families and partitioning ratios. Sec-
tion 4 presents the results for odd oxygen from the ensemble
simulations with daily random solar variability. It includes
regression analyses with two and three predictors, the sensi-
tivity to initial conditions, the independent evaluation of the
regression models, and its sensitivity to the amplitude of so-
lar variability. Finally, the conclusions are drawn in Sect.5.

2 Methodology

2.1 Photochemical model

The chemistry column model used here is an adapted ver-
sion of the stratospheric photochemical scheme developed
for BASCOE (Errera et al., 2008; Viscardy et al., 2010) with
updated JPL06/09 chemical rates (Sander et al., 2006, 2010).
The scheme calculates the temporal evolution of 57 chem-
ical species described by a system of 199 chemical reac-
tions. The corresponding chemistry module is built by the
Kinetic PreProcessor (Damian et al., 2002) and is integrated
using a third-order Rosenbrock solver (Hairer and Wanner,
1996). For the purpose of this study, this chemical model
was modified to include an on-line calculation of the pho-
tolysis rates. The scheme has 171 spectral wavelengths be-
tween 116.3–730 nm and includes 55 photodissociation pro-
cesses that are solved using a two-stream radiative transfer
method (Chabrillat and Fonteyn, 2003) and a simple param-
eterisation of the absorption of the solar Lyman-alpha line by
molecular oxygen (Chabrillat and Kockarts, 1997). This in-
teractive coupling allows photolysis rates to respond to ver-
tically changing concentrations in absorbing species and re-
moves the dependence on an a priori vertical profile of ozone.
The coupled model is setup to calculate the photochemistry
in each 1 km thick layer of a vertical column extending from
10 to 55 km altitude, with an external timestep of 6 min. Day-
light is assumed present only when the solar zenith angle is
smaller than 96◦. The absorbing gases are O3, O2, NO, NO2,
CO2, and air. Concentrations of chemically active absorbers

(O3, NO, NO2) are determined by the chemical solver. The
chemically inert species and standard atmospheric temper-
atures and pressures are taken from MSIS (Hedin, 1991).
The solar spectrum comes fromLean (1997) and includes
maximum, minimum, and average solar irradiance at each
wavelength interval. In order to account for absorption of
solar irradiance above 55 km (above the upper boundary of
the chemistry solver), an artificial standard upper atmosphere
is added which is composed of 4 levels at 60, 80, 100, and
120 km. Similarly, to account for tropospheric absorption of
reflected solar irradiance at the surface, an artificial standard
troposphere is added with 5 levels at 0, 2, 4, 6, and 8 km. Ex-
tensive testing showed that these upper and lower levels were
enough to represent photolysis rates between 10 and 55 km
altitude without loss of accuracy.

2.2 Numerical simulations

All simulations start at midnight and occur in January at the
Equator. We chose the Equator, where dynamical effects on
ozone are smallest, to make our experiments more (although
not entirely) comparable to CCMs. The initial concentrations
and temperature are set to monthly and zonally averaged val-
ues taken from a 22-yr simulation with the Canadian Mid-
dle Atmosphere Model (Semeniuk et al., 2011) with green-
house gases and halogen concentrations fixed to year 1979
(courtesy Kirill Semeniuk). Initial concentrations of long-
lived species are taken constant with altitude and are listed
in Table1. This simplification does not affect the results on
the time scale studied here. The vertical profiles of the other
chemical species, along with temperature are given in Fig.1.
The temporal evolution of all chemical species is calculated
with the exception of only N2 and O2 that are kept constant
with time.

As mentioned above, in order to concentrate on photo-
chemical processes and avoid any distorsion of the results by
external forcing effects, the model is used in a pure photo-
chemistry mode and includes no external sources and sinks,
nor transport or diffusion. It also keeps temperatures and
pressures constant over time, so that the effects of the diurnal
cycle are included through the solar irradiances only. Sim-
ulations are therefore performed in a transient mode, where
chemical concentrations change according to their individ-
ual lifetimes. The changes in individual families (as well as
the reservoirs) over time in a control simulation with aver-
age solar conditions are given in Table2 as a percentage of
the initial concentration. Long-lived species are not shown as
they do not change significantly over the time period consid-
ered here. In order to keep the chemical system in a regime
which is relevant to the stratosphere, all simulations in this
study are thus limited to 10 days (maximum change smaller
than 20 % for the families and most of the reservoir species).
In order to facilitate the discussion of the results, the focus
will be placed on day 5 hereafter and variations of the re-
sults between days 3 to 9 will be discussed as required. This
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Fig. 1. Initial conditions used in the simulations for the interactive species (upper row) and the specified temperature and species (lower row)
that vary with altitude. Initial conditions for specified species that have a constant mixing ratio with altitude are provided in Table1. Solid
lines of different colours correspond to regular initial conditions, while the dashed and dotted lines represent the two-standard deviation
perturbed initial conditions used in the simulations testing the sensitivity to the initial conditions (see text for more details). Chemical species
are shown in units of volume mixing ratio, and the temperature in K.

variation is of interest as it provides some additional insight
into the sensitivity of the results to variations in chemical
concentrations.

The first set of numerical experiments simulates the chem-
ical response to various strengths of solar irradiance, with
the solar irradiance kept constant through the simulations to:
solar maximum, solar minimum, and solar average levels.
The irradiance spectra represent the 11-yr maximum, min-
imum, and average solar irradiance for each wavelength in-
terval (Lean, 1997).

The second set of numerical experiments investigates sta-
tistically the chemical response to daily solar variability and
allows to build a simple auto-regressive model of the ozone
perturbation. An ensemble of 200 transient simulations is
performed, each forced by a different pseudo-random solar
variability sequence. Solar irradiance is updated daily and
held constant for 24 h. Updates are at midnight to avoid a
sudden change in the photolysis rates. Here again, the irradi-
ance spectrum ranges between the solar minimum and solar
maximum spectra ofLean(1997)’s 11-yr cycle following the
linear formula in Eq. (1).

I i(λ) = xi
· Imax(λ) + (1− xi) · Imin(λ)

xi
∈ [0,1], i = 1,10, (1)

whereI i(λ) is the solar irradiance spectrum on dayi, Imax(λ)

is the maximum solar irradiance spectrum, andImin(λ) the
minimum spectrum. The pseudo-random numberxi is up-
dated every midnight from a uniform distribution within
[0,1]. It is independent fromλ, so that the entire spectrum
is linearly varying between the solar minimum and maxi-
mum. To ensure good statistical independence between the
200 members, a sequence of 2000 successive pseudo-random
numbers (without re-seed) is used and partitioned into the
200 members. Two auto-regressive models are discussed
here for odd oxygen (i.e. ozone). The two-predictor model
determines the diurnal average concentration for the current
day, knowing the diurnal average concentration of the pre-
vious day and the solar irradiance perturbation of the current
day. The three-predictor model is similar to the two-predictor
model, but with the addition of the solar irradiance perturba-
tion of the previous day as the third predictor. The details are
discussed in Sect.4. Note that as a first step, we chose here
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Table 1. Initial conditions for chemical species where mixing ratio
is specified constant with altitude. Units are in mixing ratio. Initial
mixing ratios that depend on altitude are given in Fig.1.

Chemical Species Initial mixing ratio

Br2 0.1× 10−11

CCl4 0.98× 10−10

CFC11 0.236× 10−9

CFC12 0.465× 10−9

CFC113 0.679× 10−10

CFC114 0.153× 10−10

CFC115 0.37× 10−11

CH3 1.0× 10−20

CH3Br 0.837× 10−11

CH3CCl3 0.59× 10−10

CH3Cl 0.469× 10−9

CH3O 1.0× 10−20

CH3O2 1.0× 10−20

CHBr3 0.37× 10−12

Cl2 0.2× 10−13

ClNO2 1.0× 10−20

ClOO 0.2× 10−9

H2 0.5× 10−6

HA1211 0.22× 10−11

HA1301 0.26× 10−11

HCFC22 0.92× 10−10

HCO 1.0× 10−20

HF 1.0× 10−20

to focus on Equatorial January conditions, and the study can
be later generalised by allowing the regression coefficients to
vary with latitude and month.

Since chemical concentrations and temperatures vary sig-
nificantly over longitudes and within seasons, it is useful to
test the sensitivity of the latter results to the initial conditions.
To do this, a third set of numerical experiments is performed,
where temperature and initial conditions of relevant species
are perturbed, one variable at a time. The same approach is
employed as before, but with ensembles of 100 simulations.
The perturbations represent the intra-month and zonal vari-
ability, averaged over the 22 yr of the CMAM simulation of
the two-standard deviations of three-daily values of the vari-
able taken at the given altitude and latitude. Note that these
standard deviations are used here merely as an estimate of
the possible range of variation of the variables. The sensi-
tivity analysis is performed for odd hydrogen (HOx = {H,
OH, HO2}) by perturbing H2O, odd nitrogen NOx = {NO,
NO2, NO3}, odd oxygen Ox = {O3P, O1D, O3}, and temper-
ature. These chemical species are chosen as they make the
dominant contribution to ozone photochemistry. H2O is the
main source of HOx, which dominates ozone destruction in
the lower and upper stratosphere. NOx dominates ozone de-
struction in the middle stratosphere, and Ox is chosen to see if

Table 2. Maximum percent change from initial condition through-
out the stratosphere, after 5, 10, 15, and 25 days of simulation for
the relevant chemical species, with corresponding altitude.

Chemical Altitude of Percent change from initial concentration after:
species max change (km) 5 days 10 days 15 days 25 days

Brx 25 2.9 5.1 6.7 9.3
Clx 45 1.1 3.1 5.0 8.9
HOx 35 0.04 −0.18 −0.46 −1.0
NOx 55 −1.5 −3.9 −6.3 −10.6
Ox 25 1.4 3.7 5.8 9.6
BrONO2 35 0.37 1.0 1.6 2.8
ClONO2 25 2.4 7.1 11.7 20.2
HBr 30 −3.5 −4.5 −5.3 −6.5
HCl 35 0.52 1.3 2.2 3.7
HNO3 25 7.2 12.7 15.7 20.5
HOBr 25 2.8 5.4 7.4 10.7
HOCl 25 14.8 28.3 36.0 46.8
N2O5 30 −1.7 0.13 2.7 7.8

different concentrations of ozone result in different responses
to solar variability. Finally, temperature is chosen because of
the temperature dependence of ozone destroying reactions.

Then, a fourth set of experiments is made to test the perfor-
mance of the auto-regressive model at representing the ozone
perturbation due to solar variability. For this purpose, five
additional ensembles of 200 simulations are designed as fol-
lows using a new pseudo-random solar variability sequence
adjacent to the first sequence. The same pseudo-random se-
quence is used in all these new ensembles, so that they can
be inter-compared on a member-by-member basis.

1. Control ensemble with daily random solar variability
performed as before using the photochemical model;

2. two-predictor auto-regressive model used off-line on
top of a solar average simulation with the photochem-
ical model;

3. two-predictor auto-regressive model used on-line with
the photochemical model representing the solar average
conditions;

4. same as 2, but with the three-predictor auto-regressive
model;

5. same as 3, but with the three-predictor auto-regressive
model.

Note that in the two on-line experiments 3 and 5 above, the
auto-regressive model is curtailed by its previous day’s con-
centration component since this memory is carried over by
the photochemical model itself. More details and the results
of these five simulations are presented in Sect.4.3.

Finally, a last set of solar maximum/solar minimum exper-
iments is performed with the photochemical model, the 2-
and the 3-predictor models, using solar maximum and min-
imum spectra such that their difference centered around the
solar average spectrum is magnified by a factor between 0.1
to 3.0. This magnifying factor is applied either uniformly
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to the whole spectrum or to the range 200 to 400 nm (see
Sect.4.4).

3 Results from simulations with constant solar
irradiance

In this section results of constant solar irradiance simulations
are presented for the following chemical families and parti-
tioning ratios: Ox, NOx, HOx, Clx = {Cl, ClO}, Brx = {Br,
BrO}, O

Ox
, NO

NOx
, OH

HOx
, Cl

Clx
, and Br

Brx
. To place in context the

response of chemical families to solar variability, it is use-
ful to first briefly map the chemical state for average solar
irradiance (SI) conditions. This is represented in Fig.2 by
the diurnal cycle of day 5 of the simulation using average SI.
The variation in the pattern of this diurnal cycle through the
ten days of the simulation is minor and its diurnal average
change is provided in Table2. Note that these diurnal cycles
are consistent withBrasseur et al.(1990) andDessler(2000),
for instance.

Figure3 shows the diurnal cycle difference between the
solar maximum and the solar minimum experiments, taken
on day 5. Note that in both the solar maximum and solar min-
imum experiment, the entire chemical system may slowly ad-
just to the solar perturbation, and therefore a slow temporal
drift may occur in addition to the diurnal response. However,
above 35 km, where the photochemistry is in steady state, and
therefore the Ox response should stay constant in the absence
of such an adjustment, a change in the Ox response smaller
than 10 % was found from day 5 to day 10 (not shown). Be-
low this altitude, the ozone response changes by 60 % over
this period between 15 and 25 km altitude due to the ozone
chemistry becoming slower at low altitudes, and not because
of an adjustment of the overall chemical system. Hence, it
is sound to focus on the day 5 of the simulation, keeping in
mind that the steady state response is only achieved above
35 km.

Ox: Fig. 3 shows that the minimum-to-maximum differ-
ence is positive for both Ox and O

Ox
. The peak difference

for Ox is approximately 0.18 ppmv (∼ 3 %) at 37 km, just
above the ozone peak altitude, and remains throughout the
diurnal cycle. Note that the relative change peaks slightly
higher (3.2 % at 42 km) due to the decreasing Ox concen-
tration with altitude (Fig.9, top panel). These results are
within the range of the minimum-to-maximum differences
calculated from the observations bySoukharev and Hood
(2006) and Fioletov (2009), and is in agreement with the
largest minimum-to-maximum differences calculated from
simulations by 1-D models (e.g.Rozanov et al., 2002), 2-
D models (e.g.Haigh, 1994) and CCMs (e.g.Shindell et al.,
1999; Tourpali et al., 2003; Egorova et al., 2004; Rozanov
et al., 2004). The difference forO

Ox
is only seen during the

day above 48 km, and the peak difference is a change in the
partitioning ratio of approximately 1.6× 10−3 (∼ 1 %) near
the top of the model (55 km). The peak change inO

Ox
oc-

curs at the top of the model because this is where the UV
irradiance is strongest, allowing for an enhanced photolysis
of O3. The increased O2 photolysis is the reason for the in-
crease in Ox during solar maximum conditions. The peak
difference occurs a few kilometers above the maximum Ox
mixing ratio due to a change in the optical depth and in the
Ox loss processes. An increase in HOx above 40 km dur-
ing solar maximum conditions (see below) results in an in-
creased destruction of Ox, thus limiting the response of Ox
to SI above 40 km. Similar results were obtained for the up-
per stratosphere and mesosphere in simulations by 2-D mod-
els (e.g.Brasseur, 1993; Khosravi et al., 2002) and CCMs
(e.g.Egorova et al., 2005), and in observations byZhou et al.
(1997).

HOx: as expected, Fig.3 shows that the minimum-to-
maximum difference occurs mostly during the day for HOx
and OH

HOx
. The difference for HOx is positive and occurs above

40 km, reaching a peak value of 0.03 ppbv (∼ 2.5 %) at the
top of the model. A similar increase in HOx during solar
maximum conditions is found in the CCM simulations of
Egorova et al.(2005). For OH

HOx
, the difference is negative and

is found in the middle stratosphere, with a peak difference
of approximately−3× 10−3 (∼ −1 %) at 38 km. The differ-
ence found at night above 50 km should be ignored as there
is no HOx present here, and the difference is simply a re-
sult of a near-zero denominator. The peak increase in HOx is
the result of an increase in the oxidation of water vapour and
methane, and is found where the SI is strongest. The decrease
in OH

HOx
in the middle stratosphere is a result of the increase

of Ox at these altitudes, as well as the decrease in NO. In
the middle stratosphere, the conversion of OH to HO2 (via
O3) and the conversion of HO2 to OH (via NO) dominate
the HOx cycle (Dessler, 2000). Thus an increase in Ox leads
to an enhanced conversion of OH to HO2, and a decrease in
NO leads to a diminished conversion of HO2 back into OH.
The small decrease seen at the top of the model is due to the
increase in O atoms at the top of the model, resulting in an
increased conversion of OH to HO2 via O. In the CCM simu-
lations byEgorova et al.(2005), an increase in HO2 is found
between 25 to 55 km, in agreement with the decrease inOH

HOx
found here.

NOx: in Fig. 3 it can be seen that there is both a pos-
itive and negative difference in the minimum-to-maximum
NOx. The negative difference peaks at a value of−0.1 ppbv
(∼ −1 %) late in the night at around 40 km. There is also
a slightly smaller negative difference above 40 km that re-
mains throughout the diurnal cycle and peaks above 50 km.
The positive difference in NOx is seen during the day and
has a peak value of approximately 0.03 ppbv (∼ 0.5 %) at
about 32 km. The minimum-to-maximum difference forNO

NOx
is negative and is mainly found in the middle stratosphere
during the day, with a peak difference of−4×10−3 (∼ −1 %)
at around 37 km. During the night, the decrease in NOx at
around 40 km is a result of the increase in Ox at this alti-
tude during solar maximum. An increase in Ox results in an
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Fig. 2.Diurnal cycle of the relevant chemical families and their partitioning ratio on day 5 of the solar average simulation. Chemical families
are shown in units of volume mixing ratio. Vertical yellow dashed lines show the sunrise and sunset times, 06:00 a.m. and 06:00 p.m.,
respectively.

increased conversion of NO2 to NO3 (via O3), which then re-
sults in an increase in the conversion of NOx to its reservoir
N2O5 (through the combination of NO2 and NO3). The neg-
ative minimum-to-maximum difference above 40 km during
the day is due to an increase in N atoms (via an increased
photolysis of NO), resulting in an enhanced conversion of
NO to N2 (via N), thus causing a loss in NOx. The increase
of NOx seen during the day is due to an increase in the
conversion of the NOx reservoirs (specifically HNO3) back
into NOx (specifically NO2) due to enhanced photolysis. The
strongest response is located at around 32 km. This is due to
the combination of HNO3 decreasing at higher altitudes and
the photolysis of HNO3 slowing down at lower altitudes. The
decrease found in the middle stratosphere is due to the in-
crease in Ox at these altitudes, which results in an increased
conversion of NO to NO2 (via O3). Again, in the simulations
by Egorova et al.(2005), an increase in NO2 is found at these
altitudes, and is thus in agreement with the decrease inNO

NOx
found here.

Clx: Fig. 3 shows that the minimum-to-maximum differ-
ence is positive for both Clx and Cl

Clx
. The increase in Clx

occurs during the day with a peak value of 3 pptv (∼ 1 %)
around 40 km and slowly decays through the night. The dif-
ference forCl

Clx
is seen only during the day above 47 km, with

a peak value of 2.4×10−3 (∼ 0.4 %) at the top of the model.
The increase in Clx in the middle stratosphere is due to
the enhanced conversion of Clx reservoirs (mainly ClONO2)
back into Clx due to enhanced photolysis during solar max-
imum conditions. Also, since photolysis is the primary de-
composition channel for CFCs (Dessler, 2000) and the added
Cl goes mainly into ClONO2 and HCl, the increase in reser-
voirs results in a further conversion back into Clx (via pho-
tolysis) during the day. The peak change inCl

Clx
at the top

of the model (55 km) is due to increasedOOx
, resulting in an

enhanced conversion of ClO to Cl (via O). Simulations by
Egorova et al.(2005) found a decrease in ClO between 45
to 55 km, and are thus in agreement with the increase inCl

Clx
found here.

Brx: Fig. 3 shows a negative difference in Brx occuring
at night essentially above 45 km, reaching a peak value of
−0.08 pptv (∼ −0.3 %). For Br

Brx
, the difference is negative

and is found during the day, with a peak value of−5× 10−3

(∼ −2.5 %) around 42 km. Above 45 km, the large negative
change in Brx during the night is due to the decrease inOH

HOx
(seen previously), resulting in an increased conversion of
BrO to its reservoir HOBr (via HO2), and thus a decrease
in Brx. Similarly to NO

NOx
, the decrease inBr

Brx
in the middle
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Fig. 3. Diurnal cycle of the chemical differences between the constant solar maximum and minimum simulations on day 5 for the relevant
chemical families and their partitioning ratios. Differences in chemical families are shown in units of volume mixing ratio, and in arbitrary
units for partitioning ratios. Vertical yellow dashed lines show the sunrise and sunset times, 06:00 a.m. and 06:00 p.m., respectively.

stratospheric daytime is due to the increase in Ox, resulting
in an enhanced conversion of Br to BrO (via O3).

4 Results from ensemble simulations with daily random
solar variability

In this section, the effect of short-term solar variability on
Ox is approached from a statistical perspective using multi-
ple linear regressions on ensembles of simulations. The goal
is to develop the simplest statistical model which captures
the odd oxygen response in a complete manner. This statis-
tical model, through its coefficients, characterises the ozone
response to the type of SSI variability considered here and
can be used to predict the odd oxygen response to an arbi-
trary time series of SSI (e.g. a 27-day cycle). This provides
a simple framework for inter-comparing different SSI vari-
ability reconstructions/models with respect to their effect on
the stratosphere. It also gives an approach for developing a
simple parameterisation of the odd oxygen response to SSI
variability.

The regression model’s dependent variable (y) is taken
as the daily (24 h) average concentration of each ensemble
member for days 3–9. Days 1 and 2 are left out to allow for
a spin-up in the simulations. In order to verify that the re-

gression coefficients do not vary significantly over the course
of the simulations, separate regressions are performed every
day. The ensemble size of 200 members was found to be
large enough so that results are not significantly sensitive to
it. Two auto-regressive models are tested: a 2-predictor and a
3-predictor model. In the 2-predictor model, the independent
variables are taken as the previous day’s daily average con-
centration (x1), and the current day’s SI (x2). The dependence
on the previous day’s daily average concentration is referred
to as the memory and the current day’s SI as the SI for sim-
plicity. In the 3-predictor model, the additional independent
variable is the previous day’s SI (x3). The previous day’s SI is
added in an attempt to include the effects of SI on the chem-
istry that are too slow to be captured by the current day’s SI
regression term. Such effects include for instance changes in
other species that indirectly affect Ox. The multiple linear re-
gression models can be written in the standardised form as,
respectively:

yi
− ȳi

σ i
y

= βi x
i
1 − x̄i

1

σ i
x1

+ γ i x
i
2 − x̄i

2

σ i
x2

+ r i i = 3,9 (2)

yi
−ȳi

σ i
y

= βi x
i
1 − x̄i

1

σ i
x1

+γ i x
i
2−x̄i

2

σ i
x2

+δi
xi

3 − x̄i
3

σ i
x3

+r i i=3,9,(3)

with
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yi
= xi+1

1 . (4)

The superscripti is the day, overbars̄· represent the ensemble
averages andσ· the ensemble standard deviation of the cor-
responding variable, andr is the residual. The regression co-
efficientβ represents the standardised memory effect,γ the
standardised SI effect andδ the standardised previous day’s
SI effect. By definition, these standardised regression coeffi-
cients are always between−1 and +1 and show the relative
contributions of predictors at every altitude, without regard to
the actual ozone response. The intercept coefficientα is zero
in these standardised forms. Note that although the two re-
gression models have distinct values of the coefficientsβ and
γ , we use the same notation for simplicity. The ensemble av-
erages can be expected to represent solar average conditions
under the hypothesis of large ensembles and a linear ozone
response. The difference between the ensemble averageȳ (or
equivalentlyx̄1) and the solar average simulation is smaller
than 0.1 % of the solar average Ox everywhere (not shown)
and therefore these two quantities can be assumed equal. The
following form will also be used for the regression models,
which measures the centered, non-normalised contribution of
the different predictors to the ozone response:

yi
= α′i

+ β ′i(xi
1 − x̄i

1) + γ ′i(xi
2 − x̄i

2) + r ′i i = 3,9 (5)

yi
= α′i

+β ′i(xi
1−x̄i

1)+γ ′i(xi
2−x̄i

2)+δ′i(xi
3−x̄i

3)+r ′i (6)

i = 3,9, (7)

where by definition, the interceptα′ equalsȳ, i.e. to a good
approximation the ozone concentration in average solar con-
ditions, and the regression coefficientsβ ′, γ ′ andδ′ are re-
lated to the standardised ones by:

β ′i
= βi

σ i
y

σ i
x1

, γ ′i
= γ i

σ i
y

σ i
x2

, δ′i
= δi

σ i
y

σ i
x3

, andr ′
= rσy . (8)

These regression coefficients provide the actual contribu-
tion to y − ȳ of a positive perturbation by one standard de-
viation in the previous day’s ozone concentration, the cur-
rent day’s SI and the previous day’s SI, respectively. The two
predictorsx1 andx2 are independent. As a result, in the 2-
predictor model, the corresponding coefficientsβ ′ andγ ′ can
be interpreted independently from each other, as the ozone
response to a positive perturbation by one standard devia-
tion in the previous day’s ozone concentration and the current
day’s SI, respectively. By contrast, since the ozone concen-
tration on the previous day depends on the previous day’s SI,
the third predictorx3 is expected to have some collinearity
with x1. The degree of this collinearity is indeed measured
by the 2-predictor coefficientsβ andγ . If a perfect collinear-
ity exists somewhere in the column betweenx1 andx3, we
will haveβ = 0 andγ = 1. Such a situation would make the
third predictor useless and the corresponding regression co-
efficientsβ andδ in the 3-predictor model ill-defined with

only their sum being well-constrained. As will be seen be-
low, the 2-predictor model’sβ never goes to zero. This means
that the third predictor brings additional information at all al-
titudes, and that the coefficientsβ andδ in the 3-predictor
model can be expected to be well-constrained everywhere.
A more formal confirmation of this was made by calculat-
ing the variance inflation factor (VIF) for the third predictor,
defined by (Wilks, 2006):

VIF(x3) =
1

1− R2
x3

, (9)

where R2
x3

is the coefficient of determination for the re-
gression of the previous day’s SI on the memory. Usually,
VIF > 10 is considered the cut-off threshold where multi-
collinearity is too large in a regression and will lead to ill-
defined coefficients. In our case, VIF is smaller than 10 at all
altitudes where the previous day’s SI has a significant effect,
and thus multicollinearity is not making the regression ill-
defined. However, it is important to note that the collinearity
betweenx1 andx3 makes the intepretation of the correspond-
ing regression coefficients less straightforward. The two re-
gression coefficients must be interpreted together to the ex-
tent of the correlation between the two predictors.

The error of a regressive model in representing the ozone
response can be simply measured by the coefficient of de-
terminationR2 (Wilks, 2006). However, the comparison of
this coefficient between the two models may lead to a bias
favouring the 3-predictor one, simply due to the addition of
an explanatory term and its effect in decreasing the number
of degrees of freedom in the regression estimation. To take
this effect into account, we use the coefficient of determi-
nation adjusted for the number of predictor variables (¯R2)
(Wilks, 2006):

R̄2
= 1− (1− R2)

n − 1

n − p − 1
, (10)

wheren is the sample size andp is the total number of pre-
dictor variables in the regression. By definition,R̄2 is always
smaller thanR2. As the number of predictors increases, the
adjusted coefficient̄R2 increases only if the new predictor
adds significantly to the fit, and may decrease if it does not.

4.1 Regression coefficients

Figures 4 and 5 show both the standardised and non-
normalised regression coefficients determined from the mul-
tiple linear regression using 2- and 3-predictors, respectively.
Each day is represented with a different line colour. In each
plot, altitudes at which the standard deviation (amongst the
ensemble) in the observed variabley was smaller than 5 % of
the maximum standard deviation in the column are hatched
out, and are considered insignificant response to solar vari-
ability. Note that the regression analysis was performed on
all species discussed in Sect.3, and all species could be rea-
sonably well regressed with the 3-predictor model, with an
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Fig. 4. Regression coefficients for the 2-predictor autoregressive model for simulation days 3 to 9 (different colours). Top row: adjusted
coefficient of determination̄R2 (left) and intercept termα′

= ȳ (right). Middle row: standardised memory termβ (left) and standardised
solar irradiance termγ (right). Lower row: non-normalised memory termβ ′ (left) and non-normalised solar irradiance termγ ′ (right).
Regions where the standard deviation (amongst the ensemble) in the observed variabley was smaller than 5 % of the maximum standard
deviation in the column are hatched out.

adjusted coefficient of determination larger than 0.8 at all al-
titudes (not shown).

Figure4 shows that the adjusted coefficient of determina-
tion for the 2-predictor model is larger than 0.97 through-
out the column, demonstrating that the 2-predictor linear
model provides a reasonable representation of the response.
Consistently with Fig.2, the intercept term (from the non-
normalised regression) shows that the peak daily average
mixing ratio of Ox in solar average conditions occurs around
32 km (∼ 9 ppmv). The standardised regression coefficients
shows that the current day’s SI is dominant in the upper
stratosphere (above 40 km) where the UV irradiance is in-
tense and chemical life-times are short, whereas the memory
is dominant in the mid to lower stratosphere where chem-
ical lifetimes of Ox are longer. Nevertheless, both these 2-
predictors appear to have a significant effect at all altitudes
considered here. The non-normalised regression coefficients
confirm that the current day’s SI dominates in the upper stato-
sphere with a peak around 42 km, and the memory in the mid
stratosphere with a peak around 38 km. Both memory and
SI coefficients decrease to zero in the lower stratosphere as
the chemistry becomes very slow and the overall response
σy converges to zero. As expected, the two regression coeffi-

cients are positive throughout the stratosphere, meaning that
increases in previous day’s concentration or in current day’s
SI, both increase the current day’s Ox.

In Fig. 5, it can be seen that the addition of previous
day’s SI increases the adjusted coefficient of determination
to 1 (more precisely≥0.9992) throughout the entire column,
making the 3-predictor linear model a very good representa-
tion of the response (the lines are not distinguishable from the
vertical axis on the graph). As expected, the intercept term
does not change from the 2-predictor results. From the stan-
dardised regression coefficients, it can be seen that the cur-
rent day’s SI remains unchanged by the addition of the extra
predictor. In contrast, the memory has now less of an im-
portance above 35 km and becomes negligible above 45 km.
This contribution is now taken over by the previous day’s SI,
which relative contribution peaks around 41 km. The non-
normalised memory has a slightly smaller peak, about one to
two kilometres lower in altitude. The previous day’s SI peaks
around 40 km, similarly to the current day’s SI, but with a
magnitude three times smaller. This much lower magnitude
suggests that this two-time level scheme for the SI term is
accurate enough to include most chemical effects and that a
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Fig. 5. Regression coefficients for the 3-predictor autoregressive model for simulation days 3 to 9 (different colours). Top row: adjusted
coefficient of determination̄R2 (left) and intercept termα′

= ȳ (right). Middle row: standardised previous day’s solar irradiance termδ

(left), standardised memory termβ (middle) and standardised solar irradiance termγ (right). Lower row: non-normalised previous day’s
solar irradiance termδ′ (left), memory termβ ′ (middle) and solar irradiance termγ ′ (right). Regions where the standard deviation (amongst
the ensemble) in the observed variabley was smaller than 5 % of the maximum standard deviation in the column are hatched out.

three-time level scheme is unnecessary (as confirmed by the
adjusted coefficient of determination).

The day-to-day variability of the non-normalised regres-
sion coefficients is insignificant for both the 2- and 3-
predictor models. This is seen on Figs.4 and5 by the fact
that all lines of different colours overlap and can not be dis-
tinguished from each other. There is only substantial day-to-
day variability in the standardised coefficients below 40 km,
where the overall response is small, due to the magnifying
effect of the decreasingσy at lower altitudes. Hence, it ap-
pears that the results are robust to the changes in chemical
conditions over the 10 days of the simulations.

4.2 Sensitivity to initial conditions and temperature

In order to understand how the initial conditions affect the
chemical response to solar perturbations, additional multiple
linear regressions were performed on simulations with per-
turbed initial conditions (Fig.1). The chemical response of
Ox was found to be sensitive to perturbations in the temper-
ature, while it showed no significant sensitivity to perturba-
tions in H2O, NOx or Ox (not shown).

Figure6 shows the sensitivity to temperature of the non-
normalised regression coefficients for the current day’s SI

and the memory from the 3-predictor model. The previous
day’s SI coefficient showed the same sensitivity to tempera-
ture as the current day’s SI, but since its effect is both simi-
lar and of a much lesser magnitude, it was not deemed use-
ful to show. The 2-predictor model’s sensitivity (not shown)
was similar to the 3-predictor model. For both coefficients in
Fig. 6, a shift towards lower altitudes is observed for increas-
ing temperatures, accompanied by a weakening of the effect.
The variability of the response with the day of the simulation
is insignificant, with all lines overlapping each other. A simi-
lar result was found in the observational analysis byFioletov
(2009), such that the ozone response weakened for a temper-
ature disturbance in phase with the solar variation.Brasseur
(1993) andKeating et al.(1994) also found that an increase in
upper stratospheric temperatures resulted in increased rates
of ozone destruction, accompanied with a weaker ozone re-
sponse to solar variability. This is explained by the temper-
ature dependence of the NOx catalytic cycle, which leads to
larger Ox concentrations, and consequently a larger response
to solar variability, at lower temperatures.

It is interesting to contrast the significant effect of the tem-
perature perturbation with the insignificant effect of the NOx
perturbation. These perturbations are meant to be represen-
tative of the natural variability across seasons and longitudes

www.atmos-chem-phys.net/12/7707/2012/ Atmos. Chem. Phys., 12, 7707–7724, 2012
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temperature perturbed with minus and plus two standard deviations, respectively (see Fig.1). Different colours indicate different simulation
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model. Regions where the standard deviation (amongst the ensemble) in the observed variabley was smaller than 5 % of the maximum
standard deviation in the column are hatched out.

at the equator, and the variability of NOx appears to be too
small to be felt on odd oxygen. However, variability in NOx
related to either anthropogenic emissions of N2O or to differ-
ent latitudes, may be larger than that used here. A subsequent
generalisation of the statistical model to various latitudes and
atmospheric compositions will need to include the effect of
NOx as well as temperature.

4.3 Evaluation of the error of the statistical models

As shown in Sect.4.1, the 2- and 3-predictor models fit the
ensemble simulations with a good and excellent accurary, re-
spectively. In this section, we perform an independent eval-
uation of their skills at representing the effect of solar vari-
ability on ozone. For this purpose, we use a new, indepen-
dent pseudo-random solar variability sequence, started after
the end of the one used for the regression. As described in
Sect.2.2, these statistical models can be used either off-line
or on-line with the photochemical model (or similarly with
a CCM). In the off-line mode, the statistical model takes
care of the effect of the solar variability while the photo-
chemical model simulates solar average conditions. The sta-
tistical model does not feed back into the photochemical
model. While this mode provides the most direct evaluation

of the predictive skills of the statistical models, it may not
be appropriate when the feed back between radiation and
photochemistry needs to be accurately resolved. In the on-
line mode, the ozone perturbation generated by the statistical
model is added to the ozone concentration in the photochem-
istry scheme when initialising the latter for the next day’s
calculation. However, since the photochemical model is ini-
tialised every day with the perturbed ozone concentration, it
keeps memory of the previous day’s perturbation in ozone.
Thus, the memory term in the statistical model (Eq.8) must
be dropped in this mode, giving rise to potential additional
errors.

Figure7 shows the error in the two statistical models for
the two modes of coupling with the photochemical model.
The bias and RMS errors are estimated here using, respec-
tively, the relative mean difference and the relative root mean
square difference of the diurnal average ozone concentra-
tions between the off/on-line and the control experiments.
The control experiment is an ensemble of simulations where
the solar variability is resolved by the photochemical model.
The errors are relative to the ozone response in the sense that
they are normalised by the root mean square difference be-
tween the control and the solar average experiments. Since
the control experiment is centred around the solar average

Atmos. Chem. Phys., 12, 7707–7724, 2012 www.atmos-chem-phys.net/12/7707/2012/



R. Muncaster et al.: Modelling stratospheric response to SSI variability 7719

Fig. 7. Errors in percents of the statistical model when used off-line or on-line to predict the ozone perturbation due to solar variability in
an independent set of experiments, as a function of simulation day (horizontal axis) and altitude (vertical axis). The left column indicates
the relative bias in the statistical model, calculated as the mean difference between solar variability simulations with the statistical model
used off/on-line and the control experiment, divided by root mean square difference between the control and the solar average experiments.
The right column indicates the relative error of the statistical model, calculated as the root mean square difference between solar variability
simulations with the statistical model used off/on-line and the control experiment, divided by root mean square difference between the control
and the solar average experiments. Below the thick black dashed line lies the region where no calculation is made because the denominator
is smaller than one thousands of the solar average ozone concentration.

simulation, the normalisation factor is equal to the standard
deviation of the solar variability effect in the ozone concen-
tration (σy). In the regions where this normalisation factor
(i.e. the ozone response) is smaller than one thousands of the
solar average ozone concentration, the response and errors
are set to zero (areas under the thick dashed lines in Fig.7).
This cut-off assumes that ozone responses smaller than 0.1 %
can be neglected in a model.

As expected, the bias and RMS errors are smaller in the
3-predictor than in the 2-predictor model, and are smaller
in the off-line mode than in the on-line mode. In the best
case, the off-line 3-predictor model offers an excellent ac-
curacy throughout the stratosphere with a bias smaller than

2 % and an RMS error smaller than 5 %. In the worst case,
the on-line 2-predictor model still offers a reasonable accu-
racy with a bias smaller than 5 % and an RMS error smaller
than 20 %. This accuracy in the on-line mode is improved
by the addition of one predictor to a bias smaller than 1 %
and an RMS error smaller than 15 %. This absence of a
systematic bias in the 3-predictor model when used on-line
makes it an excellent candidate for a CCM. Note further-
more that, in contrast to the on-line 2-predictor model, the
on-line 3-predictor model sees its relative error increasing at
altitudes above 40 km, where the ozone response weakens.
Hence, the absolute error in the on-line 3-predictor model
is markedly smaller than in the on-line 2-predictor model.
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Fig. 8. Illustration of the performance of the statistical model when
used on-line for days 1 to 9 at 37 km altitude, for a member simula-
tion chosen randomly in the ensemble used in Fig.7. Black: ozone
mixing ratio from the control simulation. Red: ozone mixing ratio
with the solar variability represented by the 2-predictor model (top)
and the 3-predictor model (bottom).

The time variation of errors is small in all cases, confirming
the low sensitivity of the statistical models to the chemical
changes that occur over the 10 day simulations. The perfor-
mance of the statistical models, when used on-line, is illus-
trated in Fig.8 for a randomly choosen member of the en-
semble of 200 simulations at 37 km, the altitude where the
ozone response is largest. Overall, the two statistical mod-
els provide an accurate, computationally inexpensive repre-
sentation of the effect of solar variability on ozone, with the
3-predictor model being the most accurate.

4.4 Magnified solar variability

TheLean(1997) solar minimum and maximum spectra used
in this study are reconstructions based on different proxies
and are subject to large uncertainties.Haigh et al.(2010)
showed that observed spectra from the Spectral Irradiance
Monitor (SIM) and the Solar Stellar irradiance Comparison
Experiment (SOLSTICE) instruments on satellite SORCE
(Harder et al., 2005) differ very significantly from theLean
(1997) spectra for the period 2004 to 2007, with variability
larger by factors of four to six in the range 200 to 400 nm, and

an inversed variability between 400 and 700 nm. Although it
is beyond the scope of this paper to apply the method devel-
oped here to these new observations, we present additional
experiments in this section that illustrate the sensitivity of the
ozone response to differences in the SSI variability pattern.

Figure 9 (top left) shows the results from additional
pairs of simulations using the comprehensive photochemistry
model with the departure between solar maximum and mini-
mum spectra and the reference solar average spectrum mag-
nified uniformly by a factor between 0.1 and 3.0. The re-
sponse is linearly proportional to the magnitude of the solar
change within this range (all lines and symbols overlap to
each other). Increasing beyond the factor 3.0 was attempted
but led to instability of the photochemical model. This linear-
ity allows the statistical models developed here, and in par-
ticular the 3-predictor model, to capture the response to solar
variability, even when magnified by a factor three, with an
excellent accuracy throughout the stratosphere, as confirmed
in Fig. 9 (top right). In the latter panel, results from the 3-
predictor model (small symbols) overlap with those from the
photochemical model (colour lines). The 2-predictor model
gives results that are slightly high biased (large symbols).

Figure9 (bottom) shows the responses in the photochem-
ical and statistical models as a function of the magnify-
ing factor at 37 km altitude. Consistently, results from the
3-predictor model (red symbols) overlap with those from
the photochemical model (dark blue line), whereas the 2-
predictor model (green symbols) is slightly high biased.
These results are compared on Fig.9 (bottom) with the re-
sponse found in the photochemical model when the magni-
fying factor is applied only within the range 200 to 400 nm.
In the latter case, the response remains linear through the en-
tire range but with a smaller slope and non-zero intercept.
This is explained by the ozone production outside the 200 to
400 nm window which is kept constant in these experiments.

5 Conclusions

This paper proposes a simplified modelling framework for
characterising the effect of spectral solar irradiance vari-
ability on the stratosphere, focussing on the pure photo-
chemical response. First, the solar maximum-minimum re-
sponse is analysed and compared with past studies. The so-
lar maximum–minimum response in Ox (i.e. ozone) shows a
sharp peak of 0.18 ppmv (about 3 %) increase in Ox around
37 km altitude and a rapid decrease of this response towards
lower altitudes with a near-zero response below 27 km alti-
tude. This pattern compares particularly well with estimates
from Fioletov (2009) based on satellite observations of the
27-day cycle combined with the Mg II index (the orange lines
in their Fig. 9). In Climate-Chemistry Models, the ozone re-
sponse to the 27-day cycle shows a smoother peak which
typically extends at lower altitudes, and the response stays
significant, though very variable, at altitudes even lower than
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Fig. 9. Normalised relative difference in Ox concentration between solar maximum and solar minimum experiments for various solar vari-
ability magnitudes. The relative difference is calculated as the solar maximum–minimum difference divided by the Ox concentration, and
normalised by the solar variability magnitude. A solar variability magnitude of one corresponds toLean(1997) solar maximum and minimum
spectra. Top left: photochemical model (PhM) with solar variability magnitudes from 0.1 to 3.0. Top right: photochemical model, 2-predictor
model (2-PM) and 3-predictor model (3-PM) with solar variability magnitudes 1.0 and 3.0. Bottom: normalised relative difference at 37 km
altitude as a function of the solar variability magnitude for the photochemical model and the 2- and 3-predictor models. In addition, the light
blue line shows the response of the photochemical model with the solar variability magnified with respect toLean(1997) only in the range
200–400 nm.

20 km (e.g.Austin et al., 2007). Assuming that the CCMs
achieve a similar photochemical response as here, this dif-
ference can come either from the effect of coupling photo-
chemistry with radiation and dynamics, or from errors in the
statistical separation between the solar impact and the dy-
namical variability. The response in other chemical families
is also discussed and is consistent with past studies (Egorova
et al., 2005). It was found that HOx increased in the upper
stratosphere-lower mesosphere up to 2 % and limited the in-
crease in Ox in this region. NOx was found to increase during
the day below 40 km by 1 %, and Clx was found to increase
during the day above 35 km altitude, with a peak of 1 % at
40 km.

Second, an ensemble simulation approach is taken to-
gether with regression analysis to develop a complete char-
acterisation of the Ox response to SSI variability. Ensem-
ble simulations are performed using daily pseudo-random

sequences of solar variability. The Ox response is then re-
gressed following two auto-regressive models with 2- and
3-predictors. The two predictors common to the two mod-
els, are the previous day’s ozone concentration and the cur-
rent day’s solar irradiance. The additional predictor in the
3-predictor model is the previous day’s solar irradiance. The
regression leads to coefficients of determination larger than
0.97 and 0.9992, respectively. The relative contribution of
the current day’s SI is found to dominate above 40 km, while
the memory dominates below 40 km and remains non-zero
in the upper stratosphere. In the 3-predictor model, the rela-
tive contribution of the previous day’s SI peaks at 40 km and
takes over the upper-stratospheric contribution of the mem-
ory term. The sensitivity of the regression coefficients is anal-
ysed with respect to initial concentrations of H2O (i.e. HOx),
NOx, Ox and the temperature. The results are found to be sen-
sitive to the temperature only, with a shift of the peak towards
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lower altitudes accompanied by a weakening of the magni-
tude of the non-normalised regression coefficients. This sen-
sitivity is attributed to the temperature dependence of the
NOx catalytic cycle.

The two regression models are also evaluated when used as
proxy models for the prediction of the ozone response to so-
lar variability. For this purpose, they are coupled off/on-line
with a photochemical model representing the solar average
chemistry. The bias and RMS errors are estimated relative to
the ozone response. As expected, errors are larger in the 2-
than in the 3-predictor model, and in the on-line than in the
off-line mode. When used on-line, the memory term must
be dropped from the model since it is carried over by the
photochemistry model itself. This is expected to introduce
an additional error. Nevertheless, when used on-line the 2-
and the 3-predictor models have a bias smaller than 5 % and
1 %, respectively, and an RMS error smaller than 20 % and
15 %, respectively. This makes the on-line 3-predictor model
an interesting candidate for a simple, fast parameterisation
representing the effect of solar variability in the stratosphere.
The linearity of the Ox response, and thereby the validity of
the statistical models, in an extended domain of solar vari-
ability was tested with solar maximum and solar minimum
experiments. It was found that within the range tested here,
extending the solar variability magnitude ofLean(1997) by a
factor three uniformly through the spectrum, the response re-
mains fully linear and the statistical models identical. In con-
trast, magnifying the solar variability within a limited range
of wavelengths from 200 to 400 nm led to a different linear
relationship between response and solar variability magni-
tude.

The modelling approach presented here based on ensem-
bles of transient photochemical simulations with linear re-
gression analysis sets a simple framework to characterise the
effect of SSI variability on stratospheric chemistry. In partic-
ular, it is proposed as an efficient framework which can be
used to evaluate the implications on the stratosphere of using
more complex SSI variability patterns as the still commonly
used one based uponLean(1997) solar maximum/minimum
spectra. These include spectral time series from SIM or SOL-
STICE, advanced reconstructions (e.g.Thuillier et al., 2012)
or outputs from semi-empirical solar models (e.g.Bolduc
et al., 2012). Haigh et al.(2010) suggest, based upon re-
cent results from instruments SIM and SOLSTICE onboard
satellite SORCE, that the variability in the ultra-violet range
from 200 to 400 nm may be underestimated by a factor 4
to 6 in Lean (1997). As shown in the present study, while
the ozone response remains linear with a factor three applied
uniformly through the spectrum, it changes if the factor three
is only applied to the 200 to 400 nm range. This illustrates
the dependence of the ozone response to the particular wave-
lengths forced, including those outside the 200 to 400 nm
range which dominates stratospheric photolysis processes.
Furthermore, it is expectable that variable correlations be-
tween pairs of wavelengths through the spectrum will affect

the ozone response. In particular,Bolduc et al.(2012) sug-
gest that the pair of wavelengths 240 and 300 nm may have
a correlation well below 1.0, which may specially affect the
stratospheric chemistry through a decorrelation of photoly-
sis processes for O2 and O3. CCMs are unquestionably nec-
essary to study the interactions between photochemistry and
dynamics in the stratosphere. However, in the current context
where various data sets, reconstructions and empirical mod-
els of SSI variability need to be inter-compared with respect
to their implications on stratosphere, a modelling framework
such as the one proposed here presents two major advan-
tages, aside from its minimal computational cost. First, it
provides a complete picture of the SSI response, including
its non-stationary component. CCM studies typically only in-
clude the statistically stationary component of the response to
solar variability as a result of the necessity to perform tem-
poral averages to remove the large unforced variability. Sec-
ond, it provides a well-constrained and robust response. Here
again, the large unforced variability present in CCM outputs
limits the robustness of the results and may interfere with
them where feed-back between photochemistry and dynam-
ics are present. In addition, differences in the dynamical be-
haviour of different CCMs may affect their results and ranges
of responses.

This modelling framework can be easily extended to study
the feed-back between photochemistry and temperature. A
next step would be to allow the temperature to change ac-
cording to the response of ozone by incorporating an inter-
active radiation calculation in the column forced with solar
average. A further step would be to include SSI variability
in the radiation calculation. This would allow to evaluate the
importance of these two levels of feed-back on the ozone re-
sponse to solar variability and results could be compared with
Semeniuk et al.(2011) andGruzdev et al.(2009).

Finally, the regression models resulting from this study
offer an accurate, inexpensive approach for parameterising
the effect on stratospheric ozone of SSI variability in CCMs.
In this study, the regression models are based upon the sim-
pleLean(1997) solar maximum/minimum spectra. However,
employing the same method, other regression models can be
constructed for other SSI variability patterns. They can be
extended to other seasons, latitudes, for a range of tempera-
tures, and possibly to take into account long-term composi-
tional changes. It is important to note that since the memory
contribution has to be taken over by the photochemical mod-
ule of the CCM, it is necessary to build the regression model
using a photochemical model which is consistent to that of
the CCM. Further work would be necessary in this direction.
Here, we limit ourselves to proposing the approach and it is
beyond the scope of this paper to present an end-user param-
eterisation.
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