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Abstract. The stratosphere is thought to play a central role in0.9992) is achieved with an additional predictor, the previ-
the atmospheric response to solar irradiance variability. Reous day’s solar irradiance perturbation. The regression mod-
cent observations suggest that the spectral solar irradiancels also provide simple parameterisations of the ozone per-
(SSI) variability involves significant time-dependent spec- turbation due to SSI variability. Their skills as proxy models
tral variations, with variable degrees of correlation betweenare evaluated independently against the photochemistry col-
wavelengths, and new reconstructions are being developedimn model. The bias and RMS error of the best regression
In this paper, we propose a simplified modelling framework model are found smaller than 1% and 15 % of the ozone re-
to characterise the effect of short term SSI variability on sponse, respectively. Sensitivities to initial conditions and to
stratospheric ozone. We focus on the pure photochemical efmagnitude of the SSI variability are also discussed.

fect, for it is the best constrained one. The photochemical ef-
fect is characterised using an ensemble simulation approach

with multiple linear regression analysis. A photochemical

column model is used with interactive photolysis for this 1 Introduction

purpose. Regression models and their coefficients provide a

characterisation of the stratospheric ozone response to SSiolar variability has gained much attention over the past
variability and will allow future inter-comparisons between decade for its potential effect on the Earth climate and as a
different SSI reconstructions. As a first step in this study, andnatural modulator of anthropogenic climate change. The de-
to allow Comparison with past StUdieS, we take the representa”ed mechanisms involved in this modulation are CUrrently
tation of SSI variability from thé.ean(1997 solar minimum ~ Not well understood. However, the stratosphere may play a
and maximum spectra. First, solar maximum-minimum re-central role, possibly through dynamical coupling with the
sponse is analysed for all chemical families and partition-troposphere (e.dgorova 2005 Semeniuk et al2011). The

ing ratios, and is compared with past studies. The ozone restratosphere is most sensitive to the ultra-violet (UV) range
sponse peaks at0.18 ppmv (approximate|y 3 %) at37km a|t|.0f the solar SpeCtrUm. The magnitude of varlablllty in the UV
tude. Second, ensemble simulations are regressed followin§ Wavelength-dependent and is between one and two orders
two linear models. In the Simp]est case, an adjusted Coefﬁ.Of magnitude Iarger than the Varlablllty of the total solar irra-
cient of determinatiork? larger than 0.97 is found through- diance (TSI). As a result, numerical models need to incorpo-
out the stratosphere using two predictors, namely the prefaté some spectral dependence in their representation of solar
vious day’s ozone perturbation and the current day’s solavariability. Most past numerical studies have been performed

ability based upon pre-defined solar irradiance spectra, such
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7708 R. Muncaster et al.: Modelling stratospheric response to SSI variability

as 11-yr solar maximum and minimum spectra or monthlya high degree of similarity among numerical models. It there-
spectra. The temporal SSI variability is then simply obtainedfore represents a robust step in the evaluation of SSI recon-
by keeping the different wavelengths linearly related. Un- structions from a stratospheric perspective. Although the fo-
der this assumption of linear wavelength time variability, the cus is on short-term solar variability, the results are expected
photolysis can be simplified in CCMs to a linear combination to be of relevance for long-term solar variability too, since
of two pre-calculated photolysis look-up tables (eAgstin the photochemical mechanisms are identical. We use a com-
et al, 2007). This however ignores any decorrelation of vari- prehensive photochemistry column model which includes a
ability between different wavelengths occurring on shorterfully interactive photolysis scheme. In order to simulate the
time scales. Such decorrelations on time scales shorter thapure photochemical response, the chemistry is left to evolve
dynamical ones might have significant impacts. alone with time as an initial condition problem, without any
However, the solar irradiance variability involves sig- external sources/sinks nor any diffusion/advection represen-
nificant time-dependent spectral variations (where differenttation. This imposes &ansientchemistry approach with a
wavelengths can be decorrelated) which is explained by thdéimit to the duration of the numerical experiments of about
fact that different parts of the spectra are generated at diften days (see Se@.2), after which the chemical concentra-
ferent altitudes in the solar atmosphere that correspond ttions have deviated away and are not relevant anymore for
different conditions of temperature in the Sun (&mland  stratospheric purposes.
and Cebulal993 and more recentlhuillier et al, 2012. In order to characterise the effect of SSI variability on this
Recent measurements of SSI by the Solar Radiation and Cliime scale, we use an ensemble simulation approach. We per-
mate Experiment (SORCE) satellite showed disagreemenform large ensembles of 10-day simulations, each driven by
with previous measurementsidrder et al. 2009. In par-  anindependent time series of daily-varying SSI. The number
ticular, SORCE observations show three to five times moreof simulations in the ensemble must be large to cover with
variability in UV radiation than predicted by proxy model. enough detail the space of possible conditions. The effect of
This opened a rich debate around SSI time series reconstru¢he SSI on stratospheric ozone is then captured statistically
tions. from the ensemble of simulations by using a multiple linear
As a consequence of this non-linear wavelength time de+egression. Here, the multiple regression model needs to be
pendence in the solar irradiance variability, CCMs might carefully chosen such that it provides an as complete as pos-
need to allow for arbitrary spectrally resolved irradiance sible characterisation of the ozone response. In this study,
variability (SPARC CCMVa) 2010. This however adds a we test two regression models with two and three predictors,
large weight to the computational cost of CCMs and im- respectively. The simplest one has as predictors the solar ir-
poses stronger limits to their utilisation for long time peri- radiance perturbation on the current day and the concentra-
ods. But robust separation of the response to solar variabilityion of ozone on the previous day. The most accurate one has
from other sources of variability in Climate-Chemistry Mod- in addition the irradiance perturbation of the previous day
els (CCMs) requires the simulation of time periods that areas predictor. The coefficients of the regression model pro-
long enough to sufficiently reduce the large unforced vari-vide a characterisation of the response of stratospheric ozone
ability. It remains to be determined how detailed a repre-to the type of SSI variability reconstruction chosen. Inter-
sentation of solar variability is needed in CCMs in order to comparison between different types of SSI variability recon-
both assure reliability and keep CCMs appropriate for longstruction can then be done by simply comparing the regres-
simulations. In parallel, different approaches of reconstruct-sion coefficients and/or the results of the regression models
ing/modelling SSI time series are currently emerging (e.g.in simple cases. For instance, the magnitude of the response
Thuillier etal, 2012 Bolduc et al, 2012 and need to be eval- to a 27-day cycle can be retrieved from the regression models
uated. Evaluation against solar observations is possible witlalone.
some acceptable reliability for recent times (from 1978 on, Once the regression model is completed, it can also be
e.g.DeLand and Cebu)&0098. An alternative approach is used as a proxy model for the effect of SSI on stratospheric
to evaluate the reconstructed/modelled SSI time series fronozone. This offers a simple parameterisation of the effect of
the perspective of their effects on the stratosphere fagh the SSI on stratospheric ozone which can be used to minimal-
et al, 201Q Merkel et al, 2011). ize the computational burden of incorporating SSI variability
Here we propose a simple modelling framework to char-in CCMs, and including non-linear wavelength dependences.
acterise the effect of SSI variability on the stratosphere. ThisA particular application of this parameterization is antici-
framework will allow to evaluate and inter-compare the ef- pated for mechanistic or sensitivity studies that involve long
fect of different SSI reconstructions on the stratosphere. Wesimulations since it can be used with simplified stratospheric
focus on the pure photochemical response of the stratospheemistry schemes too (e Baylor and Bourqui2005. We
to short-term solar variability. This response can not be di-evaluate in this study the performance of the proposed regres-
rectly compared to observations since it does not take into acsion models when used to represent the ozone perturbation
count dynamical and radiative feed-back. However, this puredue to SSI variability in our photochemical column model
photochemical response is well constrained and should havexperiments. This provides a proof-of-concept for such a
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simple parameterisation, but further development in this di-(O3, NO, NO,) are determined by the chemical solver. The
rection is beyond the scope of this paper. chemically inert species and standard atmospheric temper-
In a first step, we limit the study to the pre-defined so- atures and pressures are taken from M3tedin 1997J).
lar maximum and minimum spectra frobean (1997 and  The solar spectrum comes frobean (1997 and includes
assume that the SSI follows a linear wavelength time vari-maximum, minimum, and average solar irradiance at each
ability between these two spectra. This allows comparisonwvavelength interval. In order to account for absorption of
with previous studies in the context of constant solar max-solar irradiance above 55 km (above the upper boundary of
imum/minimum simulations. This first application of this the chemistry solver), an artificial standard upper atmosphere
simplified modelling framework presented in this paper pro-is added which is composed of 4 levels at 60, 80, 100, and
vides a reference for further studies that will apply this 120 km. Similarly, to account for tropospheric absorption of
framework to more advanced SSI variability reconstructions.reflected solar irradiance at the surface, an artificial standard
The next section describes the numerical model employediroposphere is added with 5 levels at 0, 2, 4, 6, and 8 km. Ex-
the initial conditions, the simulations and the ensemble sim-tensive testing showed that these upper and lower levels were
ulation approach. Sectidpresents the stratospheric chemi- enough to represent photolysis rates between 10 and 55 km
cal state for an average solar activity and discusses the resultdtitude without loss of accuracy.
from the fixed solar minimum and maximum simulations for
all relevant chemical families and partitioning ratios. Sec-2.2 Numerical simulations
tion 4 presents the results for odd oxygen from the ensemble
simulations with daily random solar variability. It includes All simulations start at midnight and occur in January at the
regression analyses with two and three predictors, the senskquator. We chose the Equator, where dynamical effects on
tivity to initial conditions, the independent evaluation of the ozone are smallest, to make our experiments more (although
regression models, and its sensitivity to the amplitude of so-not entirely) comparable to CCMs. The initial concentrations
lar variability. Finally, the conclusions are drawn in Séct. and temperature are set to monthly and zonally averaged val-
ues taken from a 22-yr simulation with the Canadian Mid-
dle Atmosphere ModelSemeniuk et al.2011) with green-

2 Methodology house gases and halogen concentrations fixed to year 1979
(courtesy Kirill Semeniuk). Initial concentrations of long-
2.1 Photochemical model lived species are taken constant with altitude and are listed

in Table 1. This simplification does not affect the results on
The chemistry column model used here is an adapted verthe time scale studied here. The vertical profiles of the other
sion of the stratospheric photochemical scheme developedhemical species, along with temperature are given inIig.
for BASCOE Errera et al.2008 Viscardy et al.2010 with The temporal evolution of all chemical species is calculated
updated JPL06/09 chemical rat&aader et a|2006 2010. with the exception of only Bland & that are kept constant
The scheme calculates the temporal evolution of 57 chemwith time.
ical species described by a system of 199 chemical reac- As mentioned above, in order to concentrate on photo-
tions. The corresponding chemistry module is built by the chemical processes and avoid any distorsion of the results by
Kinetic PreProcessobD@amian et al.2002 and is integrated  external forcing effects, the model is used in a pure photo-
using a third-order Rosenbrock solvétgirer and Wanner  chemistry mode and includes no external sources and sinks,
1996. For the purpose of this study, this chemical model nor transport or diffusion. It also keeps temperatures and
was modified to include an on-line calculation of the pho- pressures constant over time, so that the effects of the diurnal
tolysis rates. The scheme has 171 spectral wavelengths beycle are included through the solar irradiances only. Sim-
tween 116.3—730 nm and includes 55 photodissociation protlations are therefore performed in a transient mode, where
cesses that are solved using a two-stream radiative transf&@hemical concentrations change according to their individ-
method Chabrillat and Fonteyr2003 and a simple param- ual lifetimes. The changes in individual families (as well as
eterisation of the absorption of the solar Lyman-alpha line bythe reservoirs) over time in a control simulation with aver-
molecular oxygenChabrillat and Kockarts1997. This in- age solar conditions are given in Tal#l@s a percentage of
teractive coupling allows photolysis rates to respond to ver-the initial concentration. Long-lived species are not shown as
tically changing concentrations in absorbing species and rethey do not change significantly over the time period consid-
moves the dependence on an a priori vertical profile of ozoneered here. In order to keep the chemical system in a regime
The coupled model is setup to calculate the photochemistryvhich is relevant to the stratosphere, all simulations in this
in each 1 km thick layer of a vertical column extending from study are thus limited to 10 days (maximum change smaller
10 to 55 km altitude, with an external timestep of 6 min. Day- than 20 % for the families and most of the reservoir species).
light is assumed present only when the solar zenith angle i$n order to facilitate the discussion of the results, the focus
smaller than 986 The absorbing gases arg,@,, NO, NO;, will be placed on day 5 hereafter and variations of the re-
CO,, and air. Concentrations of chemically active absorberssults between days 3 to 9 will be discussed as required. This
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Fig. 1. Initial conditions used in the simulations for the interactive species (upper row) and the specified temperature and species (lower row)
that vary with altitude. Initial conditions for specified species that have a constant mixing ratio with altitude are provided in Tabt

lines of different colours correspond to regular initial conditions, while the dashed and dotted lines represent the two-standard deviation
perturbed initial conditions used in the simulations testing the sensitivity to the initial conditions (see text for more details). Chemical species
are shown in units of volume mixing ratio, and the temperature in K.
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variation is of interest as it provides some additional insight
into the sensitivity of the results to variations in chemical ) )
concentrations. I'(A) = x" - Imax(A) + (1= x") - Imin(A)

The first set of numerical experiments simulates the chem-  xi ¢ [0, 1], i=1,10, (1)
ical response to various strengths of solar irradiance, with
the solar irradiance kept constant through the simulations towherel’ (1) is the solar irradiance spectrum on daymax()
solar maximum, solar minimum, and solar average levelsis the maximum solar irradiance spectrum, dpgh()) the
The irradiance spectra represent the 11-yr maximum, minminimum spectrum. The pseudo-random numbeis up-
imum, and average solar irradiance for each wavelength indated every midnight from a uniform distribution within
terval Lean 1997). [0,1]. It is independent from., so that the entire spectrum

The second set of numerical experiments investigates stas linearly varying between the solar minimum and maxi-
tistically the chemical response to daily solar variability and mum. To ensure good statistical independence between the
allows to build a simple auto-regressive model of the 0zone200 members, a sequence of 2000 successive pseudo-random
perturbation. An ensemble of 200 transient simulations isnumbers (without re-seed) is used and partitioned into the
performed, each forced by a different pseudo-random solaP0O0 members. Two auto-regressive models are discussed
variability sequence. Solar irradiance is updated daily anchere for odd oxygen (i.e. ozone). The two-predictor model
held constant for 24 h. Updates are at midnight to avoid adetermines the diurnal average concentration for the current
sudden change in the photolysis rates. Here again, the irradday, knowing the diurnal average concentration of the pre-
ance spectrum ranges between the solar minimum and solatious day and the solar irradiance perturbation of the current
maximum spectra dfean(1997's 11-yr cycle following the  day. The three-predictor model is similar to the two-predictor
linear formula in Eq. 7). model, but with the addition of the solar irradiance perturba-

tion of the previous day as the third predictor. The details are
discussed in Sectl. Note that as a first step, we chose here
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Table 1. Initial conditions for chemical species where mixing ratio Table 2. Maximum percent change from initial condition through-
is specified constant with altitude. Units are in mixing ratio. Initial out the stratosphere, after 5, 10, 15, and 25 days of simulation for

mixing ratios that depend on altitude are given in Hig. the relevant chemical species, with corresponding altitude.
Chemical Species Initial mixing ratio Chemjcal Altitude of Percent change from initial concentration after:
species  maxchange (km) 5days 10days 15days 25 days
Bry 0.1x10° 11 Bry 25 2.9 5.1 6.7 9.3
CCly 0.98x 10-10 Cly 45 11 31 5.0 8.9
-9 HOx 35 0.04 -018 —0.46 -10
gigi; &zlggz 18_9 NO 55 -15 -39 -63 -106
o 25 1.4 3.7 5.8 9.6
CFC113 0679x 10-10 BrXONoz 35 0.37 1.0 16 2.8
10 CIONO, 25 2.4 7.1 11.7 20.2
CFC114 0153 1011 HBr 30 -35 -45 53 -65
CFC115 037x 10~ HCl 35 0.52 1.3 22 37
CHs 1.0x 10~20 HNO3 25 7.2 12.7 15.7 20.5
11 HOBr 25 2.8 5.4 7.4 10.7
CHgBr 0.837x 1010 HOCI 25 148 283 360 46.8
CH3CCl3 0.59x 10~ o N20s 30 -17 0.13 2.7 7.8
CH3ClI 0.469x 10~
CH30 10x 1020
CH30, 10x 10—322 different concentrations of ozone result in different responses
CHBr3 03710 ° to solar variability. Finally, temperature is chosen because of
Cla 0.2 x 10:20 the temperature dependence of ozone destroying reactions.
CINO, 10x 10_9 Then, a fourth set of experiments is made to test the perfor-
Cloo 02x 1076 mance of the auto-regressive model at representing the ozone
H2 0.5x 10 1 perturbation due to solar variability. For this purpose, five
HA1211 422 10_11 additional ensembles of 200 simulations are designed as fol-
HA1301 426 x 10_10 lows using a new pseudo-random solar variability sequence
:ggczz fgz Xlégzo adjacent to the first sequence. The same pseudo-random se-
HE 10X 10-20 guence is used in all these new ensembles, so that they can
.U X

be inter-compared on a member-by-member basis.

1. Control ensemble with daily random solar variability
performed as before using the photochemical model;
to focus on Equatorial January conditions, and the study can
be later generalised by allowing the regression coefficients to
vary with latitude and month.
Since chemical concentrations and temperatures vary sig-
nificantly over longitudes and within seasons, it is useful to 3. two-predictor auto-regressive model used on-line with

test the sensitivity of the latter results to the initial conditions. the photochemical model representing the solar average
To do this, a third set of numerical experiments is performed, conditions;

where temperature and initial conditions of relevant species

are perturbed, one variable at a time. The same approach is4- same as 2, but with the three-predictor auto-regressive
employed as before, but with ensembles of 100 simulations. ~ model;

The perturbations represent the intra-month and zonal vari-
ability, averaged over the 22 yr of the CMAM simulation of
the two-standard deviations of three-daily values of the vari-
able taken at the given altitude and latitude. Note that thesd&ote that in the two on-line experiments 3 and 5 above, the
standard deviations are used here merely as an estimate afito-regressive model is curtailed by its previous day’s con-
the possible range of variation of the variables. The sensicentration component since this memory is carried over by

2. two-predictor auto-regressive model used off-line on
top of a solar average simulation with the photochem-
ical model;

5. same as 3, but with the three-predictor auto-regressive
model.

tivity analysis is performed for odd hydrogen (K& {H, the photochemical model itself. More details and the results
OH, HO,}) by perturbing HO, odd nitrogen NQ={NO, of these five simulations are presented in S@&.
NO>, NOs}, odd oxygen Q= {O3P, O'D, Oz}, and temper- Finally, a last set of solar maximum/solar minimum exper-

ature. These chemical species are chosen as they make thmeents is performed with the photochemical model, the 2-

dominant contribution to ozone photochemistrgHis the  and the 3-predictor models, using solar maximum and min-

main source of HQ, which dominates ozone destruction in imum spectra such that their difference centered around the
the lower and upper stratosphere. Ndbminates ozone de- solar average spectrum is magnified by a factor between 0.1
struction in the middle stratosphere, andi©chosento seeif to 3.0. This magnifying factor is applied either uniformly
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to the whole spectrum or to the range 200 to 400 nm (seeurs at the top of the model because this is where the UV
Sect.4.4). irradiance is strongest, allowing for an enhanced photolysis
of Osz. The increased ©photolysis is the reason for the in-
crease in Q@ during solar maximum conditions. The peak
3 Results from simulations with constant solar difference occurs a few kilometers above the maximumn O
irradiance mixing ratio due to a change in the optical depth and in the
O« loss processes. An increase in H@bove 40 km dur-
In this section results of constant solar irradiance simulationsng solar maximum conditions (see below) results in an in-
are presented for the following chemical families and parti- creased destruction ofQthus limiting the response of,O
tioning ratios: Q, NOy, HOy, Cly ={Cl, CIO}, Bry ={Br, to Sl above 40 km. Similar results were obtained for the up-
BrO}, & No- fﬁ(';' &L, and BL. To place in context the per stratosphere and mesosphere in simulations by 2-D mod-
response of chemical ?amlhes to solar variability, it is use- els (e.g.Brasseur1993 Khosravi et al. 2002 and CCMs
ful to first briefly map the chemical state for average solar(e.g.Egorova et al.2005, and in observations ¥hou et al.
irradiance (Sl) conditions. This is represented in RAdy (1999
the diurnal cycle of day 5 of the simulation using average SI. HOy: as expected, Fig3 shows that the minimum-to-
The variation in the pattern of this diurnal cycle through the maximum difference occurs mostly during the day for,HO
ten days of the simulation is minor and its diurnal averageand55- OH ‘The difference for HQis positive and occurs above
change is provided in Tab2 Note that these diurnal cycles 40 km reachlng a peak value of 0.03 ppbvd.5 %) at the
are consistent witBrasseur et a(1990 andDesslei(2000), top of the model. A similar increase in HQluring solar
for instance. maximum conditions is found in the CCM simulations of
Figure 3 shows the diurnal cycle difference between the Egorova et al(2005. For S5 HOX the difference is negative and
solar maximum and the solar minimum experiments, takenis found in the middle stratosphere, with a peak difference
on day 5. Note that in both the solar maximum and solar min-of approximately—3 x 102 (~ —1 %) at 38 km. The differ-
imum experiment, the entire chemical system may slowly ad-ence found at night above 50 km should be ignored as there
just to the solar perturbation, and therefore a slow temporals no HQ, present here, and the difference is simply a re-
drift may occur in addition to the diurnal response. However, sult of a near-zero denominator. The peak increase ip idO
above 35 km, where the photochemistry is in steady state, anthe result of an increase in the oxidation of water vapour and
therefore the Qresponse should stay constant in the absencemethane and is found where the Sl is strongest. The decrease
of such an adjustment, a change in ther@sponse smaller in HO in the middle stratosphere is a result of the increase
than 10 % was found from day 5 to day 10 (not shown). Be-of OX at these altitudes, as well as the decrease in NO. In
low this altitude, the ozone response changes by 60 % ovethe middle stratosphere, the conversion of OH to,H@a
this period between 15 and 25 km altitude due to the ozoné)s) and the conversion of HOto OH (via NO) dominate
chemistry becoming slower at low altitudes, and not becaus¢he HQ, cycle Dessler2000. Thus an increase inyQeads
of an adjustment of the overall chemical system. Hence, itto an enhanced conversion of OH to b{@nd a decrease in
is sound to focus on the day 5 of the simulation, keeping inNO leads to a diminished conversion of bi®ack into OH.
mind that the steady state response is only achieved abovEhe small decrease seen at the top of the model is due to the
35km. increase in O atoms at the top of the model, resulting in an
Ox: Fig. 3 shows that the minimum-to-maximum differ- increased conversion of OH to H®ia O. In the CCM simu-
ence is positive for both Qand g The peak difference lations byEgorova et al(2005, an increase in H®is found
for Oy is approximately 0.18 ppmv~(3 %) at 37km, just between 25 to 55 km, in agreement with the decrea%n
above the ozone peak altitude, and remains throughout thund here.
diurnal cycle. Note that the relative change peaks slightly NOy: in Fig. 3 it can be seen that there is both a pos-
higher (3.2% at 42km) due to the decreasing @ncen- itive and negative difference in the minimum-to-maximum
tration with altitude (Fig.9, top panel). These results are NOy. The negative difference peaks at a value-6f1 ppbv
within the range of the minimum-to-maximum differences (~ —1%) late in the night at around 40km. There is also
calculated from the observations ISoukharev and Hood a slightly smaller negative difference above 40 km that re-
(2006 and Fioletov (2009, and is in agreement with the mains throughout the diurnal cycle and peaks above 50 km.
largest minimum-to-maximum differences calculated from The positive difference in NQis seen during the day and
simulations by 1-D models (e.drozanov et a).2002, 2- has a peak value of approximately 0.03 ppbv((5 %) at
D models (e.gHaigh, 1994 and CCMs (e.gShindell et al. about 32 km. The minimum-to-maximum difference %QX
1999 Tourpali et al, 2003 Egorova et al.2004 Rozanov is negative and is mainly found in the middle stratosphere
et al, 2004. The difference forO is only seen during the during the day, with a peak difference-o#x 103 (~ —1 %)
day above 48 km, and the peak “difference is a change in that around 37 km. During the night, the decrease in NdD
partitioning ratio of approximately.@ x 10~3 (~1%) near  around 40km is a result of the increase ip & this alti-
the top of the model (55km). The peak changegkxn oc- tude during solar maximum. An increase iR f@sults in an
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Diurnal Cycle Concentrations During Average Solar Irradation
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Fig. 2. Diurnal cycle of the relevant chemical families and their partitioning ratio on day 5 of the solar average simulation. Chemical families
are shown in units of volume mixing ratio. Vertical yellow dashed lines show the sunrise and sunset times, 06:00a.m. and 06:00 p.m.,
respectively.

a peak value of 2 x 1073 (~ 0.4 %) at the top of the model.
sults in an increase in the conversion of NIO its reservoir  The increase in Glin the middle stratosphere is due to
N2Os (through the combination of NOand NG). The neg-  the enhanced conversion of,Gkservoirs (mainly CIONg)
ative minimum-to-maximum difference above 40 km during back into C} due to enhanced photolysis during solar max-
the day is due to an increase in N atoms (via an increase@num conditions. Also, since photolysis is the primary de-
photolysis of NO), resulting in an enhanced conversion ofcomposition channel for CFCBéssler2000 and the added
NO to N, (via N), thus causing a loss in NOThe increase  Cl goes mainly into CION@and HCI, the increase in reser-
of NOyx seen during the day is due to an increase in thevoirs results in a further conversion back intg.@ia pho-
conversion of the NQreservoirs (specifically HNg) back  tolysis) during the day. The peak change% at the top
into NOx (specifically NQ) due to enhanced photolysis. The of the model (55 km) is due to increasgy, resulting in an
strongest response is located at around 32km. This is due tgnhanced conversion of CIO to CI (via O). Simulations by
the combination of HN@decreasing at higher altitudes and Egorova et al(2005 found a decrease in CIO between 45

the photolysis of HN@slowing down at lower altitudes. The tq 55 km, and are thus in agreement with the increasé'—in
decrease found in the middle stratosphere is due to the infoynd here. g

crease in @ at these altitudes, which results in an increased Br,: Fig. 3 shows a negative difference in Boccuring

increased conversion of N@o NOgz (via Oz), which then re-

conversion of NO to N@(via Og). Again, in the simulations
by Egorova et al(2009, an increase in N@is found at these
altitudes, and is thus in agreement with the decreasgSin
found here.

Cly: Fig. 3 shows that the minimum-to-maximum differ-
ence is positive for both ¢land % The increase in Gl
occurs during the day with a peaf< value of 3 pptv1l(%)
around 40 km and slowly decays through the night. The dif-
ference forgl'; is seen only during the day above 47 km, with

www.atmos-chem-phys.net/12/7707/2012/

at night essentially above 45km, reaching a peak value of
—0.08 pptv ¢~ —0.3%). ForBB—rrx, the difference is negative
and is found during the day, with a peak value-df x 103
(~—2.5%) around 42 km. Above 45km, the large negative
change in By during the night is due to the decreasq_%x-
(seen previously), resulting in an increased conversion of
BrO to its reservoir HOBr (via H@), and thus a decrease
in Bry. Similarly to &, the decrease igg- in the middle

Atmos. Chem. Phys., 12, 770724 2012
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Difference Between Solar Minimum and Solar Maximum Irradiation for the Diurnal Cycle
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Fig. 3. Diurnal cycle of the chemical differences between the constant solar maximum and minimum simulations on day 5 for the relevant
chemical families and their partitioning ratios. Differences in chemical families are shown in units of volume mixing ratio, and in arbitrary
units for partitioning ratios. Vertical yellow dashed lines show the sunrise and sunset times, 06:00 a.m. and 06:00 p.m., respectively.

stratospheric daytime is due to the increase jn 1©sulting

in an enhanced conversion of Br to BrO (vig)O

4 Results from ensemble simulations with daily random

solar variability

simple parameterisation of the odd oxygen response to Ssy' —

variability.

The regression model's dependent variablg i§ taken i
as the daily (24 h) average concentration of each ensemble
member for days 3-9. Days 1 and 2 are left out to allow for

gression coefficients do not vary significantly over the course

of the simulations, separate regressions are performed every
day. The ensemble size of 200 members was found to be
large enough so that results are not significantly sensitive to

it. Two auto-regressive models are tested: a 2-predictor and a

3-predictor model. In the 2-predictor model, the independent
variables are taken as the previous day’s daily average con-
In this section, the effect of short-term solar variability OoN centration ﬁl)! and the current day’s Stﬁ) The dependence

Ox is approached from a statistical perspective using multi-on the previous day’s daily average concentration is referred
ple linear regressions on ensembles of simulations. The goab as the memory and the current day’s Sl as the Sl for sim-
is to develop the simplest statistical model which capturespicity. In the 3-predictor model, the additional independent
the odd oxygen response in a complete manner. This statisyariable is the previous day’s Si4). The previous day’s Sl is
tical model, through its coefficients, characterises the ozongdded in an attempt to include the effects of Sl on the chem-
response to the type of SSI variability considered here angstry that are too slow to be captured by the current day’s SI
can be used to predict the odd oxygen response to an arbtegression term. Such effects include for instance changes in
trary time series of SSI (e.g. a 27-day cycle). This providespther species that indirectly affect Orhe multiple linear re-

a simple framework for inter-comparing different SSI vari- gression models can be written in the standardised form as,
ability reconstructions/models with respect to their effect onrespectively:

the stratosphere. It also gives an approach for developing a.

—

; )
Xt —X SXH—X .
Lo gl 2,039 @3
ol ol o!
y X1 X2
i xl— 5 xi—xi xh— 4t .
— ﬂl 1 i l+yt 2 i 2+81 3 3+rl i=3,9,(3)
o o
x1 X2

9y

a spin-up in the simulations. In order to verify that the re- with
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only their sum being well-constrained. As will be seen be-
; i+l low, the 2-predictor model’s never goes to zero. This means

y =X - (4) that the third predictor brings additional information at all al-
titudes, and that the coefficientsandé in the 3-predictor
model can be expected to be well-constrained everywhere.
A more formal confirmation of this was made by calculat-
ing the variance inflation factor (VIF) for the third predictor,
defined by Wilks, 2006):

The superscriptis the day, overbargrepresent the ensemble
averages and. the ensemble standard deviation of the cor-
responding variable, andis the residual. The regression co-
efficient 8 represents the standardised memory effedhe
standardised SI effect arédthe standardised previous day’s
Sl effect. By definition, these standardised regression coeffi-V”:(x )=
cients are always betweenl and +1 and show the relative 3=
contributions of predictors at every altitude, without regard to
the actual ozone response. The intercept coefficigazero ~ Where RZ, is the coefficient of determination for the re-
in these standardised forms. Note that although the two regression of the previous day’s SI on the memory. Usually,
gression models have distinct values of the coefficigraad ~ VIF > 10 is considered the cut-off threshold where multi-
¥, we use the same notation for simplicity. The ensemble av-collinearity is too large in a regression and will lead to ill-
erages can be expected to represent solar average conditioflefined coefficients. In our case, VIF is smaller than 10 at all
under the hypothesis of large ensembles and a linear ozon@ltitudes where the previous day’s Sl has a significant effect,
response. The difference between the ensemble aveé@ge and thus multicollinearity is not making the regression ill-
equivalentlyx) and the solar average simulation is smaller defined. However, it is important to note that the collinearity
than 0.1% of the solar averagg @®verywhere (not shown) betweenx; andxz makes the intepretation of the correspond-
and therefore these two quantities can be assumed equal. Ttieg regression coefficients less straightforward. The two re-
following form will also be used for the regression models, gression coefficients must be interpreted together to the ex-
which measures the centered, non-normalised contribution ofent of the correlation between the two predictors.
the different predictors to the ozone response: The error of a regressive model in representing the ozone
; p i P i . response can be simply measured by the coefficient of de-
Y=ol 4B (g =X +y (- X))+ i=39 () terminationR? (Wilks, 200§. However, the comparison of
yo= @ B (=) (b= i) 48" (xh—a)+r” (6) this coefficient between the two models may lead to a bias
i=3.09, @) favouring the 3-predictor one, simply due to the addition of
an explanatory term and its effect in decreasing the number
where by definition, the intercept equalsy, i.e. to a good  of degrees of freedom in the regression estimation. To take
approximation the ozone concentration in average solar conthis effect into account, we use the coefficient of determi-

ditions, and the regression coefficiefits y’ ands’ are re-  npation adjusted for the number of predictor variabl&g)(
lated to the standardised ones by: (Wilks, 2006:

1
. 9
-y (©)

. ol . I A 1) 52 2
5n:ﬁ“43y”=y“4n8”=y—%,wﬂﬂzrqp (8) R°=1-(1-R")

i i
X1 X2 UXB

-1
e (10)
n—p—1

: - . . wheren is the sample size anglis the total number of pre-
These regression coefficients provide the actual Cont”buaictorvariables in the regression. By definitiat? is always

ti_on_ to Y= yofa ppsitive perturbation by one sFandard de- smaller thank2. As the number of predictors increases, the
viation in the previous day’s ozone concentration, the Cur-adjusted coefficienk?2 increases only if the new predictor
rent day’s Sl and the previous day’s Sl, respectively. The two

) , / adds significantly to the fit, and may decrease if it does not.
predictorsx; andx, are independent. As a result, in the 2-
predictor model, the corresponding coefficieftandy’can 4.1 Regression coefficients
be interpreted independently from each other, as the ozone
response to a positive perturbation by one standard deviaFigures 4 and 5 show both the standardised and non-
tion in the previous day’s ozone concentration and the currenhormalised regression coefficients determined from the mul-
day’s Sl, respectively. By contrast, since the ozone concentiple linear regression using 2- and 3-predictors, respectively.
tration on the previous day depends on the previous day’s SIEach day is represented with a different line colour. In each
the third predictores is expected to have some collinearity plot, altitudes at which the standard deviation (amongst the
with x;. The degree of this collinearity is indeed measuredensemble) in the observed variablevas smaller than 5 % of
by the 2-predictor coefficienig andy . If a perfect collinear-  the maximum standard deviation in the column are hatched
ity exists somewhere in the column betwegnandxs, we out, and are considered insignificant response to solar vari-
will have 8 = 0 andy = 1. Such a situation would make the ability. Note that the regression analysis was performed on
third predictor useless and the corresponding regression call species discussed in Se8t.and all species could be rea-
efficients 8 andé in the 3-predictor model ill-defined with sonably well regressed with the 3-predictor model, with an

www.atmos-chem-phys.net/12/7707/2012/ Atmos. Chem. Phys., 12, 77024 2012
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Fig. 4. Regression coefficients for the 2-predictor autoregressive model for simulation days 3 to 9 (different colours). Top row: adjusted
coefficient of determinatiok? (left) and intercept terna’ = y (right). Middle row: standardised memory tegn(left) and standardised

solar irradiance terny (right). Lower row: non-normalised memory terfi (left) and non-normalised solar irradiance teph(right).

Regions where the standard deviation (amongst the ensemble) in the observed yawablemaller than 5% of the maximum standard
deviation in the column are hatched out.

adjusted coefficient of determination larger than 0.8 at all al-cients are positive throughout the stratosphere, meaning that
titudes (not shown). increases in previous day’s concentration or in current day’s
Figure4 shows that the adjusted coefficient of determina- Sl, both increase the current day’s.O
tion for the 2-predictor model is larger than 0.97 through- In Fig. 5, it can be seen that the addition of previous
out the column, demonstrating that the 2-predictor linearday’s Sl increases the adjusted coefficient of determination
model provides a reasonable representation of the responsta 1 (more precisely-0.9992) throughout the entire column,
Consistently with Fig2, the intercept term (from the non- making the 3-predictor linear model a very good representa-
normalised regression) shows that the peak daily averagéon of the response (the lines are not distinguishable from the
mixing ratio of G in solar average conditions occurs around vertical axis on the graph). As expected, the intercept term
32km (~ 9 ppmv). The standardised regression coefficientsdoes not change from the 2-predictor results. From the stan-
shows that the current day’s Sl is dominant in the upperdardised regression coefficients, it can be seen that the cur-
stratosphere (above 40 km) where the UV irradiance is in+ent day’s Sl remains unchanged by the addition of the extra
tense and chemical life-times are short, whereas the memorgredictor. In contrast, the memory has now less of an im-
is dominant in the mid to lower stratosphere where chem-portance above 35 km and becomes negligible above 45 km.
ical lifetimes of Q are longer. Nevertheless, both these 2- This contribution is now taken over by the previous day’s Sl,
predictors appear to have a significant effect at all altitudeswhich relative contribution peaks around 41 km. The non-
considered here. The non-normalised regression coefficientsormalised memory has a slightly smaller peak, about one to
confirm that the current day’s S| dominates in the upper statotwo kilometres lower in altitude. The previous day’s Sl peaks
sphere with a peak around 42 km, and the memory in the micaround 40 km, similarly to the current day’s Sl, but with a
stratosphere with a peak around 38 km. Both memory andnagnitude three times smaller. This much lower magnitude
Sl coefficients decrease to zero in the lower stratosphere asuggests that this two-time level scheme for the Sl term is
the chemistry becomes very slow and the overall responsaccurate enough to include most chemical effects and that a
oy converges to zero. As expected, the two regression coeffi-
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Fig. 5. Regression coefficients for the 3-predictor autoregressive model for simulation days 3 to 9 (different colours). Top row: adjusted
coefficient of determinatioR? (left) and intercept terma’ = y (right). Middle row: standardised previous day’s solar irradiance t&rm

(left), standardised memory tergh(middle) and standardised solar irradiance terrright). Lower row: non-normalised previous day’s

solar irradiance tern®’ (left), memory termg’ (middle) and solar irradiance terpd (right). Regions where the standard deviation (amongst

the ensemble) in the observed variapleas smaller than 5 % of the maximum standard deviation in the column are hatched out.

three-time level scheme is unnecessary (as confirmed by thend the memory from the 3-predictor model. The previous
adjusted coefficient of determination). day’s Sl coefficient showed the same sensitivity to tempera-
The day-to-day variability of the non-normalised regres- ture as the current day’s Sl, but since its effect is both simi-
sion coefficients is insignificant for both the 2- and 3- lar and of a much lesser magnitude, it was not deemed use-
predictor models. This is seen on Figsand5 by the fact  ful to show. The 2-predictor model’s sensitivity (not shown)
that all lines of different colours overlap and can not be dis-was similar to the 3-predictor model. For both coefficients in
tinguished from each other. There is only substantial day-to+ig. 6, a shift towards lower altitudes is observed for increas-
day variability in the standardised coefficients below 40 km, ing temperatures, accompanied by a weakening of the effect.
where the overall response is small, due to the magnifyingThe variability of the response with the day of the simulation
effect of the decreasing, at lower altitudes. Hence, it ap- is insignificant, with all lines overlapping each other. A simi-
pears that the results are robust to the changes in chemic#dr result was found in the observational analysis-imletov
conditions over the 10 days of the simulations. (2009, such that the ozone response weakened for a temper-
ature disturbance in phase with the solar variatBrasseur
(1993 andKeating et al(1994) also found that an increase in
upper stratospheric temperatures resulted in increased rates
- . of ozone destruction, accompanied with a weaker ozone re-
In order to understand how the initial conditions affect the sponse to solar variability. This is explained by the temper-

chemical response to solar perturbations, additional mUItlpleature dependence of the N@atalytic cycle, which leads to

linear regressions were performed on simulations with Per 4, er Q concentrations, and consequently a larger response
turbed initial conditions (Figl). The chemical response of 9 ' q y g P

. . : to solar variability, at lower temperatures.
Oy was found to be sensitive to perturbations in the temper-— .. " . L
ature. while it showed no significant sensitivity to perturba- Itis interesting to contrast the significant effect of the tem-
fions ’in O, NO, or Oy (notghown) ytop perature perturbation with the insignificant effect of the,NO
! : perturbation. These perturbations are meant to be represen-

Figure 6 shows the sensitivity to temperature of the non- __.. o .
. . -~ .. tative of the natural variability across seasons and longitudes
normalised regression coefficients for the current day’s Sl

4.2 Sensitivity to initial conditions and temperature

www.atmos-chem-phys.net/12/7707/2012/ Atmos. Chem. Phys., 12, 77024 2012
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Fig. 6. Sensitivity to temperature of the non-normalised regression coefficients for the mgh{taft) and current day’s solar irradiangé

(right) for the 3-predictor model. The solid line repeats results from the regular simulatiorb(fFaad the dashed and dotted lines are for a
temperature perturbed with minus and plus two standard deviations, respectively (sBePiiferent colours indicate different simulation

days. Note that the previous day’s solar irradiance coefficient (not shown) has a similar sensitivity to temperature as the current day’s solar
irradiance, and that the 2-predictor model’s coefficients (not shown) have a similar sensitivity to the corresponding ones in the 3-predictor
model. Regions where the standard deviation (amongst the ensemble) in the observed yaviablemaller than 5% of the maximum
standard deviation in the column are hatched out.

at the equator, and the variability of N@ppears to be too of the predictive skills of the statistical models, it may not
small to be felt on odd oxygen. However, variability in NO be appropriate when the feed back between radiation and
related to either anthropogenic emissions gONbr to differ- photochemistry needs to be accurately resolved. In the on-
ent latitudes, may be larger than that used here. A subsequefihe mode, the ozone perturbation generated by the statistical
generalisation of the statistical model to various latitudes andnodel is added to the ozone concentration in the photochem-
atmospheric compositions will need to include the effect ofistry scheme when initialising the latter for the next day’s
NOy as well as temperature. calculation. However, since the photochemical model is ini-
tialised every day with the perturbed ozone concentration, it
keeps memory of the previous day’s perturbation in ozone.
Thus, the memory term in the statistical model (Bgmust

be d d in thi de, giving rise t tential additional
As shown in Sect4.1, the 2- and 3-predictor models fit the e(reror:soppe N TS Mode, gvng rise fo potential addiiona

ensemble simulations with a good and excellent accurary, re- Figure7 shows the error in the two statistical models for

spectively. In this section, we perform an independent eve.ll'the two modes of coupling with the photochemical model.

uation of their skills at representing the effect of solar vari- The bias and RMS errors are estimated here using, respec-

ability on ozone. For this purpose, we use a new, mdepenfively, the relative mean difference and the relative root mean

dent pseudo-random solar variability sequence, startgd aftfagquare difference of the diurnal average ozone concentra-
the end of the one_us_ed for the regression. As _descnbe_d 'ons between the off/on-line and the control experiments.
Sect.2._2, the§e statistical modgls can be used.e|t.her 0ﬁT“neThe control experiment is an ensemble of simulations where
or on-line with the photochemmal modgl (.or similarly with the solar variability is resolved by the photochemical model.

a CCM). In the off-line mode, thg st.a}tlstlcall model takes The errors are relative to the ozone response in the sense that
care of the effect of the solar variability while the photo- they are normalised by the root mean square difference be-
chemical model simulates solar average conditions. The Stayyeen the control and the solar average experiments. Since

istical moc_iel dp es not feed_ back into the_photocheml_calthe control experiment is centred around the solar average
model. While this mode provides the most direct evaluation

4.3 Evaluation of the error of the statistical models

Atmos. Chem. Phys., 12, 7707424 2012 www.atmos-chem-phys.net/12/7707/2012/
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Fig. 7. Errors in percents of the statistical model when used off-line or on-line to predict the ozone perturbation due to solar variability in
an independent set of experiments, as a function of simulation day (horizontal axis) and altitude (vertical axis). The left column indicates
the relative bias in the statistical model, calculated as the mean difference between solar variability simulations with the statistical model
used off/on-line and the control experiment, divided by root mean square difference between the control and the solar average experiments
The right column indicates the relative error of the statistical model, calculated as the root mean square difference between solar variability
simulations with the statistical model used off/on-line and the control experiment, divided by root mean square difference between the control
and the solar average experiments. Below the thick black dashed line lies the region where no calculation is made because the denominatc
is smaller than one thousands of the solar average ozone concentration.

simulation, the normalisation factor is equal to the standard?2 % and an RMS error smaller than 5%. In the worst case,
deviation of the solar variability effect in the ozone concen- the on-line 2-predictor model still offers a reasonable accu-
tration (o). In the regions where this normalisation factor racy with a bias smaller than 5% and an RMS error smaller
(i.e. the ozone response) is smaller than one thousands of thhan 20%. This accuracy in the on-line mode is improved
solar average ozone concentration, the response and erroby the addition of one predictor to a bias smaller than 1%
are set to zero (areas under the thick dashed lines in7fig. and an RMS error smaller than 15%. This absence of a
This cut-off assumes that ozone responses smaller than 0.1 %ystematic bias in the 3-predictor model when used on-line
can be neglected in a model. makes it an excellent candidate for a CCM. Note further-
As expected, the bias and RMS errors are smaller in thenore that, in contrast to the on-line 2-predictor model, the
3-predictor than in the 2-predictor model, and are smalleron-line 3-predictor model sees its relative error increasing at
in the off-line mode than in the on-line mode. In the best altitudes above 40 km, where the ozone response weakens.
case, the off-line 3-predictor model offers an excellent ac-Hence, the absolute error in the on-line 3-predictor model
curacy throughout the stratosphere with a bias smaller thams markedly smaller than in the on-line 2-predictor model.
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an inversed variability between 400 and 700 nm. Although it
is beyond the scope of this paper to apply the method devel-
oped here to these new observations, we present additional
experiments in this section that illustrate the sensitivity of the
ozone response to differences in the SSI variability pattern.
Figure 9 (top left) shows the results from additional
pairs of simulations using the comprehensive photochemistry
model with the departure between solar maximum and mini-
mum spectra and the reference solar average spectrum mag-
nified uniformly by a factor between 0.1 and 3.0. The re-
Full photochemistry model | | sponse is linearly proportional to the magnitude of the solar
| [==—"0On-line 2-predictor model change within this range (all lines and symbols overlap to
1 2 3 4 5 6 7 8 9 each other). Increasing beyond the factor 3.0 was attempted
On-line Model Using 3 Predictors but led to instability of the photochemical model. This linear-
ity allows the statistical models developed here, and in par-
ticular the 3-predictor model, to capture the response to solar
variability, even when magnified by a factor three, with an
excellent accuracy throughout the stratosphere, as confirmed
in Fig. 9 (top right). In the latter panel, results from the 3-
predictor model (small symbols) overlap with those from the
photochemical model (colour lines). The 2-predictor model
gives results that are slightly high biased (large symbols).
Figure9 (bottom) shows the responses in the photochem-
ical and statistical models as a function of the magnify-
ing factor at 37 km altitude. Consistently, results from the
3-predictor model (red symbols) overlap with those from
Fig. 8. lllustration of the performance of the statistical model when the photochemical model (dark blue line), whereas the 2-
used on-line for days 1 to 9 at 37 km altitude, for a member SimU|a'predictor model (green symbols) is slightly high biased.
tiqn_ chose_n randomly in the er?semb_le used in IF@Iack:_ qzone _ These results are compared on Fgbottom) with the re-
mixing ratio from. thg.control simulation. Red: o0zone mixing ratio sponse found in the photochemical model when the magni-
with the solar v_arlablllty represented by the 2-predictor model (top) fying factor is applied only within the range 200 to 400 nm.
and the 3-predictor model (bottom). In the latter case, the response remains linear through the en-
tire range but with a smaller slope and non-zero intercept.

The time variation of errors is small in all cases, confirming ThiS is explained by the ozone production outside the 200 to
the low sensitivity of the statistical models to the chemical 400 nm window which is kept constant in these experiments.

changes that occur over the 10 day simulations. The perfor-

mance of the statistical models, when used on-line, is illus-

trated in Fig.8 for a randomly choosen member of the en- 5 Conclusions

semble of 200 simulations at 37 km, the altitude where the o ]

ozone response is largest. Overall, the two statistical modJ NiS paper proposes a simplified modelling framework for
els provide an accurate, computationally inexpensive repre_characterlsmg the effect of spectral solar irradiance vari-

sentation of the effect of solar variability on 0zone, with the @Pility on the stratosphere, focussing on the pure photo-
3-predictor model being the most accurate. chemical response. First, the solar maximum-minimum re-

sponse is analysed and compared with past studies. The so-
4.4 Magnified solar variability lar maximum—minimum response in @.e. ozone) shows a

sharp peak of 0.18 ppmv (about 3 %) increase jina@®und
ThelLean (1997 solar minimum and maximum spectra used 37 km altitude and a rapid decrease of this response towards
in this study are reconstructions based on different proxiedower altitudes with a near-zero response below 27 km alti-
and are subject to large uncertaintiéaigh et al.(2010 tude. This pattern compares particularly well with estimates
showed that observed spectra from the Spectral Irradiancéom Fioletov (2009 based on satellite observations of the
Monitor (SIM) and the Solar Stellar irradiance Comparison 27-day cycle combined with the Mg Il index (the orange lines
Experiment (SOLSTICE) instruments on satellite SORCEIn their Fig. 9). In Climate-Chemistry Models, the ozone re-
(Harder et al.2009 differ very significantly from theeean ~ sponse to the 27-day cycle shows a smoother peak which
(1997 spectra for the period 2004 to 2007, with variability typically extends at lower altitudes, and the response stays
larger by factors of four to six in the range 200 to 400 nm, andsignificant, though very variable, at altitudes even lower than
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Fig. 9. Normalised relative difference inyaconcentration between solar maximum and solar minimum experiments for various solar vari-
ability magnitudes. The relative difference is calculated as the solar maximum-minimum difference divided Rycthrecéntration, and
normalised by the solar variability magnitude. A solar variability magnitude of one correspdrekt(l997) solar maximum and minimum
spectra. Top left: photochemical model (PhM) with solar variability magnitudes from 0.1 to 3.0. Top right: photochemical model, 2-predictor
model (2-PM) and 3-predictor model (3-PM) with solar variability magnitudes 1.0 and 3.0. Bottom: normalised relative difference at 37 km
altitude as a function of the solar variability magnitude for the photochemical model and the 2- and 3-predictor models. In addition, the light
blue line shows the response of the photochemical model with the solar variability magnified with redpsot 997 only in the range
200-400 nm.

20km (e.g.Austin et al, 2007). Assuming that the CCMs sequences of solar variability. The,@esponse is then re-
achieve a similar photochemical response as here, this difgressed following two auto-regressive models with 2- and
ference can come either from the effect of coupling photo-3-predictors. The two predictors common to the two mod-
chemistry with radiation and dynamics, or from errors in the els, are the previous day’s ozone concentration and the cur-
statistical separation between the solar impact and the dyrent day’s solar irradiance. The additional predictor in the
namical variability. The response in other chemical families 3-predictor model is the previous day’s solar irradiance. The
is also discussed and is consistent with past studigerova  regression leads to coefficients of determination larger than
et al, 2005. It was found that HQ) increased in the upper 0.97 and 0.9992, respectively. The relative contribution of
stratosphere-lower mesosphere up to 2% and limited the inthe current day’s Sl is found to dominate above 40 km, while
crease in Qin this region. NQ was found to increase during the memory dominates below 40 km and remains non-zero
the day below 40 km by 1%, and,Olvas found to increase in the upper stratosphere. In the 3-predictor model, the rela-
during the day above 35km altitude, with a peak of 1% attive contribution of the previous day’s Sl peaks at 40 km and
40 km. takes over the upper-stratospheric contribution of the mem-
Second, an ensemble simulation approach is taken toery term. The sensitivity of the regression coefficients is anal-
gether with regression analysis to develop a complete charysed with respect to initial concentrations of®l(i.e. HQ,),
acterisation of the Qresponse to SSI variability. Ensem- NOy, Ok and the temperature. The results are found to be sen-
ble simulations are performed using daily pseudo-randonsitive to the temperature only, with a shift of the peak towards

www.atmos-chem-phys.net/12/7707/2012/ Atmos. Chem. Phys., 12, 770024 2012



7722 R. Muncaster et al.: Modelling stratospheric response to SSI variability

lower altitudes accompanied by a weakening of the magnithe ozone response. In particulBolduc et al.(2012 sug-
tude of the non-normalised regression coefficients. This sengest that the pair of wavelengths 240 and 300 nm may have
sitivity is attributed to the temperature dependence of thea correlation well below 1.0, which may specially affect the
NOy catalytic cycle. stratospheric chemistry through a decorrelation of photoly-
The two regression models are also evaluated when used &s$s processes for £and G. CCMs are unquestionably nec-
proxy models for the prediction of the ozone response to soessary to study the interactions between photochemistry and
lar variability. For this purpose, they are coupled off/on-line dynamics in the stratosphere. However, in the current context
with a photochemical model representing the solar averagevhere various data sets, reconstructions and empirical mod-
chemistry. The bias and RMS errors are estimated relative tels of SSI variability need to be inter-compared with respect
the ozone response. As expected, errors are larger in the 2e their implications on stratosphere, a modelling framework
than in the 3-predictor model, and in the on-line than in thesuch as the one proposed here presents two major advan-
off-line mode. When used on-line, the memory term musttages, aside from its minimal computational cost. First, it
be dropped from the model since it is carried over by theprovides a complete picture of the SSI response, including
photochemistry model itself. This is expected to introduceits non-stationary component. CCM studies typically only in-
an additional error. Nevertheless, when used on-line the 2¢elude the statistically stationary component of the response to
and the 3-predictor models have a bias smaller than 5% andolar variability as a result of the necessity to perform tem-
1%, respectively, and an RMS error smaller than 20 % andporal averages to remove the large unforced variability. Sec-
15 %, respectively. This makes the on-line 3-predictor modelond, it provides a well-constrained and robust response. Here
an interesting candidate for a simple, fast parameterisatiomgain, the large unforced variability present in CCM outputs
representing the effect of solar variability in the stratospherelimits the robustness of the results and may interfere with
The linearity of the Q response, and thereby the validity of them where feed-back between photochemistry and dynam-
the statistical models, in an extended domain of solar vari-ics are present. In addition, differences in the dynamical be-
ability was tested with solar maximum and solar minimum haviour of different CCMs may affect their results and ranges
experiments. It was found that within the range tested hereof responses.
extending the solar variability magnitudelafan(1997) by a This modelling framework can be easily extended to study
factor three uniformly through the spectrum, the response rethe feed-back between photochemistry and temperature. A
mains fully linear and the statistical models identical. In con- next step would be to allow the temperature to change ac-
trast, magnifying the solar variability within a limited range cording to the response of ozone by incorporating an inter-
of wavelengths from 200 to 400 nm led to a different linear active radiation calculation in the column forced with solar
relationship between response and solar variability magni-average. A further step would be to include SSI variability
tude. in the radiation calculation. This would allow to evaluate the
The modelling approach presented here based on ensenmportance of these two levels of feed-back on the ozone re-
bles of transient photochemical simulations with linear re- sponse to solar variability and results could be compared with
gression analysis sets a simple framework to characterise thBemeniuk et ali2011) andGruzdev et al(2009.
effect of SSI variability on stratospheric chemistry. In partic-  Finally, the regression models resulting from this study
ular, it is proposed as an efficient framework which can beoffer an accurate, inexpensive approach for parameterising
used to evaluate the implications on the stratosphere of usinthe effect on stratospheric ozone of SSI variability in CCMs.
more complex SSI variability patterns as the still commonly In this study, the regression models are based upon the sim-
used one based uptean(1997) solar maximum/minimum  pleLean(1997 solar maximum/minimum spectra. However,
spectra. These include spectral time series from SIM or SOLemploying the same method, other regression models can be
STICE, advanced reconstructions (eluillier et al, 2012 constructed for other SSI variability patterns. They can be
or outputs from semi-empirical solar models (eBplduc extended to other seasons, latitudes, for a range of tempera-
et al, 2019. Haigh et al.(2010 suggest, based upon re- tures, and possibly to take into account long-term composi-
cent results from instruments SIM and SOLSTICE onboardtional changes. It is important to note that since the memory
satellite SORCE, that the variability in the ultra-violet range contribution has to be taken over by the photochemical mod-
from 200 to 400 nm may be underestimated by a factor 4ule of the CCM, it is necessary to build the regression model
to 6 in Lean (1997. As shown in the present study, while using a photochemical model which is consistent to that of
the ozone response remains linear with a factor three appliethe CCM. Further work would be necessary in this direction.
uniformly through the spectrum, it changes if the factor threeHere, we limit ourselves to proposing the approach and it is
is only applied to the 200 to 400 nm range. This illustratesbeyond the scope of this paper to present an end-user param-
the dependence of the ozone response to the particular waveterisation.
lengths forced, including those outside the 200 to 400 nm
range which dominates stratospheric photolysis processes.
Furthermore, it is expectable that variable correlations be-
tween pairs of wavelengths through the spectrum will affect
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