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Received: 10 February 2011 – Published in Atmos. Chem. Phys. Discuss.: 26 May 2011
Revised: 16 April 2012 – Accepted: 26 April 2012 – Published: 25 May 2012

Abstract. The charging state of aerosol populations was
determined using an Ion-DMPS in Helsinki, Finland be-
tween December 2008 and February 2010. We extrapo-
lated the charging state and calculated the ion-induced nu-
cleation fraction to be around 1.3 %± 0.4 % at 2 nm and
1.3 %± 0.5 % at 1.5 nm, on average. We present a new
method to retrieve the average charging state for a new par-
ticle formation event, at a given size and polarity. We im-
prove the uncertainty assessment and fitting technique used
previously with an Ion-DMPS. We also use a new theoretical
framework that allows for different concentrations of small
ions for different polarities (polarity asymmetry). We extrap-
olate the ion-induced fraction using polarity symmetry and
asymmetry. Finally, a method to calculate the growth rates
from the behaviour of the charging state as a function of the
particle diameter using polarity symmetry and asymmetry is
presented and used on a selection of new particle formation
events.

1 Introduction

The amount of particulate matter suspended in the air
(aerosol) and its size distribution influence the Earth’s
climate and precipitation patterns (e.g.Twomey, 1991;
Lohmann and Feichter, 2005; Myhre et al., 2009; Stevens
and Feingold, 2009). These particles can be emitted into

the atmosphere directly (primary aerosols) or nucleate and
grow in the atmosphere (secondary aerosols). The latter is
commonly called new particle formation (NPF) and growth.
Model simulations show that nucleation is a dominant source
of particle number concentration in the atmosphere, and a
significant contributor of cloud condensation nuclei (CCN,
Spracklen et al., 2008; Merikanto et al., 2009; Pierce and
Adams, 2009). New particle formation has been observed
in a wide range of environments, and takes place frequently
(e.g.Kulmala et al., 2004and references therein). The fre-
quency and the mechanisms involved in new particle for-
mation depend on the type of environment where it takes
place. For example, the phenomenon has been observed to
take place on almost every sunny day in the African Savan-
nah (Laakso et al., 2008) whereas it is observed on about ev-
ery third day in the Finnish boreal forest (Dal Maso et al.,
2005) but almost never in the Amazon rain forest (Ahlm
et al., 2010).

The mechanisms responsible for new particle formation
and their relative contribution also varies from one place to
another (Manninen et al., 2010) and from one day to another
(Laakso et al., 2007a; Gagńe et al., 2008and2010) and even
during nucleation (Laakso et al., 2007b). There are many pro-
posed nucleation mechanisms and their contributions are not
well known. However, two general categories of mechanisms
can be distinguished: neutral mechanisms and ion-induced
mechanisms. Neutral mechanisms include all mechanisms
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that do not involve an electric charge. Ion-induced mecha-
nisms are those that involve one or more electric charges
in the formation process. The presence of electric charges
can enhance the condensation of vapours onto the seed parti-
cle, at least in certain atmospheric conditions (Lovejoy et al.,
2004; Curtius et al., 2006). Due to the large number of instru-
ments capable of measuring air ions (Hirsikko et al., 2011)
and those capable of measuring total particle size distribu-
tions, we can distinguish charged and neutral aerosols and
thus calculating the relative contribution of ion-induced nu-
cleation to the new particle formation process is possible.

Several authors have studied the role of ion-induced nu-
cleation in atmospheric new particle formation, both through
modeling and measurements. Model simulations byYu
(2006, 2010) andYu et al. (2008) and chamber experiment
results (Svensmark et al., 2007) indicate that ion-mediated
nucleation may be an important global source of aerosols.
Svensmark et al.(2007) propose a correlation between the
production of aerosol particles, and thus CCN, by ion-
induced nucleation and the 11-year solar cycle, which modu-
lates the ionization rate of the atmosphere by galactic cosmic
rays. However, other models and field measurements did not
see any such correlation (Kazil et al., 2006; Kulmala et al.,
2010and references therein).

Many authors have found that negative and positive ions
(charged particles) behaved in a different manner. At dif-
ferent rural sites (SMEAR II station in Hyytiälä, Hari and
Kulmala, 2005and Tahkuse station in EstoniaHõrrak et al.,
1998) days with negative overcharging are more frequent
than days with positive overcharging (Vana et al., 2006;
Laakso et al., 2007a; Gagńe et al., 2008). This tendency is
characteristic for measurement sites where ion-induced nu-
cleation is sometimes important under favourable conditions.

In urban environments,Iida et al.(2006) performed mea-
surements near Boulder, Colorado and showed that the av-
erage contribution of ion-induced nucleation is about 0.5 %
for both polarities, indicating that ion-induced nucleation is
a relatively unimportant contributor to new particle forma-
tion. Furthermore,Iida et al. (2008) characterized the new
particle formation events observed at Tecamac, Mexico, and
found that the nucleated particles are initially almost all elec-
trically neutral.Manninen et al.(2010) presented the ion-
induced fraction for 7 different European sites using Neu-
tral clusters and Air Ion Spectrometers (NAIS). The contri-
bution of ion-induced nucleation to total particle formation at
2 nm was typically in the range of 1 to 30 %. The ion-induced
contribution appeared to be smallest in more polluted conti-
nental sites. On the other hand, measurements in a clean ma-
rine coastal environment also show the general dominance of
neutral nucleation pathways in new particle formation events
(Ehn et al., 2010b).

In this study, we use Ion-DMPS (Ion-Differential Mo-
bility Particle Sizer) measurements (Laakso et al., 2007a)
performed at the SMEAR III station (Järvi et al., 2009),
in Helsinki, Finland to estimate the contribution of ion-

induced nucleation and neutral nucleation to new parti-
cle formation. NAISs and the Ion-DMPS yield comparable
results (Kerminen et al., 2010; Gagńe et al., 2010) regarding
this contribution. Investigations of the ion-induced fraction
in urban areas are rare. To our knowledge, this is only the
third such report, after those ofIida et al.(2006and2008).

We extrapolate the measured charging state to the size at
which nucleation begins and retrieve the ion-induced frac-
tion (see lexicon). The charging state is the ratio of the ob-
served charged fraction to the equilibrium charged fraction.
We compare two analysis methods to calculate the charging
state for each diameter. We describe the behaviour of the
charging state without using the assumption that the num-
ber of small ions is the same for both polarities, which was
always assumed in previous studies. This set of equations is
described in detail in AppendixA. We use the method de-
veloped byKerminen et al.(2007), with and without assum-
ing the polarity symmetry, to extrapolate the charging state
atd0 = 1.5 and 2 nm and subsequently calculate the contribu-
tion of ion-induced nucleation. We analysed our data set with
both charging state analysis method in combination with both
set of charging state equations (polarity symmetry or asym-
metry) for a total of four methods. The growth rates in the
size range 3–7 nm, 3–11 nm and 7–20 nm and the formation
rates at 2 nm were calculated from DMPS measurements for
a subset of NPF events and are presented in this work. Fi-
nally, we use the behaviour of the charging state as a func-
tion of diameter to retrieve the growth rates, with a modified
method ofIida et al.(2008). The version of the method used
in this study does not include the effect of coagulation pro-
cesses on the charging state, but it is adapted to work with or
without the polarity symmetry assumption according to the
derivation in AppendixA.

2 Instrumentation and methods

2.1 SMEAR III station

The site is considered a mildly polluted urban area. The
Helsinki metropolitan area consists of 4 cities (Helsinki, Es-
poo, Vantaa and Kauniainen) accounting for a population
of about one million inhabitants. The SMEAR III station
(Station for Measuring Ecosystem-Atmosphere Relations III,
Järvi et al., 2009), situated in Helsinki, has been in opera-
tion since August 2004, after which more instruments have
gradually been added. The station is situated in Kumpula,
5 km north-east of the Helsinki city center. Kumpula is sit-
uated close to a residential area, a small botanical garden
and a park, as well as streets with a relatively high traffic
intensity. According toJärvi et al. (2009), ultrafine parti-
cles are most influenced by the nearby traffic emissions. The
Ion-DMPS was sampling from an inlet at the fourth floor of
Kumpula’s Physicum building, 40 m a.s.l.–about 20 m above
the ground–and at about 150 m north of the SMEAR III
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station. All the other instruments used in this study were sit-
uated either in a ground-level cottage (SMEAR III) or on the
roof of the Physicum building (5 floors in total).

2.2 Ion-DMPS

The Ion-DMPS (Laakso et al., 2007a, and alsoMäkel̈a et al.,
2003; Iida et al., 2006) is an instrument based on a Dif-
ferential Mobility Particle Sizer (DMPS,Aalto et al., 2001)
with the addition of a few modifications. A DMPS gives the
size distribution of particles in time and selects the mobility
equivalent diameter in a stepwise function. First, the particles
are charged to a known distribution through a neutralizer,
then the particles are size segregated by a Differential Mo-
bility Analyzer (DMA, Winklmayr et al., 1991) and, finally,
counted with a particle counter (CPC, TSI 3025,Stolzenburg
and McMurry, 1991).

In the Ion-DMPS set-up, the neutralizer can be switched
on or off, making it possible to measure the concentration
of charged particles in ambient and in neutralized mode with
the same diffusional losses. Since we are interested in the ra-
tio of the concentrations, no inversion takes place. Another
difference with the DMPS is that the voltage in the DMA
can be negative or positive, so that particles of both polari-
ties can be classified. By combining these two modifications,
the Ion-DMPS measures the size distribution in 4 modes: (1)
ambient negatively charged particles, (2) neutralized nega-
tively charged particles, (3) ambient positively charged par-
ticles and (4) neutralized positively charged particles.

The Ion-DMPS was originally operating in a boreal for-
est environment at SMEAR II (Hari and Kulmala, 2005),
Finland from April 2005 to November 2008 (results avail-
able inLaakso et al., 2007a; Gagńe et al., 2008and2010).
It was then moved to Helsinki to be used in the laboratory
(Physicum) and was measuring outdoor air when it was not
otherwise in use. The dataset analysed in this manuscript ex-
pands from 8 December 2008 until 24 February 2010. The
Ion-DMPS was measuring outdoor air on roughly 60 % of
the days during that period.

Due to higher particle concentrations at the urban SMEAR
III station (Helsinki) compared to the background SMEAR II
station (Hyytïalä), the Ion-DMPS was counting particles be-
tween 1.0 and 11.5 nm on 11 channels. The measurements
of sub-3 nm particles are less reliable, because of the CPC’s
limitations and, on most days, no data points were available
below this size. In practice, on most days, the data spans
from 2.5 to 11.5 nm. Due to these additional channels and ad-
justments in integration times, the 4-mode cycle lasted about
27 min.

All days on which the Ion-DMPS was measuring were
classified into 3 categories: events, non-events, and unde-
fined days, based on the classification described inGagńe
et al. (2008). Event days were the days for which the Ion-
DMPS detected appearance of new particles at small sizes,
and their growth to the upper diameter range of the instru-

ment. Non-event days were the days for which no such ap-
pearance or growth was seen. Days for which the data dis-
played either appearance of particles at small sizes but no
growth or other unusual dynamical features were classified
as undefined. Days on which only partial data was available,
or on which the Ion-DMPS was not measuring, were not clas-
sified. Event days took place on 15 % of the classified days,
15 % were undefined and 70 % were non-event days.

Thirty-nine event days were found and further classified
into undercharged, overcharged and steady-state days, using
the method described inLaakso et al.(2007a) and Gagńe
et al.(2008, 2010). An overcharged particle population is de-
fined as a population that has a higher fraction of charged
particles than the bipolar equilibrium charged fraction; op-
positely, an undercharged particle population has a lower
fraction of charged particles than the bipolar equilibrium
charged fraction. When the fraction is very close to the bipo-
lar equilibrium charged fraction, it is called a steady-state
particle population. Due to the equilibrium charged fraction
being very small, and implying little ion-induced nucleation,
steady-state events were grouped with undercharged events,
as was done and explained inGagńe et al.(2010). For each
event day, each polarity was classified by comparing the am-
bient and neutralized distributions visually. We also used data
from a DMPS (Aalto et al., 2001) placed at the SMEAR III
station and measuring in the 3–1000 nm size range, to es-
timate the growth rates and formation rates of a subset of
dynamically well-behaved NPF events.

2.3 Analytical methods

2.3.1 Charging state retrieval:
time averaging and slopes

There are several methods to calculate an average charging
state for a given event, size and polarity. In this paper, we
present two different methods. The first method, described in
more detail inGagńe et al.(2008), consists in calculating the
charging state as a function of time, and averaging it over the
time when new particle formation takes place (see Fig.1).
The second, new method was inspired from a method used
to analyse Neutral cluster and Air Ion Spectrometer (NAIS)
data and is described inVana et al.(2006). The new method,
adapted for Ion-DMPS data, is similar to the first method in
that only one average value over the time span of the NPF
event is obtained for each diameter. We first plot the concen-
tration of ions in the ambient mode against the corresponding
concentration of ions in the neutralized mode for the selected
diameter and period. Then, a least-mean square linear fit is
made through the points, forcing the fit through the origin.
The slope becomes the average charging state for the given
diameter (see Fig.2). The charging state as a function of the
diameter is required to calculate the ion-induced fraction i.e.
the fraction of new particles generated via ion-induced nu-
cleation.
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The uncertainties in the two methods described above are
estimated in slightly different ways. The uncertainty of the
diameter is common to both of them, and depends on flow
fluctuations in the DMA as well as the DMA’s transfer func-
tion and voltage input. The edges of the box correspond to the
half-height of the theoretical transfer function that the clas-
sified particle has at a given diameter. The uncertainty of the
charging state, however, is calculated in different manners
depending on the method. In the time averaged method, the
uncertainty of the charging state is the standard deviation of
the charging state over time. In this case, taking the ratio of
averaged concentrations would not allow for the evaluation
of the variability of the charging state. In the slope method,
the uncertainty is the sum of that in the concentration and
that attributable to the scatter around the linear fit.

2.3.2 Extrapolation of the charging state:
polarity symmetry

In this paper, we use two different theoretical frameworks:
one that assumes that the number concentration of small
ions below 1.8 nm is the same for negative and positive ions
(N−

C = N+

C = NC) and also that the value of the negative and
positive charged fraction is the same (f +

= f −), which we
call polarity symmetry; and another, described in Sect.2.3.3,
that assumes a different number concentration for negative
and positive small ions (N−

C 6= N+

C ) and charged fractions
(f +

6= f −), which we call polarity asymmetry.
In the case where we assume polarity symmetry, the charg-

ing stateS± can be defined, for theoretical purposes, as the
ratio of the ambient charged fraction (f ±

= N±/Ntot) to the
neutralized charged fraction (f ±

eq = β±/α). Kerminen et al.
(2007) developed an equation to describe the behaviour of
the charging stateS± as a function of the diameterdp:

S±(dp) = 1−
1

Kdp
+

(S±

0 − 1)Kd0 + 1

Kdp
e−K(dp−d0) (1)

where

K =
αNC

GR
(2)

andS±

0 andd0 are the charging state and diameter of newly
formed particles, respectively,N±

C is the number concen-
tration of small ions, GR is the particle growth rate andα

(∼ 1.6× 10−6 cm3 s−1) is the ion-ion recombination coeffi-
cient.Kerminen et al.(2007) make a number of assumptions
that are all verified to be reasonable in the Helsinki atmo-
spheric conditions (at least as much as they were for Hyytiälä
conditions), excluding the assumption that the concentration
of small ions is the same for both polarities.

We therefore fitted Eq. (1) to the measured charging states,
S±

= S±
meas, with S±

0 andK as free parameters.S±
measis the

charging state measured with the Ion-DMPS.S±

0 was lim-
ited to the maximum charging state possible (100 % of 1.5 or

2 nm particles charged) and−10 for a minimum.K was lim-
ited between 0.1 and 5 nm−1. S±

0 was allowed to go below
zero, even though the value is non-physical, in order to allow
more freedom in fitting the curve. The value ofK becomes
unrealistic below 0.1 nm−1 and the fit is no longer valid for
very large values ofK, hence an upper limit of 5 nm−1 was
set for the fittings. However, all values above 2 nm−1 were
discarded in the quality check because at high values ofK,
the particle population does not bear memory of its previ-
ous charging state. The fitting method consisted of generat-
ing normally distributed points inside each measured point’s
uncertainty box (Kerminen et al., 2007, Figs. 9, 10) and fit
Eq. (1) through these points. In this work, the randomly gen-
erated points are situated more tightly inside the uncertainty
boxes than they previously were in previous work. Two thou-
sand fits were made for each event day and polarity, the me-
dianS±

0 value and its correspondingK value were taken as
the representative values, along with the median absolute de-
viation (MAD) as an error estimate. The MAD is a value
reflecting how much the charging state varies from one fit to
another due to measurement uncertainty (Gagńe et al., 2008).
An example of the fitting method is shown in Fig.3.

In the work of Kerminen et al.(2007) and Gagńe et al.
(2008), the ion-induced nucleation fraction was estimated us-
ing the time averaged method. We have improved our uncer-
tainty evaluation, which is described in Sect.2.3.1. We have
also constrained the randomly generated points better within
the limits of the boxes. These modification reduced the mag-
nitude of the MAD, but also the range within which the fits
were made and, as a consequence, we could raise the quality
standard’s definitions described in Sect.3.2. These changes
in the evaluation of the uncertainty do not have much effect
on the values or charging state published in the above men-
tioned studies and they can still be trusted.

2.3.3 Extrapolation of the charging state:
taking the polarity asymmetry into account

The equations used in this section are developed and ex-
plained in detail in AppendixA. In this work, we apply this
new theoretical framework to Ion-DMPS measurements in
Helsinki. If we reject the polarity symmetry assumption and
instead use the framework of polarity asymmetry, i.e. when
N−

C 6= N+

C andf −
6= f +, the equilibrium charged fraction is

described as

f ±
eq =

β±N±

C

αN∓

C

(3)

The steady state value, or equilibrium value, in the asymmet-
ric framework takes into account the difference in the attach-
ment coefficients of negatively and positively charged small
ions to neutral particles and also the difference in the con-
centrations of negatively and positively charged small ions,
whereas the steady state in the symmetric framework only
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Fig. 1. Example of the determination of the average charging state at 3.9 nm (row shown by the arrow) for
3 April 2009, negative polarity for the time averaged method. The charging state is plotted as a function
of time. The data-analyst chooses the time span of new particle formation for the relevant diameter,
indicated here by the vertical bars in the lower panel. The median charging state is kept as the average
value.

43

Fig. 1.Example of the determination of the average charging state at 3.9 nm (row shown by the arrow) for 3 April 2009, negative polarity for
the time averaged method. The charging state is plotted as a function of time. The data-analyst chooses the time span of new particle formation
for the relevant diameter, indicated here by the vertical bars in the lower panel. The median charging state is kept as the average value.

Fig. 2. Example of the determination of the average charging state at 3.9 nm for 3 April 2009, negative
polarity for the slope method. The time span was the same as the one selected in Fig. 1. The concentration
of charged particles in ambient mode is plotted as a function of the concentration in neutralized mode, so
that the slope of the fit (forced to intercept the origin) is the average charging state at the given particle
size.

44

Fig. 2.Example of the determination of the average charging state at
3.9 nm for 3 April 2009, negative polarity for the slope method. The
time span was the same as the one selected in Fig.1. The concen-
tration of charged particles in ambient mode is plotted as a function
of the concentration in neutralized mode, so that the slope of the fit
(forced to intercept the origin) is the average charging state at the
given particle size.

accounts for the difference in the attachment coefficients. If
the concentrations of negative and positive small ions are the
same, the equilibrium value given by Eq. (3) reduces into
f ±

eq = β±/α, the equilibrium charged fraction assumed by
Kerminen et al.(2007).

In ambient conditions the particle population evolves to-
wards the steady state with asymmetric small ion concen-
trations, but in the neutralizer of the Ion-DMPS, the particle
population is assumed to reach the equilibrium with approx-
imately the same concentrations of negatively and positively
charged ions. With the Ion-DMPS, we measure the ambient
concentration of charged particles and the concentration of
charged particles after the particle population has passed the
neutralizer, and thus we get the charging state with symmet-
ric values of small ion concentration,S±

meas, as a ratio of these
two values. We can take the asymmetric concentrations of
small ions into account by scaling the values ofS±

measwith
the small ion concentrations according to

S±
= S±

meas
N∓

C

N±

C

(4)
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Fig. 3. Example of a fit to Eq. 5 for 3 April 2009, negative polarity. The dots or crosses in the boxes
represent the measured points and the boxes around them, the uncertainty. The dashed line represents
the fit (out of the 2000 generated fits) that yielded the median S−0 value.
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Fig. 3. Example of a fit to Eq. (5) for 3 April 2009, negative polarity. The dots or crosses in the boxes represent the measured points and the
boxes around them, the uncertainty. The dashed line represents the fit (out of the 2000 generated fits) that yielded the medianS−

0 value.

Now we can estimate the behaviour of the charging state
as a function of diameter using the following equation (Ap-
pendixA):

S±(dp) = 1−
1

K±dp
+

(S±

0 − 1)K±d0 + 1

K±dp
e−K±(dp−d0) (5)

where

K±
=

αN∓

C

GR
(6)

Eq. (5) is different from Eq. (1) in two ways. Firstly, the
asymmetric small ion concentrations are taken into account
in the parameterK± according to Eq. (6). Secondly, the equi-
librium charged fraction is extended to include the asymmet-
ric concentrations of small ions according to Eq. (4). We can
then use Eq. (5) to extrapolate the charging state tod0 and
obtainS±

0 .
In this work, we used more than one year average of small

ion concentration measured with a Balance Scanning Mobil-
ity Analyzer (BSMA) (Tammet, 2006) to scaleS±

meas. The
need for an average, instead of using the measurements on
each particular day, stems from the fact that no ion spectrom-
eters were measuring in Helsinki during the measurement
period of the Ion-DMPS. The average values we used were
N−

C = 436 andN+

C = 563 cm−3, meaning that the concentra-
tion of positively charged small ions was slightly bigger than
the concentration of negatively charged small ions.

2.3.4 Four methods to retrieve the ion-induced
nucleation fraction

We presented two methods to retrieve the measured charging
states for different diameters in Sect.2.3.1and two methods
to extrapolate the charging state in Sects.2.3.2and2.3.3(us-
ing the polarity symmetry and asymmetry, respectively). We
combined each of those methods to form four different meth-
ods. In order to ensure the clarity of the text, we renamed the

four methods T0, TP, L0 and LP, according to the combina-
tion of methods used (Table1). T represents the time average
of the charging state, L represents charging state determined
by slopes of linear fits through the concentrations in the am-
bient and neutralized modes, and 0 and P represent the sym-
metry assumption and the asymmetry inclusion for small ion
concentrations, respectively. We consider LP to be the most
advanced and reliable method of the four evaluated here.

To calculate the ion-induced nucleation fraction, we mul-
tiply the charging stateS±

0 of the event, obtained by fittings,
by the equilibrium charged fractionf ±

eq. This gives the frac-
tion of particles involved in nucleation that were charged at
the diameterd0, if we assume that the loss rates of neutral
and charged particles at that diameter were the same. The
equilibrium charged fraction used in this work is that given
by Wiedensohler(1988). In the asymmetric case, the asym-
metric charged fraction is used instead.

2.3.5 Retrieving the growth rate from the charging state

Iida et al.(2008) developed a method to calculate the growth
rate of a NPF event from the evolution of the charged frac-
tion as a function of the diameter (GRf). This method was
developed because the growth rates in Mexico City were
very high, and calculating them based on traditional meth-
ods (based on the particle size distribution, GRPSD, Dal Maso
et al., 2005) was difficult. The instruments they used (an In-
clined Grid Mobility Analyzer, IGMA, and a specially mod-
ified DMPS) are similar but not identical to the Ion-DMPS.
The method was applied to NPF events taking place in Mex-
ico City (with higher growth rates) and in Boulder, Colorado
(with lower growth rates) and agreed well with GRPSD. In
the case of Helsinki, the growth rates are generally small (be-
low 5 nm h−1) and can be calculated with traditional methods
when the NPF event is dynamically well behaved.

In the theoretical framework applied byIida et al.(2008),
the concentrations of oppositely charged small ions and op-
positely charged nucleation mode particles were assumed
to be similar. Omitting the effect of coagulation processes
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on the aerosol charging state and assuming that the attach-
ment and recombination coefficients for both negatively and
positively charged small ions are similar (β−

= β+
= β and

α−
= α+

= α), the particle growth rate in that framework
can be expressed as:

GRf =

(
df

ddp

)−1

NC((1− 2f )β − αf ) (7)

By assuming that the charged fraction is small,f � 1, and
that the steady state charged fraction is given byfeq =

β/α, Eq. (7) reduces to the similar equation given byIida
et al. (2008). When changing to our polarity asymmetric
framework, we allow dissimilar values for concentrations of
charged particles in the nucleation modes and for the con-
centrations, attachment coefficients and recombination coef-
ficients of negatively and positively charged small ions. In
this framework, the growth rate can be expressed as (see Ap-
pendixA for detail):

GRf =

(
df −

ddp

)−1

((1− f −
− f +)β−N−

C − α+f −N+

C ) (8)

GRf =

(
df +

ddp

)−1

((1− f +
− f −)β+N+

C − α−f +N−

C ) (9)

where α+ and α− are the recombination coefficients of
positively and negatively charged small ions to oppositely
charged particles, respectively. The attachment and recom-
bination coefficients used in our analysis were calculated
according to the parametrized version (Hõrrak et al., 2008)
of the theory presented byHoppel and Frick(1986). In the
derivation of Eqs. (8) and (9), all the particles are assumed to
grow at the same rate, regardless of their size or charge.

We applied this new method to NPF events in Helsinki,
and compared GRf to GRPSD. The charged fraction as a
function of diameter was obtained by numerically solving
Eqs. (8) and9 simultaneously with values of GRf and the ini-
tial charged fractions used as input. The initial size was cho-
sen to be the smallest size for which the measured charged
fractions were available for the particular case. GRf was then
estimated minimizing the least square difference between the
measured charged fractions and charged fractions calculated
using Eqs. (8) and (9) with different values of GRf and ini-
tial charged fraction. This procedure was then repeated 2000
times with values off ± and correspondingdp taken ran-
domly from around the measured values, and GRf was ob-
tained as an average of those repetitions. Growth rates were
limited to between 0.5 and 30 nm h−1 to roughly correspond
to the limits on theK parameter.

It is possible that, for example due to missing data, it is
desirable to estimate the growth rate from only either nega-
tive or positive charged fractions. This cannot be done using

Fig. 4. Relative occurrence of event, non-event, undefined days (diamonds, circles and squares, respec-
tively) as a function of the month of the year (percentage of measured days). The percentage of days
without measurement is indicated by the no measurements line (crosses).
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Fig. 4. Relative occurrence of event, non-event, undefined days
(diamonds, circles and squares, respectively) as a function of the
month of the year (percentage of measured days). The percentage
of days without measurement is indicated by the no measurements
line (crosses).

Table 1. Simplified names for each method based on the combi-
nation of the charging state averaging and the inclusion or not of
the polarity asymmetry to Eqs. (1) and (5). T represents the median
charging state during the time (time averaged method) of the NPF
event and L represents the slope of a linear fit through the concen-
tration of particles in the ambient mode as a function of the con-
centration of particles in the neutralized mode (slope method). The
letters T and L are combined with either 0, representing the polarity
symmetry assumption for the concentration of small ions of both
polarities, or P, representing the use of the polarity asymmetry.

Polarity Polarity
symmetry asymmetry

Time average of the charging
state

T0 TP

Slopes of theLinear fits L0 LP

Eqs. (8) and (9), as both the negative and positive charged
fractions are needed to solve the equations. However, if the
charged fractions are assumed to be small (f ±

� 1), then
one can assume that 1− f +

− f −
= 1, in which case the

Eqs. (8) and (9) can be used to estimate the GRf separately
for both polarities.

3 Results and discussion

3.1 General characteristics of the data set

Each day of the measurement period was examined in search
of new particle formation events. We classified the days
into four categories: event, non-event, undefined and no

www.atmos-chem-phys.net/12/4647/2012/ Atmos. Chem. Phys., 12, 4647–4666, 2012
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measurements. The results are shown in Fig.4. Unfortu-
nately, there were no measurements made with the Ion-
DMPS during the summer. However, based on DMPS mea-
surements, only one NPF event took place during that time.
Hussein et al.(2008) reported on several years of DMPS
measurements in Helsinki and observed that the event fre-
quency was higher in spring and autumn. Most of the events
presented in this analysis are springtime events.

After finding 15 % of the days to be event days (39 events),
we then further classified the events into overcharged and
undercharged classes. For the negative polarity, we found
two overcharged days and 35 undercharged days (including
steady-state days), and two days were not classified. For the
positive polarity, we found nine overcharged days, 28 under-
charged days and two days were not classifiable. The dom-
inance of undercharged days in Helsinki indicates that the
chemical or dynamical processes taking place in Helsinki
may be different from those observed at the SMEAR II rural
station, where most days are classified overcharged.

The formation and growth rates for each event were calcu-
lated using the method described byKulmala et al.(2007) on
DMPS data. The growth rates in the range 3–7 nm, 3–11 nm
and 7–20 nm and new particle formation rates for 3 to 4 nm
sized particles are summarized in Table2. The growth rates
in the literature are often divided into the 3–7 and 7–20 nm
size ranges. In this paper, the growth rates in the 3–11 nm size
range were also calculated because this is the range within
which the Ion-DMPS and the DMPS overlap (see Sect.3.3).

These 39 event days were selected based on Ion-DMPS
data, however, the formation and growth rates were calcu-
lated based on DMPS data. It is thus very important to point
out that most of the 39 days were not dynamically well-
behaved event days. The classification of NPF events was
also done based on DMPS data using the method described
by Dal Maso et al.(2005). Class I are days for which the for-
mation and growth rates can be determined with a good con-
fidence level. Class I events are divided into two subclasses:
class Ia events that have high concentrations with little back-
ground concentration, suitable for modelling, all other class
I events are in class Ib. Class II events are days for which it
was not possible to determine the formation or growth rates
at all, or the result may be questionable. Non-event days are
the days where no NPF event took place. Finally, days were
classified as undefined if it was not clear whether to classify
them as event or non-event days. The DMPS classification
of the 39 days presented in this work yielded only two type
Ia events (21 March 2009 and 3 April 2009) and three type
Ib events (19 March, 30 April and 14 October 2009). There
were also seven type II events, three non-events and 22 un-
defined events, with two remaining days not yet being clas-
sified. We present growth rates and formation rates for class
I events only.

By comparing the work of e.g.Gagńe et al.(2008) and
the dataset presented here, one notices some differences be-
tween the rural (Hyytïalä) and urban (Helsinki) sites. In par-

Table 2.Growth and formation rates based on DMPS data for class
I events. The growth rates in the 3–7 nm size range (second column)
is followed by the growth rates in the 3–11 and 7–20 nm size ranges.
Finally, the total 3–4 nm particle formation rates are shown in the
last column.

Date GR3−7 GR3−11 GR7−20 Jtot3−4

19 Mar 2009 3.8 2.8 2.3 0.5
21 Mar 2009 3.2 2.4 1.7 0.7
3 Apr 2009 7.5 2.2 2.7 2.7
30 Apr 2009 NaN NaN 4.1 0.4
14 Oct 2009 NaN 2.1 1.4 0.4

ticular, most of the event days at the rural site are over-
charged, while those in the urban area are undercharged. A
possible reason is that total nucleation rates are higher in ur-
ban environments, and if the charged nucleation rates are not
scaled, then the fraction of ion-induced fraction decreases.
This is consistent withWinkler et al. (2008) who show
that charged condensation nuclei (first negatively charged,
then positively charged) activate with smaller vapour satu-
ration ratios than neutral ones. Hence in urban environments
when the condensing vapour concentrations are high, there
is enough vapour for neutral nucleation to occur, making
the fraction of ion-induced nucleation smaller. This would
be consistent with observations byVana et al.(2006) and
Gagńe et al.(2010).

3.2 Ion-induced fraction

Each of the days that were classified as event days were anal-
ysed with each of the four methods. TablesB1, B2, B3 and
B4 in the appendix show the results for methods T0, TP,
L0 and LP, respectively. The results of all four methods are
summarized in Table3 as well as the LP method with the
ion-induced fraction interpolated to 1.5 nm instead of 2 nm.
All methods yielded similar results: a low participation of
ion-induced nucleation to new particle formation events mea-
sured in Helsinki.

TablesB1–B4 show the fitting results for 2000 fits per day
per polarity, as well as their quality. The quality assessment
of the fits as well as the rejection of data points was the same
for all four methods. The quality of the fit is 1 if the median fit
passes through every data-box and the trend follows the dat-
apoints, 2 if the fit passes through most boxes or if it passes
through all the boxes but the trend does not follow the dat-
apoints, and 3 if the fit ignores the tendencies seen from the
data points or if there is not enough data below 5 nm. When
the fit quality was 3, the fitting parameters were all removed
(indicated by “–”). Fits with a median charging state smaller
than zero (non-physical result) are set to zero and their MAD
removed. Fits withK values larger than 2 nm−1 were also
removed because large values ofK indicate that the informa-
tion about the charging state is lost before we can measure it
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Table 3.This table summarizes the ion-induced fraction (IIN) at 2 nm and its median absolute deviation (MAD) statistics for each method:
T0, TP, L0, LP and LP1.5, which is the LP method applied atd0 = 1.5 nm instead of 2 nm. Detailed values for the fits at 2 nm can be seen
from TablesB1 to B4 in Appendix B.

T0 TP L0 LP LP1.5

IIN MAD IIN MAD IIN MAD IIN MAD IIN MAD

median 1.1 1.4 1.4 1.1 1.2 0.5 1.3 0.4 1.3 0.5
mean 2.1 1.9 2.1 1.6 2.0 1.1 1.6 0.6 1.6 0.9
std 3.5 2.0 2.8 1.9 2.0 1.6 1.0 0.5 1.3 1.3
min 0.0 0.2 0.0 0.1 0.3 0.1 0.4 0.1 0.3 0.1
max 14.0 6.2 13.4 7.7 7.7 7.5 4.7 1.9 6.3 6.6
rejected 64 % 82 % 49 % 59 % 26 % 31 % 13 % 15 % 18 % 21 %

(seeKerminen et al.(2007) andGagńe et al.(2008) for more
explanations about the memory phenomena associated with
theK parameter).

Based on Table3, we compare the methods T0, TP, L0
and LP at 2 nm. All the values estimating uncertainty were
smaller for the L methods (L0 and LP) than for the T methods
(MADs = 0.5 % and 0.4 % rather than 1.4 % and 1.1 %, for L
and T methods, respectively). This suggests that the slope
method was more stable than the time averaged method.
Moreover, fewer fits were rejected when the charging state
was retrieved using the slope method (L) than the time aver-
aged method (T).

If we extrapolate the charging state to 1.5 nm instead of
2 nm (LP1.5, last two columns of Table3), the ion-induced
fraction is the same, and more fits are rejected than for LP
at 2 nm. The increase in the rejection rate is due to the fits
varying more at small size. Since we extrapolate further to
smaller diameters and the fit is not constrained by measure-
ment points at this size, it is more likely to yield unphysical
results and be rejected. However, the average MAD for non-
rejected fits remained similar to the extrapolation down to
2 nm.

The addition of the polarity asymmetry (P methods) did
not have a big effect on the ion-induced fractions, nor on
their MAD. However, the rejection rates were lower for P
methods. The polarity asymmetry becomes more important
when using the charging state to retrieve growth rates, as will
be discussed in Sect.3.3. The P methods gave higher median
values than their 0 counterparts. The same method applied
to a sample of overcharged events from Hyytiälä showed no
such tendency. The difference in the IIN fraction between the
0 methods and their P equivalent are well within the MAD,
therefore we can conclude that, in the particular conditions
found in Helsinki, the taking into account of the polarity
asymmetry does not have an important effect on the IIN frac-
tion estimations.

The T0 method was used byGagńe et al. (2008)
in Hyytiälä. They observed a median contribution of
ion-induced nucleation at 2 nm of 6.4 % (MAD = 2.0 %).
The median contribution in Helsinki, using the same

method, was 1.1 % (MAD = 1.4 %, mean = 2.1 % and stan-
dard deviation = 3.5 %). With the most up to date method
(LP), the median ion-induced nucleation fraction was
1.3 % (MAD = 0.4 %, mean = 1.6 % and standard devia-
tion = 1.0 %). The LP method extrapolating to 1.5 nm was
also applied to the Helsinki dataset: the median ion-induced
nucleation fraction was 1.3 % (MAD = 0.5 %, mean = 1.6 %
and standard deviation = 1.3 %).

Figure 5 shows the extrapolated ion-induced nucleation
fraction at 2 nm, according to the LP method, as a function
of the day of year. No clear seasonal tendency was observed
in the variation of the ion-induced fraction. The majority of
event days saw a contribution of ion-induced nucleation be-
low 2,%, with a maximum of 4.7 %. All high quality events
but four had contributions below 2 % and all were below 3 %.

3.3 Growth rates

We calculated the growth rates for class I event days using a
method based on the particle size distribution (GRPSD, Kul-
mala et al., 2007) as well as the method based on the charg-
ing state (GRf) described in Sect.2.3.5. The GRPSDbased on
DMPS measurements are presented in Table2.

The growth rates were generally small (below 3 nm h−1).
Iida et al.(2008) andKerminen et al.(2007) both showed,
with slightly different methods, that when the growth rate is
small, the charged particles have enough time to recombine
and thus lose their initial charge information before they can
reach measurable sizes. In the work ofIida et al.(2008), the
smallest GRPSD was 3.9 nm h−1, while in this work it varied
between 2.1 and 2.8 nm h−1. The uncertainty in the values
of GRPSD is estimated to be a factor two in both directions
(Manninen et al., 2009a). In Fig. 6, we present Class I event
growth rates. The uncertainty of GRPSD is shown by horizon-
tal bars and those of GRf by vertical bars.

For both the asymmetric and the symmetric method, and
for all variants of polarity (negative, positive or combined),
the GRf are overestimated compared to GRPSD. In the sym-
metric case, the growth rates are closer to GRPSD for the
positive polarity and further away for negative polarity. One
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should remember that the number of positive small ions was
larger than that of negative small ions. When the asymme-
try of small ion concentration is introduced, the growth rates
are more alike. The growth rates become closer to the ex-
pected value for negative particles whereas the growth rates
for positive particles move further away from GRPSD. When
combining both polarities, the asymmetric case is closer to
the expected values than the symmetric case. Moreover, the
symmetric and asymmetric cases are closer to each other than
when using only one polarity at the time. The values for neg-
ative symmetric growth rates would be above 30 nm h−1 if
they were not limited to this value.

The growth rates determined using Eqs. (7)–(9) seem to be
consistently higher than those determined from particle size
distributions. This difference could be explained by concen-
trations of small ions that are significantly smaller on those
particular days than the yearly-average values of small ion
concentration used in the analysis. Whether this is the case
cannot be verified because of the lack of measurements, but
it seems unlikely that their concentrations would have been
significantly smaller on each of the four days. Other expla-
nations are that either the processes omitted in derivation of
Eqs. (7)–(9), like coagulation, could have had a significant
effect on the dynamics of the charged fractions on those days,
or that the failure of the method was caused by instrumen-
tal errors. Both of these explanations are strengthened by the
small growth rates observed during those four days, since the
charging state approaches unity at very small sizes when the
growth rate is small (Kerminen et al., 2007). In other words,
we lose the signal of the growth rate to the noise caused by
instrumental errors and processes omitted from the analysis.

4 Conclusions

In this work, we presented an analysis of 39 new particle for-
mation events based on the Ion-DMPS classification scheme.
We used a new method to calculate the charging state at each
diameter that had never before been used on Ion-DMPS data.
We also applied, for the first time, the theoretical background
to calculate the charging state atd0 without assuming that the
concentration of negative and positive small ions is the same.
To our knowledge, it is the first time that the polarity asym-
metry was taken into account in estimating the charging state
and the ion-induced fraction from measurements. We made
an analysis of four methods using a combination of the fol-
lowing: (a) using either a time average of the charging state,
or the slope of the least mean square fit of the concentrations
in ambient and neutralized modes; and (b) using the polarity
symmetry or the polarity asymmetry. We found that the slope
method is superior to the time averaged method, reducing the
MAD (median absolute deviation) by almost a factor of two.

Fig. 5. Extrapolated ion-induced contribution at 2 nm as a function of the day of the year. The ion-
induced contribution is calculated from the sum of the extrapolated negative and positive ion-induced
fraction at 2 nm. High quality extrapolations are those from days on which both the negative and positive
fit quality value were 1. All other ion-induced fractions are in the lower quality extrapolation category.
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Fig. 5. Extrapolated ion-induced contribution at 2 nm as a function
of the day of the year. The ion-induced contribution is calculated
from the sum of the extrapolated negative and positive ion-induced
fraction at 2 nm. High quality extrapolations are those from days on
which both the negative and positive fit quality value were 1. All
other ion-induced fractions are in the lower quality extrapolation
category.

We also observed that the inclusion of the polarity asym-
metry does not make much difference when it comes to de-
termining the ion-induced fraction, at least in the conditions
presented here, but reduced the rejection rate of median fits.

We used a method to estimate growth rates from the evolu-
tion of the charged fraction (GRf) that we compared with the
traditional particle size distribution-based method GRPSD.
The GRf method is a method inspired and modified from
that described and used byIida et al.(2008). The modified
method can also be used assuming the polarity symmetry
or asymmetry. We found that taking into account the polar-
ity asymmetry made the growth rates of negative and pos-
itive polarity closer to each other. However, the GRf val-
ues seemed systematically overestimated, probably due to
difficulties in estimating such small growth rates with our
method, or instrumental errors.

Finally, we found that the ion-induced fraction in Helsinki
was about 1.3 % on average. This is consistent with the
ion-induced fractions observed in other urban environments,
where the fraction of ion-induced nucleation tends to be
smaller than in remote areas.
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Fig. 6. Growth rate (GRf ) calculated from the charging states as a function of the growth rate (GRPSD)
between 3 and 11 nm for the four listed days that also belong to the DMPS class I. The circles represent
the growth rates of the asymmetric cases and the squares represent the symmetric cases. The error bars
for GRPSD is a factor of two, and the error bars for GRf are the 25th and 75th percentile of growth rates
fitted through randomly generated points in the uncertainty boxes of the charged fraction as a function
of the diameter. Blue are for growth rates based on negatively charged particles, red for those based on
positively charged particles and black for the combination of both polarities. For the asymmetric case,
we used: N−

C = 436 cm−3 and N+
C = 563 cm−3; for the symmetric case, we used: NC = 500 cm−3.
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Fig. 6. Growth rate (GRf ) calculated from the charging states as a
function of the growth rate (GRPSD) between 3 and 11 nm for the
four listed days that also belong to the DMPS class I. The circles
represent the growth rates of the asymmetric cases and the squares
represent the symmetric cases. The error bars for GRPSD is a factor
of two, and the error bars for GRf are the 25th and 75th percentile
of growth rates fitted through randomly generated points in the un-
certainty boxes of the charged fraction as a function of the diameter.
Blue are for growth rates based on negatively charged particles, red
for those based on positively charged particles and black for the
combination of both polarities. For the asymmetric case, we used:
N−

C = 436 cm−3 andN+

C = 563 cm−3; for the symmetric case, we

used:NC = 500 cm−3.

Appendix A

Derivation of equations governing the behaviour of
aerosol charging state and charged fraction under asym-
metric concentrations of small ions

Kerminen et al.(2007) derived an equation, which describes
the behaviour of the aerosol charging state as a function
of diameter. In the framework deployed byKerminen et al.
(2007), the fractions of charged particles in the nucleation
mode as well as the concentrations of small ions were as-
sumed to be equal for both polarities. Here, we reproduce
this derivation in an asymmetric framework, i.e. without as-
suming that the negative and positive charged fractions or
concentrations of negative and positive small ions are the
same. However, the following assumptions made byKermi-
nen et al.(2007) hold also here: (1) The ion-ion recombi-
nation coefficient,α, between two oppositely charged parti-
cles/ions is constant, with a valueα =∼ 1.6× 10−6 cm3s−1

used in this study; (2) The attachment coefficient,β±, be-
tween a small ion and a neutral particle with diameterdp
scales asβ±(dp) = β±(d0)(dp/d0); (3) All particles in the
growing nucleation mode are neutral or singly charged; (4)
The concentration of charged particles in the growing mode,

N±, is substantially smaller than the concentrations of small
ions,N±

C , i.e.N±
� N±

C ; (5) The fractions of growing parti-
cles carrying a charge are substantially below unity,f ±

� 1;
(6) Intermodal coagulation between nucleation mode parti-
cles and larger pre-existing particles does not significantly
perturb the distribution of the charged fraction; (7) Self-
coagulation of nucleation mode particles is negligible, except
for particles with opposite charges; (8) The particle diameter
growth rate is the same for all particles regardless of their
charge or diameter.

We define our system to consist of two particle modes: a
nucleation mode with a mean diameter ofdp and a mode of
larger pre-existing particles. A narrow nucleation mode may
be approximated by a monodisperse mode, in which case the
balance equations may be written as

dN0

dt
= αN−

C N+
+ αN+

C N−
− β−N−

C N0

− β+N+

C N0
− 0.5k0,0(N

0)2
− k0,−N0N−

− k0,+N0N+
+ αN−N+

− CoagS0N
0 (A1a)

dN−

dt
= −αN+

C N−
+ β−N−

C N0

− 0.5k−,−(N−)2
− αN−N+

− CoagS−N− (A1b)

dN+

dt
= −αN−

C N−
+ β+N+

C N0

− 0.5k+,+(N+)2
− αN−N+

− CoagS+N+ (A1c)

whereN0, N− andN+ are the concentrations of neutral,
negatively charged and positively charged particles, respec-
tively, andN−

C andN+

C are the concentrations of negative and
positive small ions, respectively. Herek0,0, k0,± andk±,± are
the coagulation coefficients between two neutral particles,
between a neutral and a charged particle and between two
similarly-charged particles, respectively. The CoagSq terms
denote the scavenging rate of the nucleation mode particles
with the chargeq (neutral, negatively or positively charged)
due to coagulation with larger pre-existing particles.

By charge equilibrium we mean a state in which the
neutralization of charged particles and charging of neutral
particles at a given size are in balance and, as a conse-
quence, the fraction of charged particles at that diameter does
not change with time. The fractions of charged particles in
the charge equilibrium,f ±

eq, can be derived from the bal-
ance Eqs. (A1a)–(A1c), by setting the left hand side of the
Eqs. (A1a)–(A1c) to zero and solving the ratiosN±/Ntot.
By assuming that the ion-aerosol attachment dominates
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over both self-coagulation and coagulation scavenging, the
charged fractions in equilibrium can be written as

f ±
eq =

β±N±

C

αN∓

C + β±N±

C + β∓
(N∓

C )2

N±

C

. (A2)

By assuming further thatα � β±, Eq. (A2) simplifies to

f ±
eq =

β±N±

C

αN∓

C

(A3)

which gives the equilibrium charged fraction assumed by
Kerminen et al.(2007), f ±

eq = β±/α, when the negative and
positive small ion concentrations are similar.

If we neglect the self-coagulation terms from Eqs. (A1a)–
(A1c) according to assumption number 7, the balance equa-
tions simplify to

dN0

dt
= αN−

C N+
+ αN+

C N−
− β−N−

C N0

−β+N+

C N0
+αN−N+

− CoagS0N
0 (A4a)

dN−

dt
= −αN+

C N−
+ β−N−

C N0
− αN−N+

−CoagS−N− (A4b)

dN+

dt
= −αN−

C N+
+ β+N+

C N0
− αN−N+

−CoagS+N+. (A4c)

By assuming thatf ±
� 1 (assumption number 5), the

time evolution of the charged fraction in the nucleation mode
can be written as

df ±

dt
=

1

N0

dN±

dt
−

f ±

N0

dN0

dt
. (A5)

If we combine Eqs. (A4)–(A5), the time evolution of the
charged fractions can be written as

df −

dt
= N−

C

((
β−

− αf −
N+

N−

C

)(
1+ f −

)
+

f −
N+

C

N−

C

(
β+

− α
(
1+ f −

))
− αf −f +

)
+ f −

(
CoagS0 − CoagS−

)
(A6a)

df +

dt
= N+

C

((
β+

− αf +
N−

N+

C

)(
1+ f +

)
+

f +
N−

C

N+

C

(
β−

− α
(
1+ f +

))
− αf −f +

)
+ f +

(
CoagS0 − CoagS+

)
(A6b)

When the pre-existing aerosol loading is small, we can drop
the last terms on the right hand side of Eqs. (A6a) and (A6b)
(assumption number 6). Assuming also that bothf ± and
N±/N±

C are substantially below unity (assumptions 4 and
5), Eqs. (A6a) and (A6b) simplify to

df −

dt
= β−N−

C − f −αN+

C (A7a)

df +

dt
= β+N+

C − f +αN−

C . (A7b)

The time evolution of the charging state of the growing nu-
cleation mode can be written as

dS−

dt
=

d

dt

f −

f −
eq

=
1

f −
eq

(
df −

dt
− S−

df −
eq

dt

)
(A8a)

dS+

dt
=

d

dt

f +

f +
eq

=
1

f +
eq

(
df +

dt
− S+

df +
eq

dt

)
. (A8b)

By assuming thatf ±
eq is given according to Eq. (A3) and both

α andN±

C are constants, and by using Eqs. (A7a) and (A7b),
the time evolution of the charging state can be written as

dS−

dt
=
(
1− S−

)
αN+

C −
S−

β−

dβ−

dt
(A9a)

dS+

dt
=
(
1− S+

)
αN−

C −
S+

β+

dβ+

dt
. (A9b)

Atmos. Chem. Phys., 12, 4647–4666, 2012 www.atmos-chem-phys.net/12/4647/2012/
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Following the approach byKerminen and Kulmala(2002) as
well asKerminen et al.(2007), we next change the coordi-
nate system by writing

d

dt
=

ddp

dt

d

ddp
= GR

(
ddp

) d

ddp
. (A10)

Here GR is the growth rate of the particle diameter, which is
assumed to be the same for both neutral and charged parti-
cles. Using Eqs. (A9)–(A10) and assumption 2, we get:

dS−(dp)

ddp
= K−

−

(
K−

+
1

dp

)
S− (A11a)

dS+(dp)

ddp
= K+

−

(
K+

+
1

dp

)
S+ (A11b)

where

K±
=

αN∓

C

GR
(A12)

Equations (A11–A12) describe the behaviour of the aerosol
charging state as a function of particle diameter. Equa-
tions (A11a) and (A11b) can be analytically solved, if we
assume that the particle growth rate is independent of parti-
cle size, in which case we get

S±
= 1−

1

K±dp
+

(
S±

0 − 1
)
K±d0 + 1

K±dp
e−K±(dp−d0), (A13)

whereS±

0 is the value ofS± at sizedp = d0. Equation (A13)
is similar to the one derived byKerminen et al.(2007),
with two notable differences. Firstly, the parameterK±

in Eq. (A13) depends on the concentration of oppositely
charged small ions,N∓

C , instead of the small ion concentra-
tion that is assumed to be the same for both polarities. Sec-
ondly, the definition off ±

eq takes the small ion concentrations
into account according to Eq. (A3).

Equation (A13), derived with various simplifying assump-
tions, describes the behaviour of the aerosol charging state
as a function of diameter. Alternatively, we can describe the
behaviour of the charged fraction as a function of diameter.
We start from the balance Eqs. (A1a)–(A1c) and assume that
the ion-aerosol attachment dominates over coagulation pro-
cesses, in which case the balance equations can be written as

dN0

dt
= α−N−

C N+
+ α+N+

C N−
− β−N−

C N0
− β+N+

C N0 (A14a)

dN−

dt
= −α+N+

C N−
+ β−N−

C N0 (A14b)

dN+

dt
= −α−N−

C N+
+ β+N+

C N0. (A14c)

Here, we do not need to make any assumptions on the diam-
eter dependence of the attachment and recombination coef-
ficients,β± andα±, respectively, and we also use different
coefficients in recombination of negative and positive small
ions to oppositely charged particles,α− andα+, respectively.
By solving the time evolution of the charged fractions,f ±,
from Eqs. (A14a)–(A14c) and by changing the coordinate
system according to Eq. (A10), we get the following equa-
tions that can be used to estimate the value of the particle
diameter growth rate:

GRf =

(
df −

ddp

)−1((
1− f −

− f +
)
β−N−

C − α+f −N+

C

)
(A15a)

GRf =

(
df +

ddp

)−1((
1− f −

− f +
)
β+N+

C − α−f +N−

C

)
(A15b)

If we assume symmetric small ion concentrations as
well as charged fractions and assumef ±

� 1, Eqs. (A15a)
and (A15b) reduce to a similar equation derived byIida et al.
(2008). In their study,Iida et al. (2008) also took into ac-
count the effect of coagulation processes on the behaviour of
the charged fraction as a function of diameter, a topic which
is not covered in this study.

Appendix B

Fit parameters for all analysed days and all methods

The date in the first column followed by the median extrap-
olated charging state at 2 nm (S0), its associatedK value,
the MAD of the 2000 fits and the quality of the fit for each
polarity. Finally, the last two columns show the fraction of
ion-induced nucleation taking part in the NPF event, and its
MAD.
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Table B1.Results for the medianS±

0 fit for each day for method T0: time average of the charging state, polarity symmetry.

Date S−

0 K− MAD Q S+

0 K+ MAD Q IIN MAD
S−

0 S+

0 ( %) IIN

1 Jan 2009 0.99 0.10 0.32 1 – – – 3 – –
4 Jan 2009 1.17 0.10 0.55 1 – – – 1 – –
16 Jan 2009 0.30 0.11 0.09 1 1.60 0.41 2.25 2 1.45 1.76
31 Jan 2009 0.25 0.10 0.10 1 1.65 0.14 0.78 2 1.45 0.67
9 Feb 2009 1.01 0.10 0.14 1 – – – 3 – –
25 Feb 2009 1.01 0.10 0.31 1 – – – 3 – –
19 Mar 2009 0.47 0.17 0.46 1 0.00 1.00 – 2 0.39 –
20 Mar 2009 1.06 0.15 0.26 1 0.00 0.94 – 1 0.88 –
21 Mar 2009 1.04 0.12 0.28 1 – – – 2 – –
22 Mar 2009 0.52 0.19 0.24 1 0.00 1.17 – 1 0.43 –
23 Mar 2009 0.00 0.10 – 1 – – – 3 – –
25 Mar 2009 0.68 0.13 0.12 1 – – – 3 – –
26 Mar 2009 0.48 0.15 0.65 1 – – – 2 – –
27 Mar 2009 0.73 0.10 0.17 2 – – – 3 – –
1 Apr 2009 0.01 0.12 0.19 1 0.00 1.96 – 2 0.01 –
3 Apr 2009 0.50 0.12 0.26 1 0.00 1.10 – 1 0.42 –
8 Apr 2009 0.76 0.10 0.35 1 1.59 0.10 0.56 1 1.82 0.71
9 Apr 2009 0.11 0.15 0.58 1 – – – 3 – –
18 Apr 2009 0.78 0.45 0.07 1 – – – 1 – –
19 Apr 2009 0.76 0.24 0.07 1 – – – 1 – –
30 Apr 2009 1.35 0.10 0.24 1 1.91 0.33 1.58 2 2.55 1.38
1 May 2009 0.50 0.15 1.77 1 – – – 3 – –
2 May 2009 1.18 0.18 0.34 2 0.00 1.70 – 1 0.98 –
3 May 2009 – – – 3 – – – 3 – –
7 May 2009 0.68 0.10 0.24 1 – – – 3 – –
8 May 2009 0.87 0.10 0.17 1 – – – 3 – –
12 May 2009 0.78 0.17 0.25 1 – – – 2 – –
11 Sep 2009 1.55 0.15 0.34 1 0.00 1.09 – 1 1.29 –
12 Sep 2009 1.73 0.10 0.17 1 1.96 0.25 3.00 1 2.91 2.39
13 Sep 2009 1.39 0.10 0.15 1 17.17 0.73 8.08 1 14.03 6.18
6 Oct 2009 0.62 0.14 0.20 2 – – – 3 – –
10 Oct 2009 – – – 3 0.64 1.66 0.10 2 – –
11 Oct 2009 – – – 3 – – – 3 – –
14 Oct 2009 – – – 3 – – – 3 – –
23 Jan 2010 – – – 3 – – – 3 – –
14 Feb 2010 – – – 3 – – – 3 – –
15 Feb 2010 – – – 3 – – – 3 – –
20 Feb 2010 0.37 0.10 0.09 1 0.47 0.28 0.21 1 0.66 0.23
24 Feb 2010 0.57 0.10 0.50 1 – – – 3 – –

median 0.75 0.12 0.24 0.47 0.94 1.18 1.13 1.38
mean 0.76 0.14 0.31 1.80 0.86 2.07 2.09 1.90
std 0.43 0.07 0.31 4.33 0.60 2.63 3.54 2.02
min 0.00 0.10 0.07 0.00 0.10 0.10 0.01 0.23
max 1.73 0.45 1.77 17.17 1.96 8.08 14.03 6.18
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Table B2.Results for the medianS±

0 fit for each day for method TP: time average of the charging state, polarity asymmetry.

Date S−

0 K− MAD Q S+

0 K+ MAD Q IIN MAD
S−

0 S+

0 ( %) IIN

1 Jan 2009 1.41 0.12 0.51 1 3.64 0.21 0.96 2 4.43 1.26
4 Jan 2009 1.65 0.13 0.86 1 0.00 0.59 – 1 1.06 –
16 Jan 2009 0.36 0.15 0.15 1 1.01 0.58 0.39 2 1.21 0.47
31 Jan 2009 0.52 0.10 0.14 2 1.19 0.17 0.45 2 1.49 0.53
9 Feb 2009 1.46 0.10 0.20 1 – – – 3 – –
25 Feb 2009 1.40 0.23 0.49 1 – – – 3 – –
19 Mar 2009 0.52 0.42 0.81 1 0.99 0.45 0.96 1 1.29 1.45
20 Mar 2009 1.49 0.19 0.39 1 0.48 0.36 0.60 1 1.42 0.83
21 Mar 2009 1.42 0.31 0.40 1 0.35 0.58 1.55 1 1.25 1.76
22 Mar 2009 0.68 0.32 0.41 1 1.17 0.46 1.85 2 1.57 2.06
23 Mar 2009 0.00 0.19 – 1 – – – 3 – –
25 Mar 2009 0.89 0.21 0.20 1 – – – 3 – –
26 Mar 2009 0.40 0.77 1.34 1 1.23 0.84 3.15 1 1.45 3.91
27 Mar 2009 1.15 0.10 0.23 2 – – – 3 – –
1 Apr 2009 0.00 0.25 – 1 0.03 0.62 0.44 1 0.03 –
3 Apr 2009 0.63 0.21 0.46 1 0.74 0.38 0.77 1 1.12 1.04
8 Apr 2009 1.05 0.14 0.56 1 1.13 0.11 0.38 2 1.77 0.73
9 Apr 2009 0.00 0.37 1.01 1 – – – 3 – –
18 Apr 2009 1.00 0.59 0.09 1 – – – 2 – –
19 Apr 2009 0.97 0.36 0.11 1 0.81 1.84 0.04 1 1.41 0.11
30 Apr 2009 1.89 0.10 0.36 1 1.37 0.29 0.52 1 2.54 0.73
1 May 2009 0.03 0.32 3.00 1 – – – 3 – –
2 May 2009 1.63 0.18 0.50 2 0.00 0.37 – 1 1.05 –
3 May 2009 – – – 3 – – – 3 – –
7 May 2009 0.94 0.29 0.38 1 – – – 3 – –
8 May 2009 1.28 0.16 0.25 2 – – – 3 – –
12 May 2009 1.10 0.47 0.45 1 0.04 0.40 1.12 2 0.75 1.37
11 Sep 2009 2.34 0.51 0.62 1 0.00 0.41 – 1 1.50 –
12 Sep 2009 2.64 0.24 0.34 1 1.48 0.22 1.04 1 3.13 1.23
13 Sep 2009 1.99 0.16 0.22 1 12.54 0.89 7.79 2 13.42 7.69
6 Oct 2009 0.73 1.41 0.19 2 – – – 3 – –
10 Oct 2009 – – – 3 0.41 0.61 0.08 2 – –
11 Oct 2009 – – – 3 – – – 3 – –
14 Oct 2009 – – – 3 – – – 3 – –
23 Jan 2010 – – – 3 – – – 3 – –
14 Feb 2010 – – – 3 – – – 3 – –
15 Feb 2010 – – – 3 – – – 3 – –
20 Feb 2010 0.44 0.18 0.16 1 0.42 0.15 0.12 2 0.69 0.22
24 Feb 2010 0.86 0.14 0.73 1 – – – 3 – –

median 0.99 0.21 0.40 0.81 0.41 0.69 1.42 1.13
mean 1.03 0.29 0.52 1.38 0.50 1.23 2.13 1.59
std 0.67 0.26 0.55 2.68 0.37 1.80 2.82 1.86
min 0.00 0.10 0.09 0.00 0.11 0.04 0.03 0.11
max 2.64 1.41 3.00 12.54 1.84 7.79 13.42 7.69

www.atmos-chem-phys.net/12/4647/2012/ Atmos. Chem. Phys., 12, 4647–4666, 2012
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Table B3.Results for the medianS±

0 fit for each day for method L0: slope of the linear fit passing through the concentration in the ambient
mode as a function of the concentration in the neutralized mode, polarity symmetry.

Date S−

0 K− MAD Q S+

0 K+ MAD Q IIN MAD
S−

0 S+

0 (%) IIN

1 Jan 2009 0.69 0.13 0.23 1 5.89 1.59 2.64 2 4.99 2.17
4 Jan 2009 0.24 0.18 0.23 1 8.88 1.69 9.77 1 6.86 7.52
16 Jan 2009 0.49 0.11 0.14 1 1.81 0.84 0.70 1 1.76 0.64
31 Jan 2009 0.05 0.11 0.09 1 0.33 0.28 0.26 1 0.29 0.27
9 Feb 2009 0.45 0.11 0.18 2 4.81 0.56 1.07 1 3.98 0.95
25 Feb 2009 0.76 0.14 0.15 2 – – – 3 – –
19 Mar 2009 0.61 0.19 0.20 1 0.00 0.91 – 1 0.51 –
20 Mar 2009 0.94 0.10 0.13 2 0.78 0.47 0.24 2 1.37 0.29
21 Mar 2009 1.19 0.12 0.14 1 0.00 1.49 – 2 0.99 –
22 Mar 2009 0.95 0.16 0.13 1 – – – 2 – –
23 Mar 2009 0.26 0.10 0.08 1 1.01 0.50 0.16 1 0.97 0.19
25 Mar 2009 0.33 0.16 0.10 1 0.91 0.65 0.51 1 0.96 0.47
26 Mar 2009 0.77 0.13 0.14 1 1.09 0.43 0.72 1 1.46 0.66
27 Mar 2009 0.73 0.10 0.19 2 1.00 0.10 0.23 1 1.36 0.33
1 Apr 2009 0.39 0.24 0.07 1 0.53 0.95 0.34 1 0.72 0.31
3 Apr 2009 0.58 0.11 0.11 1 0.45 1.84 0.39 2 0.82 0.38
8 Apr 2009 0.32 0.26 0.09 2 0.56 0.20 0.40 1 0.69 0.37
9 Apr 2009 0.87 0.17 0.15 1 0.36 0.31 0.23 1 0.99 0.30
18 Apr 2009 – – – 2 – – – 2 – –
19 Apr 2009 0.71 0.14 0.08 1 – – – 1 – –
30 Apr 2009 1.39 0.10 0.13 1 0.32 1.59 0.60 2 1.39 0.56
1 May 2009 0.59 0.16 0.14 1 0.42 0.45 0.31 1 0.80 0.35
2 May 2009 0.78 0.10 0.16 1 0.70 0.58 0.49 1 1.17 0.50
3 May 2009 0.93 1.65 0.80 2 6.43 0.83 4.72 2 5.59 4.20
7 May 2009 0.47 0.10 0.20 1 0.20 0.40 0.29 2 0.54 0.38
8 May 2009 0.26 0.10 0.07 1 0.49 0.31 0.33 2 0.58 0.31
12 May 2009 0.93 0.12 0.18 1 9.26 1.02 4.80 2 7.72 3.75
11 Sep 2009 1.51 0.19 0.36 1 1.96 0.85 1.80 1 2.72 1.65
12 Sep 2009 0.68 0.18 0.31 1 0.98 0.84 0.58 1 1.30 0.69
13 Sep 2009 1.28 0.10 0.26 1 – – – 3 – –
6 Oct 2009 – – – 3 0.47 0.50 0.11 2 – –
10 Oct 2009 – – – 3 0.68 1.98 0.12 2 – –
11 Oct 2009 1.14 0.10 0.45 1 2.15 0.42 1.10 2 2.56 1.20
14 Oct 2009 1.47 0.10 0.46 1 – – – 2 – –
23 Jan 2010 0.00 0.10 – 2 – – – 3 – –
14 Feb 2010 0.00 0.11 – 1 – – – 3 – –
15 Feb 2010 0.36 0.10 0.24 1 0.85 0.14 0.58 1 0.94 0.63
20 Feb 2010 0.22 0.11 0.05 1 0.46 0.19 0.13 1 0.53 0.14
24 Feb 2010 3.16 0.10 1.02 2 0.64 0.10 0.41 1 3.10 1.15

median 0.69 0.11 0.15 0.70 0.56 0.41 1.17 0.50
mean 0.74 0.17 0.22 1.76 0.74 1.17 1.99 1.12
std 0.58 0.26 0.20 2.51 0.54 2.05 1.98 1.63
min 0.00 0.10 0.05 0.00 0.10 0.11 0.29 0.14
max 3.16 1.65 1.02 9.26 1.98 9.77 7.72 7.52
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S. Gagńe et al.: Charging states in Helsinki 4663

Table B4.Results for the medianS±

0 fit for each day for method LP: slope of the linear fit passing through the concentration in the ambient
mode as a function of the concentration in the neutralized mode, polarity asymmetry.

Date S−

0 K− MAD Q S+

0 K+ MAD Q IIN MAD
S−

0 S+

0 ( %) IIN

1 Jan 2009 0.92 0.22 0.34 1 2.16 0.84 0.68 1 2.68 0.88
4 Jan 2009 0.22 0.30 0.36 1 2.83 1.68 1.58 1 2.88 1.76
16 Jan 2009 0.67 0.14 0.19 1 1.15 0.27 0.30 1 1.54 0.41
31 Jan 2009 0.10 0.10 0.14 1 0.31 0.19 0.17 1 0.36 0.25
9 Feb 2009 0.60 0.14 0.24 1 4.45 0.81 1.55 2 4.70 1.66
25 Feb 2009 0.98 0.29 0.22 2 1.37 1.41 1.21 1 1.96 1.31
19 Mar 2009 0.78 0.61 0.24 1 0.00 0.51 – 1 0.50 –
20 Mar 2009 1.19 0.27 0.15 2 0.60 0.36 0.13 1 1.35 0.22
21 Mar 2009 1.60 0.32 0.21 1 0.56 0.50 0.61 1 1.57 0.73
22 Mar 2009 1.27 0.27 0.18 1 0.59 0.77 0.43 2 1.39 0.53
23 Mar 2009 0.35 0.19 0.11 1 0.77 0.10 0.11 1 0.97 0.18
25 Mar 2009 0.41 0.32 0.13 1 0.73 0.22 0.25 1 0.97 0.33
26 Mar 2009 1.02 0.31 0.19 1 0.81 0.25 0.35 1 1.44 0.46
27 Mar 2009 0.98 0.10 0.25 2 0.73 0.10 0.18 1 1.34 0.34
1 Apr 2009 0.50 0.26 0.10 1 0.48 0.40 0.18 1 0.79 0.24
3 Apr 2009 0.75 0.48 0.15 1 0.38 0.42 0.23 1 0.85 0.32
8 Apr 2009 0.37 0.29 0.13 2 0.42 0.11 0.29 1 0.64 0.36
9 Apr 2009 1.14 0.18 0.20 1 0.30 0.23 0.15 1 1.02 0.27
18 Apr 2009 1.00 0.69 0.07 2 0.57 0.84 0.02 1 1.19 0.06
19 Apr 2009 0.90 0.47 0.10 1 0.77 1.28 0.03 1 1.32 0.09
30 Apr 2009 1.87 0.10 0.18 1 0.52 0.68 0.28 2 1.71 0.39
1 May 2009 0.75 0.12 0.20 1 0.38 0.37 0.18 2 0.85 0.30
2 May 2009 1.01 0.26 0.22 1 0.69 0.22 0.20 1 1.32 0.34
2 May 2009 1.01 0.26 0.22 1 0.69 0.22 0.20 1 1.32 0.34
3 May 2009 2.05 0.39 0.83 2 1.98 0.26 0.48 2 3.24 1.00
7 May 2009 0.68 0.10 0.26 1 0.18 0.26 0.18 2 0.61 0.34
8 May 2009 0.36 0.14 0.10 1 0.35 0.13 0.24 1 0.57 0.30
12 May 2009 1.24 0.35 0.25 1 2.19 0.35 0.33 1 2.92 0.48
11 Sep 2009 2.19 0.38 0.86 1 1.15 0.42 0.50 2 2.52 1.04
12 Sep 2009 0.88 0.38 0.53 1 0.77 0.27 0.33 1 1.31 0.66
13 Sep 2009 1.81 0.10 0.47 2 – – – 3 – –
6 Oct 2009 – – – 3 0.36 0.18 0.09 2 – –
10 Oct 2009 – – – 3 0.49 1.39 0.13 2 – –
11 Oct 2009 1.67 0.22 0.66 1 1.24 0.22 0.42 1 2.27 0.83
14 Oct 2009 2.13 0.31 1.15 2 0.37 0.59 0.18 1 1.73 0.91
23 Jan 2010 0.12 0.10 0.29 1 – – – 3 – –
14 Feb 2010 0.04 0.10 0.31 1 – – – 3 – –
15 Feb 2010 0.50 0.10 0.33 1 0.63 0.10 0.36 1 0.93 0.56
20 Feb 2010 0.28 0.14 0.07 1 0.36 0.16 0.09 1 0.53 0.13
24 Feb 2010 5.50 0.24 2.40 2 0.43 0.10 0.32 2 3.95 1.85

median 0.90 0.26 0.22 0.60 0.31 0.25 1.33 0.39
mean 1.05 0.26 0.35 0.89 0.47 0.36 1.59 0.59
std 0.95 0.15 0.42 0.87 0.41 0.37 1.02 0.48
min 0.04 0.10 0.07 0.00 0.10 0.02 0.36 0.06
max 5.50 0.69 2.40 4.45 1.68 1.58 4.70 1.85
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Lexicon

Charged fraction (f ). Fraction of particles that are electrically
charged.

Charging state (S). Ratio of the charged fraction and the equilib-
rium charged fraction. Also the ratio of the concentration of nat-
urally charged particles to the concentration of charged particles
after going through a neutralizer that forces the sample into bipo-
lar equilibrium.S0 = S(d0) is the charging state at the diameter at
which new particle formation is determined to occur,d0. Smeasis
the charging state obtained directly from Ion-DMPS measurements.

Equilibrium charged fraction (feq). The fraction of particles that
are charged in a steady-state, i.e. when the charging of neutral parti-
cles and neutralization of charged particles are at balance. Relative
concentrations of negative and positive small ions affect the equilib-
rium charged fraction. An air sample is assumed to be in steady state
with symmetric concentrations of small ions after passing through
a neutralizer.

Ion-induced nucleation fraction.The fraction of nucleation mode
particles of which the nucleation involved an electric charge at di-
ameterd0, expressed in percent.

Polarity asymmetry.When the concentration of small ions for pos-
itively and negatively charged particles is different.

Polarity symmetry.When the concentration of small ions for posi-
tively and negatively charged particles is about the same.

Slope method (L0 or LP).Method by which the charging state is
calculated for a given size. The plot of the ambient ion concentration
as a function of the neutralized ion concentration during the NPF
event is drawn. The slope of a linear fit forced through the origin is
the average charging state.

Small ions (concentration:NC). Small ions are charged particles
of mobility diameters between 0.4 and 1.8 nm, below the apparent
nucleation size. In this work, they are measured with a Balanced
Scanning Mobility Analyzer (BSMA).

Time averaged method (T0 or TP).Method by which the charging
state is calculated for a given size. The charging state is calculated
and averaged over the time of the NPF event.
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Laakso, L., Gagńe, S., Peẗajä, T., Hirsikko, A., Aalto, P. P., Kul-
mala, M., and Kerminen, V.-M.: Detecting charging state of ultra-
fine particles: instrumental development and ambient measure-
ments, Atmos. Chem. Phys., 7, 1333–1345,doi:10.5194/acp-7-
1333-2007, 2007.

Laakso, L., Gr̈onholm, T., Kulmala, L., Haapanala, S., Hirsikko, A.,
Lovejoy, E. R., Kazil, J., Kurt́en, T., Boy, M., Nilsson, E. D., So-
gachev, A., Riipinen, I., Stratmann, F., and Kulmala, M.: Hot-air
balloon as a platform for boundary layer profile measurements
during particle formation, Boreal Environ. Res., 12, 279–294,
2007b.

Laakso, L., Laakso, H., Aalto, P. P., Keronen, P., Petäjä, T.,
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