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Abstract. During the month of October 2006, as part of
the REPARTEE-I experiment (Regent’s Park and Tower En-
vironmental Experiment) an Aerosol Time-Of-Flight Mass
Spectrometer (ATOFMS) was deployed at an urban back-
ground location in the city of London, UK. Fifteen particle
types were classified, some of which were already discussed
(Dall’Osto et al., 2009a,b; Harrison et al., 2012). In this
manuscript the origins and properties of four unreported par-
ticle types postulated to be due to locally generated aerosols,
independent of the air mass type advected into London, are
examined. One particle type, originating from lubricating oil
(referred to as Ca-EC), was associated with morning rush
hour traffic emissions. A second particle type, composed
of both inorganic and organic species (called Na-EC-OC),
was found enhanced in particle number concentration during
evening time periods, and is likely to originate from a source
operating at this time of day, or more probably from con-
densation of semi-volatile species. A third class, internally
mixed with organic carbon and sulphate (called OC), was
found to spike both in the morning and evenings although
it could not unambiguously associated with a specific source
or atmospheric process. The fourth class (Secondary Organic
Aerosols – Polycyclic Aromatic Hydrocarbon; SOA-PAH)
exhibited maximum frequency during the warmest part of the
day, and a number of factors point towards secondary aerosol
production from traffic-related volatile aromatic compounds.
Single particle mass spectra of this particle type showed an
oxidized polycyclic aromatic compound signature. A com-

parison of ATOFMS particle class data is then made with
factors obtained by Positive Matrix Factorization and PAH
signatures obtained from Aerosol Mass Spectrometer (AMS)
data (Allan et al., 2010). Both the Ca-EC and OC parti-
cle types correlate with primary Hydrocarbon-like Organic
Aerosol (HOA, R2 = 0.65 and 0.50 respectively), and Na-
EC-OC correlates weakly with the AMS secondary Oxy-
genated Organic Aerosol (OOA), (R2 = 0.35). Cluster SOA-
PAH was found not to correlate with any AMS signal. A
detailed analysis was conducted to identify ATOFMS parti-
cle type(s) representative of the AMS cooking aerosol factor
(COA), but no convincing associations were found. The com-
bined ATOFMS and AMS results of this REPARTEE study
do not always provide an entirely coherent interpretation.

1 Introduction

Tropospheric particles contain a significant and variable frac-
tion of organic material, ranging from 20 % to 90 % of the
fine particulate mass (Kanakidou et al., 2005) and divide into
two broad categories termed primary and secondary. Primary
organic aerosols detected in urban areas are mainly directly
emitted from combustion sources, including heavy and light
duty vehicles, wood smoke, cooking activities, industries and
many others. Once primary particles are emitted they are
modified in the presence of various atmospheric oxidants,
yielding modified particles with distinctly different chemical
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and physical properties compared to their precursor primary
particles (Donahue et al., 2009).

Secondary organic aerosols (SOA) are formed from reac-
tions of volatile organic compounds (VOC). SOA consists of
a mixture of oxygenated organic species dependent on the
degree of processing of the aerosol in the atmosphere, and
the precise mechanisms of formation and evolution of SOA
are still highly uncertain (Hallquist et al., 2009). The sources
and the production mechanisms of primary and secondary
organic aerosols represent one of the biggest uncertainties in
aerosol science. Models informed by chamber experiments
do not always capture the variability of observed SOA load-
ings, and often predict far less SOA than is observed (Hal-
lquist et al., 2009). This underestimation of SOA strongly
suggests the importance of additional pathways of SOA for-
mation not typically studied in laboratory experiments or
included in models (Zhang et al., 2007). The chemistry of
the formation and continuing transformation of low-volatility
species in the atmosphere has been the subject of recent re-
view articles (Kanakidou et al., 2005; Goldstein and Gal-
bally, 2007; Kroll and Seinfeld, 2008). Until recently, organic
particulate material was simply classified as either primary or
secondary with the primary component being treated in mod-
els as nonvolatile and inert. However, the simplified mod-
els failed to explain a number of key aspect of the aerosols,
including the highly oxygenated nature of ambient OA and
the high concentrations of OA during periods of high pho-
tochemical activity. Recent studies have shown that semi-
volatile components of primary aerosols desorb into the gas
phase during aerosol transport, thereby undergoing oxida-
tion in the gas phase, leading to SOA formation (Robinson et
al., 2007). This opens the possibility that low-volatility gas-
phase precursors, including long chain n-alkanes, PAHs and
large olefins, are a potentially large source of SOA.

Polycyclic Aromatic Hydrocarbons (PAH) have been iden-
tified as a major component in emissions from diesel en-
gines and wood burning sources (Schauer et al., 1999, 2001).
The photo-oxidation of these compounds has been shown to
yield high molecular weight (MW) oxygenated compounds
(Sasaki et al., 1997; Bunce et al., 1997; Wang et al., 2007),
which can partition into the particle phase and lead to sig-
nificant SOA formation (Mihele et al., 2002). Current atmo-
spheric models do not normally include secondary organic
aerosol (SOA) production from gas-phase reactions of poly-
cyclic aromatic hydrocarbons (PAHs). Chan et al. (2009) re-
ported a laboratory study of secondary organic aerosol for-
mation from photooxidation of naphthalene and alkylnaph-
thalenes. Although the gas-phase emissions were dominated
by low molecular weight aromatics, these compounds were
estimated to account for only 14 % of the SOA formed in
the first 3 h of photooxidation. The estimate is consistent
with laboratory results of photooxidation of diesel exhaust
(Robinson et al., 2007), in which the “known” consisting
primarily of single-ring aromatic gas phase precursors, ac-
count for at most 15 % of the SOA formed. The contribution

of PAH to SOA is still significant after 12 h of oxidation, at
which point the SOA from PAH is about twice that from light
aromatics (Chan et al., 2009).

Whilst biogenic precursors (predominantly monoterpenes)
have traditionally been thought to dominate regional SOA
formation, anthropogenic compounds may contribute an ap-
preciable fraction of SOA in urban areas. Mono-aromatic
hydrocarbons are one of the most abundant types of or-
ganic compound found in the urban atmosphere. Langford
et al. (2010) recently reported fluxes and concentrations of
volatile organic compounds above central London, estimat-
ing that traffic activity was responsible for about 70 % of
the aromatic compound fluxes. The ultimate photo-oxidation
products of many relatively simple mono-aromatic species
remain unknown, due to the complexity and low concentra-
tions formed. The incorporation of a mono-aromatic com-
pound into polymeric structures with acetal polymers was
also suggested (Kalberer et al., 2004).

In recent years aerosol mass spectrometry has become
available as a powerful tool for the on-line chemical char-
acterization of individual aerosol particles (Murphy, 2007)
or small aerosol ensembles (Canagaratna et al., 2007). Dur-
ing the month of October 2006, the REPARTEE-I campaign
(Regent’s Park and Tower Environmental Experiment) stud-
ied atmospheric chemical processes, and particularly those
affecting atmospheric aerosol, in London. Two different par-
ticle mass spectrometers were deployed: an Aerodyne Com-
pact Time-of-Flight Aerosol Mass Spectrometer (C-ToF-
AMS) (Drewnick et al., 2005) and an Aerosol Time-of-
Flight Mass Spectrometer (ATOFMS) (Gard et al., 1997).
The ATOFMS provides single particle information on the
abundance of different types of aerosol particles as a function
of particle size with high time resolution, whereas the AMS
measures quantitatively mass concentrations of the non-
refractory aerosol components as well as species-resolved
size distributions (Canagaratna et al., 2007). These types
of on-line aerosol analysis instrumentation have greatly ad-
vanced our understanding of atmospheric chemistry and cli-
mate (Sullivan and Prather, 2005). Whilst the AMS has pro-
vided advances in the source apportionment of primary ver-
sus secondary organic aerosol components (Canagaratna et
al., 2007), the ATOFMS has less adequate source apportion-
ment capabilities due to the difficulties in quantification of
its outputs. However, as a main objective of this study, we in-
vestigate the temporal trends and the mass spectral features
of specific particle types classified with the ATOFMS and
we try to deduce chemical and physical aerosol features, at-
tempt a source identification and compare the results with
those obtained by using an AMS deployed during the same
field study.

A number of papers generated during the REPARTEE ex-
periment have already been published.

This analysis complements the studies of Dall’Osto et
al. (2009a) concerning a fog event and of Dall’Osto et
al. (2009b) concerning different types of nitrate containing
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particles (and their atmospheric behaviour). Table 1 summa-
rizes the 15 clusters found during the REPARTEE I field
study. Twelve of the 15 clusters contained mass spectral
peaks characteristic of organic containing aerosols, account-
ing for 83.7 % of the total particles classified (see Table 1).
The present study aims to present a detailed analysis of some
specific ATOFMS particle classes not described in other
studies. The particle types herein described were predomi-
nantly organic particle types presenting systematic diurnal
trends persisting over three weeks and therefore attributable
to local primary and secondary processes occurring daily at
the local scale and independent of whichever air mass type
the city of London was exposed to. Aspects of the data are
compared with the source attribution results for organic car-
bon derived from PMF analysis of AMS data collected dur-
ing the same campaign by Allan et al. (2010).

The ATOFMS collects individual particles whilst the AMS
collects an ensemble of particles which can be interpreted
as a mass concentration of the major non-refractory com-
ponents. The AMS thus measures the particle mass loading
(µg m−3) whilst the ATOFMS temporal trend is reported as
the number of particles detected (ATOFMS counts per hour),
but the correlation can be very good (R2

= 0.75) (Dall’Osto
et al., 2009a). The objective of this study is to look at gen-
eral organic and inorganic components, but it also aims to
present four specific organic particle types occurring during
this study, which have not been reported in our earlier papers
(Dall’Osto et al., 2009 a,b). Allan et al. (2010) reported a de-
tailed source apportionment analysis of the organic aerosols
from REPARTEE based on the AMS: secondary Oxygenated
Organic Aerosols (OOA, 53 %), primary Hydrocarbon-like
Organic Aerosol (HOA, 25 %) and primary Cooking Organic
Aerosol (COA, 22 %) but a comparison with the ATOFMS
results was not attempted. The organic mass fragments 55
(m/z 55) and 57 (m/z 57) are crucial for the identification
of COA and HOA, respectively (Allan et al., 2010; Mohr
et al., 2012), and particular emphasis is given to identify
ATOFMS signals representative of the AMS COA cooking
aerosol factor.

2 Experimental

2.1 Aerosol sampling

Sampling took place in Regents Park, one of the Royal Parks
of London between 4 and 23 October 2006. Regents Park is
located in the northern part of central London. The park has
an outer ring road called the Outer Circle (4.3 km) and an
inner ring road called the Inner Circle. Apart from two link
roads between these two, the park is reserved for pedestrians
and the ca. 2 km2 park is mainly open parkland. The sam-
pling site chosen was inside the inner circle, in an open area
usually reserved for parking and gardening purposes. All the
instruments were housed in a mobile laboratory. The site

was operated as part of the REPARTEE-I experiment (Re-
gent’s Park and Tower Environmental Experiment) aiming
to study atmospheric chemical processes, and particularly
those affecting atmospheric aerosol, in London (Harrison et
al., 2012). Meteorological, gas-phase and aerosol measure-
ments were conducted from the top of a 10 m high tower
constructed on site. To minimise sampling losses, aerosol
was drawn down a sampling stack from which it was iso-
kinetically sub-sampled into a 2 cm diameter stainless steel
tube leading to the mobile laboratory. Local meteorologi-
cal conditions were measured by humidity and temperature
probes, and a sonic anemometer which measured the 3-D
wind field at the sampling site.

2.2 Instrumentation

The ATOFMS collects bipolar mass spectra of individual
aerosol particles. Ambient aerosol is focused into a narrow
particle beam for sizes between 100 nm and 3 µm. Using a 2-
laser velocimeter particle sizes are determined from particle
velocity after acceleration into the vacuum. In addition, the
light scattered by the particles is used to trigger a pulsed high
power desorption and ionization laser (λ = 266 nm, about
1 mJ pulse−1) which evaporates and ionizes the particle in
the centre of the ion source of a bipolar reflectron ToF-MS.
Thus, a positive and negative ion spectrum of a single par-
ticle are obtained. The mass spectrum is qualitative in that
the intensities of the mass spectral peaks are not directly pro-
portional to the component mass but are dependent on the
particle matrix, the coupling between the laser and the parti-
cle and the shot to shot variability of the laser. However, the
ATOFMS can provide quantitative information on particle
number as a function of composition; providing a measure
of all particle components and can be used to assess mixing
state. The ATOFMS provides information on the abundance
of different types of aerosol particles as a function of parti-
cle size with high time resolution (Gard et al., 1997). Recent
studies (Jeong et al., 2011) report excellent correlations be-
tween inorganic species (sulphate, nitrate and ammonium)
but weaker ones between total organic and elemental carbon
detected with ATOFMS and other instruments such as the
AMS, the Gas-Particle Ion Chromatograph (GPIC), and the
Sunset Lab field OCEC analyzer. However, there are no in-
tercomparisons between specific PMF factors derived from
the AMS organic matrix (Ulbrich et al., 2009; Allan et al.,
2010) and ATOFMS clustering results.

ATOFMS laser desorption/ionization of chemical species
in the particles is accomplished using a Nd:YAG laser oper-
ating at 266 nm, and PAHs and their heterocyclic analogues
present very high molar absorptivity at this wavelength there-
fore it is expected that these compounds will be detected
among the most easily of all compounds using ATOFMS
(Silva and Prather, 2000). The laser fluence of the LDI laser
of the ATOFMS was kept very low (0.8–0.9 mJ per pulse)
in comparison to other studies (1.3–1.6 mJ). The reason for
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Table 1.ATOFMS particle clusters identified from the REPARTEE campaign.

Main ATOFMS cluster N particles % cluster Particle description

LRT nitrate 43 516 33.7 Organic nitrogen and
LRT core 10 278 8.0 nitrate containing
Local nitrate 29 563 22.9 aerosols

Secondary OA Amine 2306 1.8 Dall’Osto et al. (2009a)

HMOC (fog) 4865 3.8 Secondary organic aerosol
MSA (fog) 245 0.2 during fog Dall’Osto et al. (2009b)
SOA-PAH 2834 2.2 This study

Primary OA Ca-EC 5496 4.3 This study
OC 4671 3.6 This study
PAH events 269 0.2 This study

EC 2001 1.5 Coarse Elemental Carbon
Long range transport aerosols
Dall’Osto et al. (2009a)

Na-OC-EC 2207 1.7 Inorganic particles due to sea
NaCl only 3637 2.8 salt (NaCl) and Fe (mainly

Inorganic Aged NaCl 15 638 12.1 during long range transport)
Fe 1748 1.4

Total 129 274 100.0

selecting lower laser fluence was to reduce the fragmenta-
tion of organic compounds, hence enhancing the detection of
high molecular weight species as molecular ions (Silva and
Prather, 2000). As a result, a wider variety of particle mass
spectra is generated and can provide a better understanding
of the different sources and processes occurring in the urban
atmosphere.

A Multi-Angle Absorption Photometer (MAAP, Thermo
Electron) (Petzold and Schonlinner, 2004) was also used to
measure 1-min averages of the ambient black carbon concen-
trations. Moreover, Dichotomous Partisol-Plus Model 2025
sequential air samplers, fitted with PM10 inlets were de-
ployed for collecting fine (PM2.5) and coarse (PM2.5−10)

fractions. A number of other instruments were used during
the REPARTEE-I campaign (Harrison et al., 2012) but are
not listed here since their data are not discussed in this pa-
per. Local meteorology was determined by a Weather Trans-
mitter WXT510 (Vaisala Ltd, Birmingham) probe. Gas mea-
surements were obtained by Thermo Environment 42CTL
chemiluminescence gas analyser with thermal converter and
by Thermo Environment 49C photometric UV analyzer for
NOx and ozone, respectively.

2.3 Data analysis

The ATOFMS was deployed at Regents Park for 19 days,
between 04/10/06 at 17:00 and 22/10/06 at 23:00. In total,
153 595 particles were ionised by the ATOFMS. The TSI
ATOFMS dataset was imported into YAADA (Yet Another
ATOFMS Data Analyzer) and single particle mass spectra
were grouped with Adaptive Resonance Theory neural net-
work, ART-2a (Song et al., 1999). The parameters used for
ART-2a in this experiment were: learning rate 0.05, vigilance

factor 0.85, and iterations 20. Further details of the parame-
ters can be found elsewhere (Dall’Osto and Harrison, 2006).
An ART-2a area matrix (AM) of a particle cluster repre-
sents the average intensity for eachm/zvalue for all parti-
cles within a group. An ART-2a AM therefore reflects the
typical mass spectrum of the particles within a group. The
ART-2a algorithm generated 306 clusters used to describe
the dataset. By manually merging similar clusters (Dall’Osto
and Harrison, 2006), the total number of clusters describ-
ing the whole database was reduced to 15. Throughout this
paper, an ATOFMS particle type is synonymous with an
ATOFMS cluster. It is important to stress the fact that whilst
the ATOFMS provides important information on the mixing
state of the aerosols and temporal trends of unique particle
types over time, the total number of particles sampled by the
instrument does not have quantitative meaning without ex-
tensive calibrations as it is biased by transmission efficiency
(Dall’Osto et al., 2006).

Whilst some semi-quantitative size resolved particle num-
ber concentrations of ATOFMS measurements (i.e. Qin et al.,
2006) were calculated in this study, a quantification of chem-
ically resolved composition in ambient particles from single
particle analyses was not carried out (Jeong et al., 2011).

3 Results

This paper focuses on four particle types named Ca-EC
(Calcium-Elemental Carbon), OC (Organic Carbon), Na-EC-
OC (Sodium-Elemental Carbon- Organic Carbon) and SOA-
PAH (Secondary Organic Aerosols-Polycyclic Aromatic Hy-
drocarbons) accounting for 4.3 %, 3.6 %, 1.7 % and 2.2 %
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Fig. 1.Positive and Negative ART-2a area vectors attributed to(a) Ca-EC,(b) OC, (c) Na-EC-OC and(d) SOA-PAH.

(respectively) of the ATOFMS particles classified during the
REPARTEE I experiment.

The weather during the field study was characterized by
unusually warm conditions for the month of October in the
UK (average temperature 14.1± 2.8◦C, relative humidity
82.6± 10.7 %; mean±1 s.d. of hourly data). The predomi-
nant origin of air masses arriving at the receptor was west-
erly, with Atlantic air masses not strongly influenced by
anthropogenic pollution. However, during two periods, air
masses arriving at our site from mainland Europe (mainly
France and Poland) were detected on 10–11 October 2006
and on 14–20 October 2006. Local wind direction roses were
calculated for all 15 ATOFMS clusters, and ATOFMS parti-
cle types associated with regional and continental aerosols
were found to be associated predominantly with an easterly
origin. ATOFMS particle types characterized by daily diur-
nal profiles were mainly associated with south and east di-
rections, where main roads bordering the Regents Park are
located.

3.1 ATOFMS characterization

3.1.1 ATOFMS mass spectra

The positive and negative ART-2a area matrixes for the four
particle types described are presented in Fig. 1. The mass
spectra of cluster Ca-EC (Fig. 1a) show a strong signature
due to calcium (m/z40, 56, 57 and 96), EC (m/z−36,−48,
−60) and OC (m/z27, 29, 43). Strong signals in the negative
mass spectrum are associated with nitrate (m/z−46, −62),
whereas sulphate (m/z−97) is almost absent. This is consis-
tent with a source in vehicle exhaust, which is rich in NOx but
depleted in SO2 due to use of low sulphur fuel. This particle
type has previously been associated with combusted lubricat-
ing oil emitted by traffic (Spencer et al., 2006; Toner et al.,
2007, Drewnick et al., 2008) and consistently called Ca-EC
although in this REPARTEE study a higher signal of nitrate
is seen in the negative spectra (Fig. 1a).

Figure 1b shows the ART-2a area matrixes for cluster OC:
strong signals due to organic fragments are seen atm/z27, 29,
43, 51, 57 and 63. This particle, by contrast with the Ca-EC
type, is internally mixed with both nitrate and sulphate, with
a higher signal for the latter. Cluster Na-EC-OC (Fig. 1c)
shows a signal atm/z23 for the inorganic component sodium,
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Fig. 2. Single particle positive and negative mass spectra of an in-
dividual particle belonging to ART-2a cluster SOA-PAH.

not seen in other mass spectra presented in Fig. 1 and sug-
gesting a different source. Moreover, beside the OC and EC
component associated with the Na-EC-OC particle type, the
negative spectra of this particle type also show signals due to
organic nitrogen (m/z−26 [CN] andm/z−42 [CNO]).

Cluster SOA-PAH presents a unique positive mass spec-
trum (Fig. 1d), with strong peaks atm/z 27 [C2H3]+ and
m/z 43 [(CH3)CO]+ usually associated with oxidized sec-
ondary organic aerosol (Sullivan and Prather, 2005).m/z51
[C4H3]+, 63 [C5H3]+, 77 [C6H5]+ and 91 [C7H7]+ are in-
dicative of a strong aromatic signature (McLafferty, 1993).
In the positive mass spectrum, the major peaks atm/zabove
100 amu show a series atm/z115, 128, 141, 152, 165, 178,
189, 202, 215, 226, 239 and 252 which is usually attributed
to PAH compounds (Gross et al., 2000a; Silva and Prather,
2000). Figure 2 shows positive and negative mass spectra of
a single particle (aerodynamic diameter 400 nm) belonging
to the ATOFMS particle type SOA-PAH. Additional peaks at
m/z180, 194, 208, 222, 236, 262 and 276, characteristic of
oligomeric species with saturated carbon skeletons separated
by 114 are present in addition to the PAH series separated
by 113. Other peaks atm/zabove 100 can be clearly seen
with a series atm/z105, 119, 133 and 147, possibly associ-
ated with benzoyl groups and unsaturated or cyclic phenoxy
moieties (McLafferty, 1993). The peaks atm/z 69, 81 and
95 (particularly the strong peak atm/z95) may represent the
exo-sulphur aromatic series (sulphur attached to an aromatic
ring) (McLafferty, 1993).

The ATOFMS negative mass spectrum of a single particle
from cluster SOA-PAH (Fig. 2) is dominated bym/z −25
and m/z −26 (likely to be [C2H]− and [C2H2]− respec-
tively) and m/z at −49 andm/z−73 (often found strongly
correlated and likely to be related by an unknown fragmen-
tation pattern), which are often associated with fragmen-
tation of PAH and unsaturated organic compounds (Silva

 

 
 
 

 
 
 Fig. 3.Size distributions of the 4 ATOFMS particle types described
in Fig. 1.

and Prather, 2000; Spencer et al., 2006). The presence of
strongly acidic compounds is indicated by peaks in the neg-
ative spectra. Along with the common peak atm/z −97
[HSO4]−, peaks atm/z−80 [SO3]−, m/z−81 [HSO3]− and
m/z−64 [SO2]− can be seen. It is interesting to note the mi-
nor presence of common peaks due to nitrate (i.e.m/z−46
[NO2]−, m/z−62 [NO3]− andm/z−125 [H(NO3)2]−. Per-
haps the most interesting feature of the negative mass spec-
trum of Fig. 2 is the presence of other oxygenated aromatic
rings indicated by peaks not reported before in ATOFMS
mass spectral characterization seen atm/z−107,m/z−121
and m/z −137, characteristic of fragmentation patterns of-
ten associated with flavonoids (Cuyckens and Claeys, 2004;
Maul et al., 2008). By querying the whole ATOFMS dataset
(about 150 000 single particle mass spectra), it was found that
m/z−107,m/z−121 andm/z−137 were unique to this par-
ticle type. In summary, the positive and negative ATOFMS
mass spectra of particle type SOA-PAH indicate an oxi-
dised organic aerosol component internally mixed with acid
sulphate species, along with a complex signature at higher
m/zwhich is attributable to high molecular weight polyaro-
matic compounds.

3.1.2 ATOFMS size distributions

ATOFMS size distributions were obtained by scaling the
ATOFMS particle number counts with particle number size
distributions to calibrate inlet efficiencies (Qin et al., 2006).
It should be stressed that the size distributions presented
in this work have only semi-quantitative meaning, as the
ATOFMS efficiency is different for different particles and
each broad type of particles exhibits a different hit rate
(Dall’Osto et al., 2006; Reinard et al., 2007). Whilst the
ATOFMS measures precisely the vacuum aerodynamic di-
ameter of individual particles (0.01 µm resolution), particles
were summed between 200 nm and 3500 nm at 100 nm inter-
vals for simplification. Figure 3 shows the size distributions
for the four ATOFMS particle types Ca-EC, OC, Na-EC-
OC and SOA-PAH. Clusters Ca-EC and OC show uni-modal
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Fig. 4. Temporal trends of(a) ATOFMS clusters described in Fig. 1,(b) BC and nitrogen gases and(c) AMS profiles as reported in Allan et
al. (2010).

distributions peaking in the smallest detectable ATOFMS
particle diameter at about 200 nm. Previous ATOFMS find-
ings point to primary combustion particles peaking at the
smallest detectable ATOFMS particle diameter, whilst more
aged secondary organic components (i.e. long range trans-
port organic aerosol) are more typically distributed in the
accumulation mode at around 500 nm (Sullivan and Prather,
2005). However, secondary formation close to source could
also lead to this size-association. The mass spectra of these
two particle types described in Sect. 3.1.1, along with the
size distributions herein presented, are suggestive of a pri-
mary origin of these particles.

Cluster Na-EC-OC also shows a mode peaking at the
smallest sizes, but much less pronounced relative to clus-
ters Ca-EC and OC. By contrast to the first three clusters
presented so far, cluster SOA-PAH shows a mode peaking
at about 350 nm and not peaking at the smallest detectable
ATOFMS particle diameter. The average size distribution of
cluster SOA-PAH is shifted towards the accumulation mode
relative to clusters Ca-EC and OC and suggests a different
origin not related to primary emissions.

3.2 Time trend analysis

3.2.1 Overview of the temporal trends

The temporal trends (3 h resolution) of the four ATOFMS
clusters are presented in Fig. 4. Clusters Ca-EC and OC
(Fig. 4a) showed maximum abundance during the morning of
13 October 2006, when low wind speed was associated with
stagnant conditions, also reflected in high concentrations of
primary traffic related species (BC, NO, NOx, Fig. 4b). Fig-

ure 4c shows the temporal profiles of the 3 PMF factor com-
ponents of the AMS organic matrices described in Allan et
al. (2010). The AMS OOA component dominated the periods
of 10–12 and 14–20 October 2006 affected by continentally
influenced air masses, in which the ATOFMS showed nitrate
internally mixed with elemental carbon and organic carbon
(Dall’Osto et al., 2009a). AMS factor HOA shows its maxi-
mum on the morning of 13 October, and other high concen-
trations during the morning rush hours of 11, 12, 16 and 17
October, correlating with the maximum values of ATOFMS
cluster Ca-EC related to primary traffic emissions (Fig. 4a–
c). The highest concentrations of cluster SOA-PAH (Fig. 4a)
occurred on 11 and 17–20 October, which are also the days
where AMS cluster COA presents its higher mass loading
concentrations during daytime (Fig. 4c).

3.2.2 Diurnal profiles

The temporal variability derived from a number of other in-
struments appear in Fig. 5, showing the average diurnal pro-
files of (a) ATOFMS clusters described in Fig. 1, (b) AMS
PMF factors as reported in Allan et al. (2010); (c) ozone,
NOx and BC concentrations; (d) relative humidity and tem-
perature and (e) ATOFMS single particle mass spectra with
m/z55 (absolute peak height> 100). ATOFMS Cluster Ca-
EC, as expected from its mass spectra and size distribu-
tion, exhibits a maximum during morning rush hours (05:00–
09:00) due to primary traffic emissions (Fig. 5a). It shows
the same traffic rush hours peaks as NOx and BC (Fig. 5c),
along with the primary organic aerosol traffic related HOA
(Fig. 5b) derived by the AMS (Allan et al., 2010). During
rush hours BC concentrations were around 4 µg m−3, NOx
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concentrations about 20 ppb, and HOA about 1.5 µg m−3. A
second peak at about 16:00 due to the second traffic rush
hour period is evident in Fig. 5 for the ATOFMS cluster
Ca-EC and NOx diurnal trends. Cluster OC (Fig. 5a) also
showed a spike in the morning traffic rush hour, reflected
by a good correlation with cluster Ca-EC (R2

= 0.7). How-
ever, cluster OC also exhibited a second sharper peak during
evening hours spiking at about 21:00. Cluster Na-EC-OC did
not show as strong a diurnal profile as the previous classes
described (Fig. 5a) but a two-fold increase occurred between
18:00 and 24:00 relative to the other hours of the day suggest-
ing an additional evening aerosol source or atmospheric pro-
cess responsible for this particle type. Figure 5a shows that in
contrast to the other three ATOFMS particle types presented
so far, ATOFMS particle type SOA-PAH exhibits a peak in
the middle of the day. An earlier mode starts at about 08:00,
as temperature also rises (Fig. 5d) and lasts for about 3 h. A
second mode, peaking at 12:00 and 13:00 is in the hottest part
of the day. Concentrations decrease substantially after 14:00,
disappearing by about 19:00 (Fig. 5a).

The diurnal profile of particles detected by the ATOFMS
containing a peak with significant signal (absolute peak
height> 100; Gross et al., 2000b) atm/z 55 (key peak the
COA in the AMS PMF analysis) is also shown in Fig. 5d but
is discussed in Sect. 4.2.

3.2.3 Weekday-weekend trend

Average mean values (±1 standard deviation) of the
weekday-weekend (WD-WE) variation were calculated for
all 15 clusters derived from the ca- 150 000 single parti-
cles detected during the REPARTEE-I campaign. The two
clusters with the highest weekday to weekend ratio were
found to be cluster Ca-EC (weekdays: 16± 15; weekend:
8± 6; average ATOFMS counts/hour) and cluster SOA-PAH
(15± 25; 3± 7). Whilst clusters Ca-EC and cluster SOA-
PAH were found to be two independent groups significantly
different from one another (t-test, 95 % confidence), cluster
OC (12± 17, 9± 7) and cluster Na-EC-OC (4± 3, 4± 5) did
not show any statistically significant WD-WE oscillation. A
WD-WE analysis of other measurements was also performed
in order to compare them with the variation of the ATOFMS
clusters. An analysis of the particulate mass loading avail-
able for 3 different sites within London during the REPAR-
TEE I campaign (park site “Regents Park” – RP, road site
“Marylebone Road” – MR – and 160 m tower “BT tower”
– BT –, see Harrison et al., 2012) was carried out, but 16
October 2006 was removed as it exceeded 50 µg m−3 largely
due to regional pollutant transport and was not comparable
with the other days of the month of October 2006. PM2.5
at the Marylebone Road air monitoring site showed a strong
WD-WE variation (26± 7, 20± 7; µg m−3, significantly dif-
ferent – t-test, 95 %), whereas the background sites of RP
(10± 6, 10± 7; µg m−3) and BT (10± 8, 10.5± 9; µg m−3)

showed similar values for weekdays and weekend. However,

whilst PM2.5 at RP did not show a WD-WE variation, traf-
fic markers showed a strong gradient between WD and WE
periods (all statistically different, t-test 95 %), including BC
(3.2± 1.7, 1.8± 0.9; µg m−3), NO (36± 52, 9± 14; µg m−3)

and NOx (70± 54, 35± 22; µg m−3).

4 Discussion

4.1 Possible source attribution

The Cluster Ca-EC has previously been associated with pri-
mary traffic-related combustion particles in both laboratory
(Toner et al., 2006), and field measurements (Dall’Osto et al.,
2009b, Toner et al., 2008), and this study is in agreement with
its primary origin from vehicular emissions. Traffic markers
such as NOx and BC show good correlation with cluster Ca-
EC (R2 = 0.85 and 0.7, respectively). Cluster OC presents
features pointing towards a primary organic source, similar
to cluster Ca-EC; it shows a strong organic carbon signa-
ture, a small aerodynamic diameter and peaks in the morn-
ing rush hour. However, the cluster OC was internally mixed
with sulphate and was elevated also in the evening time. This
suggests an additional source occurring in the evening, un-
like the cluster Ca-EC which decreases during the evening.
Cluster Na-EC-OC showed a broader size distribution with a
greater proportion of coarser particles and a mass spectrum
internally mixed with inorganic species including sodium
and nitrogen, peaking during evening hours. Whilst this par-
ticle type contains the strongest peak atm/z39, we exclude a
biomass origin for a number of reasons. The peak atm/z39
is not only associated with potassium ([K]+ – to which
the ATOFMS is especially sensitive), but may also be due
to an organic fragment [C3H3]+ (Silva and Prather, 2000).
The complete absence of common peaks associated with
the presence of potassium (i.e.m/z113 [K2Cl]+ or m/z213
[K3SO4]+) and a ratio betweenm/z39 andm/z41 of about
18 (the isotopic ratio39K/41K is 13.28) strongly suggest that
the m/z 39 peak is not due to potassium alone, whereas it
dominates in biomass combustion particle types, along with
other potassium clusters (Silva et al., 1999). This particle
type could originate from a number of sources occurring
during the evening times but may also arise from physical
processes occurring in the atmosphere during evening time
when air temperature falls. A concentration in the evening
may also increase due to the contraction of the boundary
layer. A previous study showed that during the summer of
2003, an ATOFMS was deployed in another European capi-
tal (Athens, Greece: Dall’Osto and Harrison, 2006) and most
of the carbon-containing particles appeared to be a secondary
product of atmospheric chemistry. In particular, one specific
class peaked every night at 22:00, when lower temperature
and increased RH values favoured condensation. The sec-
ondary particles showed clear internal mixing of organic and
inorganic constituents in contrast to their common theoretical
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 Fig. 5. Average diurnal profiles for(a) ATOFMS cluster described in Fig. 1,(b) AMS PMF factors as reported in Allan et al (2010);(c)

ozone, NOx and black carbon concentrations;(d) relative humidity and temperature and(e) ATOFMS hit particles withm/z55 (peak height
>100).

treatment as external mixtures. The cluster Na-EC-OC from
this London field study shows similar mass spectral features
as particle types detected in Athens and attributed to conden-
sation of organic compounds onto the particle phase as air
temperatures fall.

The cluster SOA-PAH exhibits a unique set of properties,
including weekday-weekend variation, maximum frequency
during the warmest part of the day, and a mass spectral sig-
nature associated with PAH and oxygenated high molecular
mass compounds. The fact that cluster SOA-PAH is detected
predominantly during weekdays and presents a maximum
during the midday hours suggests a photochemical mecha-
nism linked with volatile organic compounds (VOC) arising
from traffic activity. The weekday-weekend trend also sug-
gest an anthropogenic source. The mass spectrum of clus-
ter type SOA-PAH was compared with the ATOFMS particle
mass spectral libraries. Source signatures, or mass spectral
“fingerprints”, were obtained by using ATOFMS data from a
variety of sources (Toner, 2008). Cluster SOA-PAH did not
match exactly any of the 20 different ART2a clusters repre-
sentative of different cooking related sources, nor any oil,
gasoline or diesel combustion source. Finally, it is impor-
tant to note the absence of any peak associated with com-
mon metals (i.e. Ca, Na, K, V) detected in ATOFMS mass
spectra of particles originating from primary anthropogenic
aerosol sources. The ATOFMS mass spectrum shows signals
usually associated with PAH components already described
in Sect. 3.1.1, which point to a primary aerosol source. How-
ever, the PAH signature may be related to secondary com-
ponents, possibly oxidation products of PAHs. Reactions
of degradation products may also lead to further secondary
compounds. Webb et al. (2006) for example showed the or-

ganic aerosol product formed from the photo-oxidation of
o-tolualdehyde contained a diverse range of chemical func-
tionalities including mono-aromatic, carboxylic and carbonyl
groups which were inferred to be photochemical by-products
but around 3 % of the organic content resolved was poly-
cyclic aromatic (PAH) in nature. The ATOFMS is very sen-
sitive to polycyclic aromatic structures, so whilst PAH may
be a minor component of the mass of the particle, they
can generate a disproportionate fraction of the mass spec-
tral signature. The cluster SOA-PAH does not behave as a
typical semi-volatile species whose concentration increases
as temperature decreases. The fact that its temporal trend
does not correlate with any commonly identified primary
aerosol components or markers (Ca-EC from ATOFMS, BC,
NOx, SO2) excludes a primary aerosol source, and the max-
imum intensity at noon points towards a photochemical ori-
gin. Whilst PAHs are emitted directly from combustion pro-
cesses, the sources of oxygenated PAH emissions in the at-
mosphere can be both by direct emission and tropospheric
conversion of PAHs, but quantitative data on the importance
of secondary versus primary origins are scarce (Walgraeve
et al., 2010). Ning et al. (2007) reported the daily varia-
tion in chemical characteristics of urban secondary ultra-
fine aerosols, showing that afternoon concentrations of oxy-
genated organic acids and sulfate rose relative to primary or-
ganic compounds in the morning and demonstrating that sec-
ondary photochemical reactions are a major formation mech-
anism of ultrafine aerosols in the afternoon. Specifically, the
larger decrease in the concentration of non-oxidized PAHs
and alkanes compared to CO in the afternoon indicated their
possible volatilization and photo-oxidation in addition to di-
lution. Verma et al. (2009) suggested in a subsequent study
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that the photochemical transformation of primary emissions
during atmospheric aging enhances the toxicological potency
of primary particles in terms of generating oxidative stress
and leading to subsequent damage in cells. Our results are
suggestive of secondary reactions modifying the primary or-
ganic particles emitted in the morning rush hour.

4.2 Comparison with the on-line AMS findings

The AMS instrument provides invaluable quantitative infor-
mation upon the aerosol mass loading of generic organic
components. In the last decade, the AMS non-refractory or-
ganic components have been sub-divided into two broad
groups: hydrocarbon-like and oxygenated organic aerosol
(HOA and OOA, respectively) (Canagaratna et al., 2007).
Recently, Positive Matrix Factorization (PMF) has been
demonstrated to be a powerful tool for the purposes of pro-
filing different components of the ambient organic aerosol
data matrix from the AMS. Lanz et al. (2007) and Ulbrich
et al. (2009) for example reported a third AMS component:
a less-oxygenated (relative to the factor OOA), semi-volatile
organic aerosol that correlates well with nitrate and chloride.
During this REPARTEE I experiment, Allan et al. (2010) re-
ported a detailed analysis of the AMS organic aerosol com-
ponent sampled during the REPARTEE-I campaign, report-
ing three components: HOA (25 %), OOA (53 %) and a factor
associated with primary organic aerosols related to cooking
emissions COA (22 %). This COA factor has also been re-
cently reported in other large megacities (Huang et al., 2010;
Sun et al., 2011) but not compared with any other on-line
instrument. In this study we attempt to compare the AMS
PMF factors (with particular emphasis on the COA) seen
by the AMS with the on-line measurements taken with the
ATOFMS. Not only are ATOFMS particle type mass spectra
correlated with the AMS factors, but also the temporal trend
of a specificm/zpeak (55, am/zpeak characteristic of the
COA AMS factor) is also studied. A comparison between the
ATOFMS and the AMS is not straightforward, as the quali-
tative temporal information of the ATOFMS particle num-
ber concentration of single particle mass spectral type does
not allow a meaningful correlation with quantitative aerosol
mass loading concentrations of organic components provided
by the AMS. A correlation coefficient (R2) matrix between
ATOFMS particle types (number) and AMS mass concentra-
tions appears in Table 2.

A brief analysis of the primary organic aerosol com-
ponents described in detail in Allan et al. (2010) showed
the traffic HOA component to present a strong WD-WE
difference: 1.3± 0.8 µg m−3 and 0.6± 0.5 µg m−3 (respec-
tively) reflecting the BC and NOx difference of about a
factor of two higher during weekdays. Factor COA did
not show statistically significant variation, (1.4± 1.1 µg m−3

and 1.2± 0.9 µg m−3, for WD and WE, respectively). How-
ever, given the fact that AMS factor COA presents two
peaks at about 12:00 and 20:00, further separation was re-

quired. Factor COA was divided into WD-WE periods, fur-
ther split between day time (09:00–18:00) and evening time
(18:00–24:00). COA-day was found to be about 25 % higher
during weekdays (1.03± 0.78 µg m−3) relative to weekend
(0.76± 0.41 µg m−3), statistically different (t-test, 95 %).
HOA presented overall statistically significant lower values
over weekend periods for both day and evening, with the for-
mer reduced more (about 60 %) than the latter (about 20 %).

4.2.1 Comparison with the AMS PMF factors

ATOFMS cluster Ca-EC, as well as cluster OC, corre-
late with the AMS HOA (R2 = 0.65 and 0.50 respectively),
as shown in earlier studies (Drewnick et al., 2008). The
AMS factor OOA represents a well-aged secondary organic
aerosol, and was found to be consistent with an atmospheric
regionally transported source rather than local meteorology,
as reported in Dall’Osto et al. (2009a). It correlates weakly
with particle type Na-EC-OC. Beside the commonly mea-
sured HOA and OOA factors, a further component, COA ex-
hibited a unique mass spectrum with strong signals atm/z41
andm/z55. However, as noted by Allan et al. (2010), the 3
factor solution approach tended to result in residuals larger
than would be considered optimal according to the error
model, which indicates that the number of factors used is in-
sufficient to capture all of the chemical variability within the
dataset. However, the fourth factor solution generated some
splitting of PMF factors and therefore the three factor solu-
tion was kept.

This implies that the 3 factor solution is masking some
additional information but the variability is not enough to
justify the 4 factor solution or additional sources of organic
aerosols rather than the three (HOA, OOA and COA).m/z55
(a marker of COA) was found to have large variability (Allan
et al., 2010) but a 4-factor solution could not be justified.

The ART-2a analysis on the ATOFMS dataset did not re-
veal any specific particle type associated with cooking ac-
tivities. However, some peaks usually attributed to cooking
activities (Rogge et al., 1993) were found in cluster SOA-
PAH. Figure 2 shows peaks atm/z−256 (thought to be hex-
adecanoic acid) andm/z−284 (octadecanoic acid). Ning et
al. (2007) reported ultrafine particles sampled in the after-
noon in Los Angeles to contain more organic matter than
the morning samples (more SOA), to be more acidic (less
ammonia to neutralize the sulphuric acid), and to be rich
in octadecanoic acid and hexadecanoic acids. Whilst Rogge
et al. (1993) showed that food cooking is a source of or-
ganic acids, it was concluded that atmospheric chemistry
(oxidation of VOC precursor gases) is more likely respon-
sible for their formation as food cooking alone cannot ex-
plain the atmospheric concentrations measured (Pandis et al.,
1993; Rogge et al., 1993). However, far fewer published pro-
files are available for food cooking relative to motor vehicles
and biomass combustion, and significant inconsistencies ex-
ist between the ambient data and published source profiles
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Table 2.Correlations (R2) between ATOFMS organic particle types (number) and AMS concentrations averaged over 3-h intervals.

3 h resolution AMS OOA AMS HOA AMS COA AMS org

ATOFMS Ca-EC < 0.1 0.65 < 0.1 0.12
ATOFMS OC < 0.1 0.50 < 0.1 0.14
ATOFMS Na-EC-OC 0.35 -0.1 < 0.1 0.14
ATOFMS SOA-PAH < 0.1 < 0.1 0.15 < 0.1
AMS PAH < 0.1 0.45 0.44 0.3
AMS PAH low < 0.1 0.28 0.55 0.25
AMS PAH high < 0.1 0.58 0.16 0.35
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 Fig. 6.Average mass spectra for all hit particles during the REPAR-

TEE I campaign containing values of peak height atm/z55 higher
than 100.

so further studies are required in order to correctly appor-
tion food cooking emissions (Robinson et al., 2006). Further-
more, it is important to note that earlier work on the identifi-
cation of cooking sources has mainly been focused on meat
cooking and barbeque sources, rather than vegetable oils.

The ATOFMS and the AMS mass spectra contain differ-
ent fragmentation patterns (Murphy et al. 2007, Canagaratna
et al., 2007). In the ATOFMS,m/z55 is usually seen in or-
ganic aerosol with aromatic compounds (Prather and Sulli-
van, 2005) but a comparison between the samem/zseen by
the two different instruments was still attempted. By query-
ing all the∼150 000 ATOFMS single particle mass spectra
containing a peak atm/z55 (peak height>100), a key peak
describing the third AMS factor (COA) solution (Allan et
al., 2010), 11 500 particles were found with such peak. Fig-
ure 6 shows the average ATOFMS mass spectra of particles
containing a peak atm/z55 (from here called particle type
m/z55). This peak does not seem to appear in inorganic parti-
cle types (Table 1). The average mass spectrum shows peaks
due to OC (m/z27,m/z41,m/z55,m/z63,m/z77), fragments
of large aromatic compounds (m/z 115, m/z 165), nitrate
(m/z−46, m/z−62) and sulphate (m/z−97), all peaks con-
tained within particle types OC, Na-EC-OC and SOA-PAH.
The broad similarity of the mass spectra shown in Fig. 6
with particle types OC, Na-EC-OC and SOA-PAH is also re-
flected in the fact that the total number of particles contain-
ing m/z55 broadly follows the sum of the 3 ATOFMS Art-2a

clusters (Fig. 4). The temporal trend of particle typem/z55 in
Fig. 5e, where a bimodal diurnal profile can be seen peaking
at noon and during evening times bears some similarity to the
COA factor, but the correlation between the sum of the three
ATOFMS types (OC + Na-EC-OC and SOA-PAH) and AMS
factor COA is entirely insignificant (R2 < 0.1) (Table 2). It
does however raise the question over whether the COA fac-
tor is comprised of a number of different particle types aris-
ing from different sources. The two instruments involve very
different vaporisation/ ionisation procedures (ATOFMS by
u.v. laser and AMS by heating and electron impact) probably
leading to significantly different mass spectral fragmentation
patterns in terms of relative peak intensities, if notm/zval-
ues. The cooking aerosol may be transparent to the u.v. laser,
hence failing to ionise in the ATOFMS. The ATOFMS analy-
ses individual particles and therefore sees a particle resulting
from coagulation as different from its two parent particles
whereas the AMS views an aggregate mass spectrum of par-
ticles of all types admitted to the instrument at a specific time.
It should also be remembered that the two instruments are re-
sponsive to different particle size ranges and that the cooking
oil aerosol characterised as the COA factor by the AMS may
be of too small a size (<200 nm) to be seen by the ATOFMS.
These differences make it very difficult to try to intercom-
pare data from the two instruments, although sometimes data
from one can be valuable in informing interpretation of data
from the other (e.g. Dall’Osto et al., 2009a; Drewnick et al.,
2008). In this dataset, the ATOFMS does not appear to see
any particle type characteristic of a cooking source.

4.2.2 PAH detection by the two instruments
and intercomparison

Polycyclic aromatic hydrocarbons (PAHs) are products of in-
complete combustion formed during the burning or pyrolysis
of organic matter, and are released into ambient air from a
wide range of combustion sources (Finlayson-Pitts and Pitts,
2000). Several physical and chemical processes such as gas-
phase distribution and transformation reactions determine the
levels of PAHs in the atmosphere. PAH transformation prod-
ucts include a wide range of compounds that can be classified
as nitro-PAHs and oxygenated PAHs. Because of the high
potential mutagenic and toxic effects of oxygenated PAHs
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Fig. 7.PAH detection by both ATOFMS and C-ToF-AMS.

(Pedersen et al., 2005), more research on the occurrence,
fate and behavior of this group of atmospheric organic mi-
cropollutants was recently suggested in the review article of
Walgraeve et al. (2010). Quantitative data on the relative im-
portance of secondary versus primary oxygenated PAHs are
scarce (Sklorz et al., 2007; Tsapakis and Stephanou, 2007;
Albinet et al., 2008). Recently Kojima et al. (2010) suggested
that a considerable fraction of some oxy-PAHs associated
with PM in downtown Tokyo, Japan originates from atmo-
spheric formation. Walgraeve et al. (2010) reported that the
accurate and precise analysis of oxygenated PAHs in atmo-
spheric PM is a challenging multi-step task, including issues
with sampling artefacts, solvent extraction techniques and
the complex matrix in which trace concentrations of oxy-
genated PAHs in the atmosphere occur. By contrast, real-time
mass spectrometry techniques provide high time resolution
for insight into brief events and diurnal changes while elimi-
nating the potential artefacts acquired during long-term filter
sampling (Pratt and Prather, 2012).

The ATOFMS has proven successful in detecting PAH,
nitro-PAH and oxygenated PAH (Silva et al., 2000). Dur-
ing our study, we found a specific ATOFMS ART-2a clus-
ter particle type rich in PAH, but it presented only 269 par-
ticles, distributed during two hours of the field study (dur-
ing the days of 5 and 12 October) and likely to be due to
a local Regent Park gardener vehicle passing by. However,
by searching the ATOFMS database for specific PAH peaks
(m/z156, 178, 202, 228, 252, 276, Silva and Prather et al.,
2000; Gross et al., 2000a), about 2000 particles contained
PAH signatures (1.5 % of the total). The diurnal profile of
PAH containing particles is shown in Fig. 7a, where a peak
can be seen in the morning (07:00–09:00 a.m.) due to traffic
rush hours. By contrast, as discussed in Sect. 3.2.2., cluster
SOA-PAH starts to rise at 08:00 a.m. to show its maximum

occurrence at 12:00–01:00 p.m. The diurnal temporal trends
of the ATOFMS particle types shown in Fig. 7a suggests that
PAH-containing vehicular traffic exhaust aerosol is followed
by a more oxidised aerosol attributed to atmospheric oxida-
tion of gas phase hydrocarbons (cluster SOA-PAH).

PAH concentration calculations on the AMS dataset were
also performed according to the procedure described by
Dzepina et al. (2007) with an estimated uncertainty of
about 35 %. Figure 7b shows the diurnal trend of AMS
PAH as AMS PAH low (PAH< m/z200), AMS PAH high
(PAH> m/z 200) and AMS PAH (AMS PAH low + AMS
PAH high). The diurnal profile of AMS PAH shows three
peaks: a morning one between 06:00 a.m. and 09:00 a.m.
(peaking at 07:00 a.m.), a little sharp one at lunch time
(12:00 p.m.) and broader major ones between 06:00 p.m. and
10:00 p.m. (peaking at 08:00 p.m.). When the ratio AMS
PAH low/AMS PAH high is calculated (Fig. 7c) an enhance-
ment of PAH low is seen during lunch and evening times.
Whilst the evening peak can be due to condensation of PAH
in the particle phase, the increment at lunch time suggests a
different source of PAH and/or a transformation of the morn-
ing vehicular traffic exhaust PAH aerosol.

By providing the mixing state of individual particles, the
ATOFMS shows two different types of PAH-containing par-
ticles, but it is not possible to know if the oxidized com-
pounds seen in SOA-PAH were produced in the gas phase
or in the particle surface. Other studies reported a more rapid
decrease in surface versus bulk PAH concentrations during
the late morning, suggesting that freshly emitted combustion
related particles are quickly coated by secondary aerosol ma-
terial and may also be transformed by heterogeneous reac-
tions (Marr et al., 2006).

When correlating measurements taken with the AMS
and the ATOFMS, only moderate correlations were found
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between ATOFMS PAH-containing particles and AMS PAH
(R2

= 0.3), whereas higher correlations were found between
primary AMS PMF COA and AMS PAH low (R2

= 0.55)
and between primary AMS PMF HOA and AMS PAH high
(R2

= 0.58), as shown in Table 2.
The correlation between PAH species detected with the

ATOFMS and the AMS was only moderate as the ATOFMS
did not detect PAH-containing aerosol during night time, per-
haps due to the higher relative humidity (Neubauer et al.,
1998).

5 Conclusions

This work emphasises that neither the AMS nor the
ATOFMS alone is able to give a comprehensive insight
into aerosol composition and sources. Our earlier work has
demonstrated that in combination they give far greater in-
sights into aerosol behaviour than either technique can alone
(Dall’Osto et al., 2009a,b). The AMS has a well proven ca-
pability to quantify generic source-related categories of non-
refractory aerosol. The ATOFMS gives mass spectral infor-
mation upon individual particles which, even after cluster-
ing particles with similar size distribution and mass spectral
characteristics, presents information which can be very dif-
ficult to interpret in relation to the sources or atmospheric
processing, as is the case with some particle types identified
in this study.

The ATOFMS cannot provide quantitative aerosol mass
loading concentrations, but its unique strength relies in the
fact that it can monitor in real time variations in the sin-
gle particle composition. Further work is needed in order
to attribute mass spectra to particular sources with greater
confidence. Comparing laboratory and ambient spectra may
not be sufficient to associate a specific mass spectrum to an
aerosol source seen in the ambient data, as particles with pri-
mary and secondary origins may have broadly similar mass
spectra, and particles are modified substantially during at-
mospheric transport processes. The ATOFMS particle types
Ca-EC, which derives from road traffic, and OC, contain-
ing organic carbon from primary sources, correlate strongly
with the AMS HOA factor. The modest correlation between
ATOFMS particle Na-EC-OC and AMS OOA suggests that
this is an aged particle type containing mainly secondary
organic carbon. ATOFMS type SOA-PAH appears to be a
specific component of secondary organic aerosol for which
the ATOFMS has high sensitivity, but which does not repre-
sent the temporal trends in total secondary aerosol as shown
by AMS factor OOA. There is no clear evidence that any
ATOFMS particle type, or combination of particle types, cor-
responds to the AMS COA cooking factor.

PMF analysis on the AMS datasets is revealing new fea-
tures in the organic components of the aerosols and is prov-
ing to be an excellent tool for extracting information from
the AMS mass spectra. It is imperative not only to justify

PMF solutions mathematically, but also by comparing dif-
ferent AMS PMF solutions with external data such as can
be provided by the ATOFMS. This study shows that the ur-
ban organic aerosol is complex and unfortunately the corre-
lations between the two mass spectrometers have proven to
be rather weak. Experience to date with the ATOFMS sug-
gests that its greatest strength is in the identification of in-
organic particles to which the AMS is currently insensitive
because of their generally refractory nature. It is a strength
of the AMS that the aggregate mass spectrum reveals infor-
mation on a number of different organic aerosol types, al-
though some doubts still surround the interpretation of re-
sults from PMF. Nonetheless, based upon the current deploy-
ment, the AMS has yielded far more valuable information on
the organic component of the aerosol than the ATOFMS. The
strength of the latter instrument in the REPARTEE campaign
has been primarily in relation to inorganic aerosol types,
i.e. the nitrates (Dall Osto et al., 2009a) and sulphur com-
pounds (Dall’Osto et al., 2009b). It appears very likely that
the PMF analysis with the recent High Resolution HR-ToF-
AMS (DeCarlo et al., 2006) of organic matrices in the future
will generate more than the common 3–4 factors seen with
lower resolution AMS mass spectrometers. Nonetheless, we
remain convinced that deployment of both instrument types
yields insights into aerosol sources and behaviour not avail-
able from one type alone.
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