Atmos. Chem. Phys., 12, 3165–3179, 2012 www.atmos-chem-phys.net/12/3165/2012/ doi:10.5194/acp-12-3165-2012 © Author(s) 2012. CC Attribution 3.0 License.





# Particle mass yield from $\beta$ -caryophyllene ozonolysis

Q. Chen<sup>1</sup>, Y. L. Li<sup>1,2</sup>, K. A. McKinney<sup>3</sup>, M. Kuwata<sup>1</sup>, and S. T. Martin<sup>1,4</sup>

<sup>1</sup>School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
 <sup>2</sup>Division of Environment, Hong Kong University of Science and Technology, Hong Kong, China
 <sup>3</sup>Department of Chemistry, Amherst College, Amherst, Massachusetts, USA
 <sup>4</sup>Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts, USA

Correspondence to: S. T. Martin (scot\_martin@harvard.edu)

Received: 26 October 2011 – Published in Atmos. Chem. Phys. Discuss.: 14 November 2011 Revised: 29 February 2012 – Accepted: 12 March 2012 – Published: 3 April 2012

Abstract. The influence of second-generation products on the particle mass yield of  $\beta$ -caryophyllene ozonolysis was systematically tested and quantified. The approach was to vary the relative concentrations of first- and secondgeneration products by adjusting the concentration of ozone while observing changes in particle mass yield. For all wallloss corrected organic particle mass concentrations  $M_{\rm org}$  of this study  $(0.5 < M_{\text{org}} < 230 \,\mu\text{g m}^{-3})$ , the data show that the particle-phase organic material was composed for the most part of second-generation products. For  $0.5 < M_{\rm org} <$  $10 \,\mu g \,m^{-3}$ , a range which overlaps with atmospheric concentrations, the particle mass yield was 10 to 20% and was not sensitive to ozone exposure, implying that the constituent molecules were rapidly produced at all investigated ozone exposures. In contrast, for  $M_{\rm org} > 10 \,\mu {\rm g \, m^{-3}}$  the particle mass yield increased to as high as 70% for the ultimate yield corresponding to the greatest ozone exposures. These differing dependencies on ozone exposure under different regimes of  $M_{\rm org}$  are explained by a combination of the ozonolysis lifetimes of the first-generation products and the volatility distribution of the resulting second-generation products. First-generation products that have short lifetimes produce low-volatility second-generation products whereas first-generation products that have long lifetimes produce high-volatility second-generation products. The ultimate particle mass yield was defined by mass-based stoichiometric yields  $\alpha_i$  of  $\alpha_0 = 0.17 \pm 0.05$ ,  $\alpha_1 = 0.11 \pm 0.17$ , and  $\alpha_2 = 1.03 \pm 0.30$  for corresponding saturation concentrations of 1, 10, and 100  $\mu$ g m<sup>-3</sup>. Terms  $\alpha_0$  and  $\alpha_1$  had low sensitivity to the investigated range of ozone exposure whereas term  $\alpha_2$  increased from  $0.32 \pm 0.13$  to  $1.03 \pm 0.30$  as the ozone exposure was increased. These findings potentially allow for simplified yet accurate parameterizations in air quality and climate models that seek to represent the ozonolysis particle mass yields of certain classes of biogenic compounds.

## 1 Introduction

Sesquiterpene emissions have been estimated as 10-30 % of those of monoterpenes (Helmig et al., 2007; Sakulyanontvittaya et al., 2008a). Because of their fast ozonolysis reactivity and their tendency to form low-volatility products, sesquiterpenes ( $C_{15}H_{24}$ ) are important precursor molecules to secondary organic material (SOM) (Hoffmann et al., 1997; Jaoui and Kamens, 2003; Jaoui et al., 2003). For instance,  $\beta$ caryophyllinic acid, which is an ozonolysis product of the sesquiterpene  $\beta$ -caryophyllene, has been measured at substantial concentrations for ambient particles in environments as diverse as the tropics and the arctic (Jaoui et al., 2007; Hu et al., 2008; Fu et al., 2009). For typical concentrations of tropospheric oxidants, the lifetimes of sesquiterpenes are about 2 min for the reaction with ozone, 2-3 min for the reaction with nitrate radicals at night, and 30-40 min for the reaction with hydroxyl radicals in the day (Shu and Atkinson, 1995). Sesquiterpene emissions usually occur during the day (Helmig et al., 2007). Reaction with ozone is therefore regarded as the dominant degradation pathway of many sesquiterpenes in the atmosphere (Atkinson and Arey, 2003).

As one of the most atmospherically prevalent sesquiterpenes,  $\beta$ -caryophyllene has been studied extensively in the laboratory. The reported particle mass yields associated with its oxidation range from 6–62% for dark ozonolysis and from 37–125% for photooxidation (Grosjean et al., 1993; Hoffmann et al., 1997; Griffin et al., 1999; Jaoui et al., 2003; Lee et al., 2006a, b; Winterhalter et al., 2009) (Table 1). Particle mass yield Y is defined as the organic particle mass concentration  $\Delta M_{\rm org}$  that is produced divided by the mass concentration of the precursor volatile organic compound  $\triangle$ VOC that is reacted (Odum et al., 1996):  $Y \equiv$  $\Delta M_{\rm org}/\Delta VOC$ . Yield depends to a first approximation on the volatility of the reaction products. An implication is that the relative tendency of molecules to partition from the gas phase to the particle phase (i.e.,  $\Delta M_{\rm org}$ ) depends on the extent of particle phase (i.e.,  $M_{\text{org}}$ ) that is present (Pankow, 1994a,b). Reaction conditions also influence yield by affecting the relative importance of competing kinetic pathways and hence the relative proportion of products of differing volatilities (Chan et al., 2007). Important experimental conditions include relative humidity, particle acidity, ozone concentration, and NO<sub>x</sub> concentration (Ng et al., 2007; Offenberg et al., 2009; Winterhalter et al., 2009). Winterhalter et al. (2009), for example, demonstrated that the addition of gas-phase formic acid or water scavenged reactive Criegee intermediates and thereby influenced the concentration profile of the reaction products, ultimately leading to a doubling of the particle mass yield by  $\beta$ -caryophyllene ozonolysis. Offenberg et al. (2009) showed that increased particle acidity led to greater particle mass yields from  $\beta$ -caryophyllene photooxidation.

Among the several factors influencing particle mass yield from  $\beta$ -caryophyllene ozonolysis, the stoichiometric ratio of ozone to  $\beta$ -caryophyllene is an especially important regulator.  $\beta$ -caryophyllene has two double bonds, and the endocyclic bond is more reactive to ozone by two orders of magnitude than is the exocyclic bond (Nguyen et al., 2009; Winterhalter et al., 2009). Second-generation products are produced by ozonolysis of the remaining double bond of the first-generation products. The second-generation products typically have lower vapor pressures and hence greater thermodynamic tendencies to condense to the particle phase (Li et al., 2011). As a result, particle mass yield increases significantly in the case that sufficient ozone is present for first-generation products to continue oxidation. For instance, when injecting excess ozone, Ng et al. (2006) observed continued and rapid particle growth even after  $\beta$ caryophyllene was completely consumed. This observation was explained by the production and gas-to-particle condensation of second-generation products.

In the atmosphere, concentrations of biogenic volatile organic compounds (BVOCs) are ultimately limited by their surface emissions and are normally less than 10 ppbv in forested environments (Helmig et al., 1998). By comparison, ozone concentrations range from 10 to 30 ppbv at background sites (Fiore et al., 2003) to over 100 ppbv for urban locations (Solomon et al., 2000). Moreover, the atmospheric concentration of ozone is continuously renewed by atmospheric production. The implication is that under most circumstances the ozone exposure in the atmosphere is in excess of the possible consumption by BVOCs, especially for sesquiterpenes. Few laboratory studies, however, have carried out experiments for conditions of excess ozone (i.e., ozone:  $\beta$ -caryophyllene > 2) (Table 1). As such, particle mass yield in the regime of second-generation dominance remains largely unknown, especially for conditions that overlap with atmospheric concentrations ( $M_{\rm org} < 10 \,\mu {\rm g m}^{-3}$ ).

Herein, experimental observations for the dark ozonolysis of  $\beta$ -caryophyllene (0.8–46 ppbv) under various conditions of excess ozone are reported. The qualitative molecular identification of the particle-phase products for these experiments and an associated discussion of their production mechanisms were presented in Li et al. (2011). An analysis of oxygen-tocarbon (O:C) and hydrogen-to-carbon (H:C) elemental ratios was presented in Chen et al. (2011) in a comparative study of isoprene,  $\alpha$ -pinene, and  $\beta$ -caryophyllene. In relation to these two earlier reports, the focus of the present report is on second-generation products and their effects on particle mass yield.

# 2 Experimental

# 2.1 Experimental procedures and measurements

Experiments were carried out in the Harvard Environmental Chamber. Detailed descriptions of the chamber were previously published (Shilling et al., 2008; King et al., 2009). Compared to those reports, in this study a 0.13-mm (5-mil) thick PFA Teflon bag having a volume *V* of 4.7 m<sup>3</sup> was newly installed as a replacement for the previously described 0.05-mm (2-mil) PFA bag. As in the earlier studies, the bag served as a continuously mixed flow reactor (CMFR) (Kleindienst et al., 1999; Seinfeld et al., 2003). A flow *Q* of 221 min<sup>-1</sup> was used, corresponding to a mean residence time  $\tau$  of 3.6 h, as calculated by  $\tau = V/Q$ . Temperature and relative humidity were held at 25 ± 1 °C and 40 ± 1 %, respectively.

Ammonium sulfate particles were continuously present in the inflow of the CMFR. The surfaces of these particles served as a suspended substrate to accommodate the gas-to-particle condensation of the oxidation products of  $\beta$ -caryophyllene. An ammonium sulfate solution (Sigma-Aldrich,  $\geq 99.0\%$ ) was atomized (TSI, 3076, Liu and Lee, 1975) to produce a polydisperse particle population, which was then dried in a 160-cm silica gel diffusion dryer (RH < 10%). A monodisperse electric-mobility fraction was selected from the population by a differential mobility analyzer (TSI, 3071 DMA; 85Kr bipolar charger) (Knutson and Whitby, 1975). The DMA was operated with 101min<sup>-1</sup> sheath and 21min<sup>-1</sup> aerosol flows. Electricequivalent (+1 charge) mobility diameters  $d_{m,+1}$  of the seed particles for each experiment are summarized in Table 2. The corresponding surface area concentration inside the CMFR prior to initiating  $\beta$ -caryophyllene ozonolysis was  $(4.0 \pm 2.0) \times 10^{-5} \text{ m}^2 \text{ m}^{-3}$ . For experiments at the highest initial  $\beta$ -caryophyllene concentration of 46.4 ppbv, polydis-

| Reference                  | [VOC] <sup>a</sup><br>(ppbv)                                                                                                        | [O <sub>3</sub> ]<br>(ppbv) | Т<br>(К) | RH<br>(%) | Scavenger for<br>OH or CI <sup>b</sup> | [NO <sub>x</sub> ]<br>(ppbv) | Seed            | $\rho_{\text{org}}$<br>$(\text{kg m}^{-3})^{c}$ | $\Delta M_{\rm org}$<br>(µg m <sup>-3</sup> ) | Y<br>(%)        |  |  |  |  |
|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|----------|-----------|----------------------------------------|------------------------------|-----------------|-------------------------------------------------|-----------------------------------------------|-----------------|--|--|--|--|
|                            |                                                                                                                                     |                             |          |           | Dark ozonolysi                         | s at low NO <sub>x</sub>     |                 |                                                 |                                               |                 |  |  |  |  |
| Grosjean et al. (1993)     | 540                                                                                                                                 | 80                          | _        | _         | Cyclohexane                            | < 1                          | None            | _                                               | _                                             | 12              |  |  |  |  |
| Jaoui et al. (2003)        | 601                                                                                                                                 | 640                         | 287-290  | 80-85     | None                                   | < MDL <sup>d</sup>           | None            | _                                               | -                                             | 62 <sup>e</sup> |  |  |  |  |
| Lee et al. (2006a)         | 88                                                                                                                                  | > 350                       | 293      | 6         | Cyclohexane                            | < 5                          | AS <sup>f</sup> | 1250                                            | 336                                           | 45              |  |  |  |  |
| Winterhalter et al. (2009) | 305-331                                                                                                                             | 200                         | 296      | Dry       | HCOOH                                  | _                            | None            | 1000                                            | 310-660                                       | 19–41           |  |  |  |  |
|                            | 239-315                                                                                                                             | 100-200                     | 296      | Dry       | HCHO                                   | _                            | None            | 1000                                            | 130-180                                       | 9-12            |  |  |  |  |
|                            | [VOC] <sup>a</sup><br>(ppbv)<br>540<br>601<br>88<br>09) 305–331<br>239–315<br>258–566<br>295–296<br>1–46<br>) 100–102<br>6–13<br>37 | 100-200                     | 296      | Dry       | None                                   | -                            | None            | 1000                                            | 50-370                                        | 6–24            |  |  |  |  |
|                            | 295-296                                                                                                                             | 200                         | 296      | 36        | None                                   | -                            | None            | 1000                                            | 420-440                                       | 27-28           |  |  |  |  |
| This study <sup>g</sup>    | 1-46                                                                                                                                | 50-200 <sup>h</sup>         | 298      | 40        | Cyclohexane                            | < 1                          | AS              | 1200-1600                                       | 0.5-230                                       | 8–70            |  |  |  |  |
|                            |                                                                                                                                     |                             |          |           |                                        |                              |                 |                                                 |                                               |                 |  |  |  |  |
| Hoffmann et al. (1997)     | 100-102                                                                                                                             | _                           | 316-322  | _         | None                                   | 268-283                      | AS              | 1000                                            | 845-998                                       | 103-125         |  |  |  |  |
| Griffin et al. (1999)      | 6–13                                                                                                                                | -                           | 307-309  | -         | None                                   | 24-54                        | AS              | 1000                                            | 18–82 <sup>i</sup>                            | 37–79           |  |  |  |  |
| Lee et al. (2006b)         | 37                                                                                                                                  | -                           | 295      | 56        | None                                   | 25-40                        | None            | 1250                                            | 212                                           | 68              |  |  |  |  |

**Table 1.** Compilation of experimental conditions and particle mass yields reported in the literature for  $\beta$ -caryophyllene oxidation.

<sup>a</sup> The reacted VOC concentration depends on ozone or OH concentration. <sup>b</sup> Criegee intermediate. <sup>c</sup> The SOM densities are measured values in this study and assumed values in other studies. <sup>d</sup> Minimum detection limit of the NO<sub>x</sub> analyzer (Thermo 8440E). <sup>e</sup> Calculated from the reported carbon yield of 39 % by applying an OM: OC ratio of 1.6. <sup>f</sup> Dry ammonium sulfate particles. <sup>g</sup> Other results are reported in Li et al. (2011) and Chen et al. (2011). <sup>h</sup> Steady-state concentrations (i.e., excess ozone concentrations). <sup>i</sup> Particle measurements were conducted outside the reactor at 298 K.

perse seed particles were used instead of monodisperse ones so that the surface area concentration  $(2.0 \times 10^{-3} \text{ m}^2 \text{ m}^{-3})$  was sufficiently high to prevent new particle formation by homogeneous nucleation of the organic gases.

In a series of experiments, the initial concentration of  $\beta$ caryophyllene inside the CMFR prior to ozonolysis was varied from 0.8 to 46.4 ppbv. A liquid solution (1:2500, v/v) of  $\beta$ -caryophyllene (Sigma-Aldrich,  $\geq$  98.5%) in cyclohexane (Sigma-Aldrich,  $\geq$  99.9%) was fed by a syringe pump into a round-bottom flask warmed to 70 °C. A continuous flow of air swept the evaporated molecules of  $\beta$ -caryophyllene and cyclohexane from the flask into the CMFR for the entire experimental period. The concentration of  $\beta$ -caryophyllene inside the CMFR was adjusted by using a variable rate of liquid injection from the syringe pump. Cyclohexane served as a scavenger of hydroxyl radicals produced by some ozonolysis pathways. A quadrupole proton-transfer-reaction mass spectrometer (Ionicon, PTR-MS) was used both to confirm the  $\beta$ -caryophyllene concentration in the CMFR prior to ozone injection and to track the extent of reaction after ozone injection (Shilling et al., 2008). Ozone concentrations of 50, 100, and 200 ppbv were used during the conducted experiments (Table 2). Within a single experiment, the ozone concentration was held constant by feedback control, meaning that sufficient ozone was added to react away nearly all the  $\beta$ -caryophyllene while maintaining a constant concentration of 50, 100, or 200 ppbv. For all experiments, the ozone concentrations were therefore in excess compared to the reacted concentrations of  $\beta$ -caryophyllene.

The outflow of the CMFR was continuously sampled by a scanning mobility particle sizer (TSI, 3936L22 SMPS, Wang and Flagan, 1989), by filter-based collection for offline molecular analysis using an ultra-performance liquid chromatography coupled to an electrospray-ionization timeof-flight mass spectrometer (Waters, ACQUITY/LCT Premier XE UPLC-ESI-ToF-MS, Neue et al., 2010), and by an on-line particle-vaporization electron-impact high-resolution time-of-flight mass spectrometer (Aerodyne, HR-ToF-AMS, DeCarlo et al., 2006). The SMPS provided measurements of the number-diameter distribution of the particle population. The UPLC-ESI-ToF-MS molecular analysis of the material sampled onto the filters was previously presented in Li et al. (2011). The HR-ToF-AMS was used for the in situ collection of the mass spectrum of the particle population in the CMFR outflow. During a single steady-state experiment, no significant changes in the mass spectra were observed, and the AMS data sets under steady-state conditions were averaged for 4 to 12h to increase the signal-to-noise ratio. The measured quantities at steady state typically fluctuated within 5 % during the course of an experiment. The particle population largely had diameters within the AMS acceptance window of 50 to 1000 nm vacuum aerodynamic diameter. The error in  $M_{\rm org}$  because of undetected particles is estimated as smaller than 1% based on the SMPS number-diameter measurements. For experiment #27 (Table 2), a DMA (TSI, 3071; <sup>85</sup>Kr bipolar charger) was coupled to an aerosol particle mass analyzer (Kanomax, APM 3600, Ehara et al., 1996) to measure the particle effective density.

The CMFR was an experimental configuration that facilitated the study of ultimate yield by providing a mean residence time sufficient for multi-generational chemistry (Kleindienst et al., 1999). For example, the lifetime of  $\beta$ -caryophyllene was 20 s based on a rate constant of  $(1.2 \pm 0.1) \times 10^{-14}$  molecule<sup>-1</sup> cm<sup>3</sup> s<sup>-1</sup> at 200 ppbv ozone.

| entering the chamber. As a result of neutralization, electrostatic particle loss to the bag walls decreased (McMurry and Rader, 1985). | Errors represent the measurement precision. For Exp. #10, a <sup>210</sup> Po charger was installed in the seed injection line, which neutralized the charged particles exiting | and H: C ratios were originally reported in Chen et al. (2011). Material density $\rho_{org}$ is reported only for experiments using monodisperse seed and having (M | by wall loss and used in the yield calculation (Eq. 2), and the average oxidation state of carbon for particle-phase SOM, calculated as 2(O:C) – 1(H:C) (Kroll of | concentration of the precursor VOC in an experiment, the mass concentration of particle-phase SOM measured by the AMS, the mass concentration of particle | <b>Table 2.</b> Experimental conditions and results for the dark ozonolysis of $\beta$ -caryophyllene. The terms $\Delta \text{VOC}$ , $(M_{\text{org}})_{\text{outflow}}$ , $M_{\text{org},\text{corr}}$ , and $\overline{\text{OS}}_{\text{c}}$ , respectively |
|----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                        | ged particles exiting the DMA and prior to                                                                                                                                      | eed and having $(M_{\text{org}})_{\text{outflow}} > 1  \mu \text{g m}^{-3}$ .                                                                                        | C) – 1(H : C) (Kroll et al., 2011). The O : C                                                                                                                     | entration of particle-phase SOM corrected                                                                                                                 | nd $\overline{OS}_c$ , respectively represent the reacted                                                                                                                                                                                                        |

| Exp. No Date Reaction | Seed              | diameter $d_{\rm m,+1}$ (nm)      | 1 3 Apr 2009 68.5 |               | 2 12 Åpr 2009 68.5 | 2 12 Åpr 2009 68.5<br>3 17 Åpr 2009 68.5 | 2 12 Apr 2009 68.5<br>3 17 Apr 2009 68.5<br>4 18 Apr 2009 68.5 | 2       12 Apr 2009       68.5         3       17 Apr 2009       68.5         4       18 Apr 2009       68.5         5       20 Apr 2009       68.5 | 2 12 Apr 2009 68.5<br>3 17 Apr 2009 68.5<br>4 18 Apr 2009 68.5<br>5 20 Apr 2009 68.5<br>6 23 Apr 2009 68.5<br>6 23 Apr 2009 68.5 | 2 12 Apr 2009 68.5<br>3 17 Apr 2009 68.5<br>4 18 Apr 2009 68.5<br>5 20 Apr 2009 68.5<br>6 23 Apr 2009 68.5<br>7 26 Apr 2009 68.5<br>6 8.5 | 2       12 Apr 2009       68.5         3       17 Apr 2009       68.5         4       18 Apr 2009       68.5         5       20 Apr 2009       68.5         6       23 Apr 2009       68.5         7       26 Apr 2009       68.5         8       6 May 2009       49.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2       12 Apr 2009       68.5         3       17 Apr 2009       68.5         4       18 Apr 2009       68.5         5       20 Apr 2009       68.5         6       23 Apr 2009       68.5         7       26 Apr 2009       68.5         8       6 May 2009       68.5         9       7 May 2009       49.5 | 2       12 Apr 2009       68.5         3       17 Apr 2009       68.5         4       18 Apr 2009       68.5         5       20 Apr 2009       68.5         6       23 Apr 2009       68.5         7       26 Apr 2009       68.5         8       6 May 2009       68.5         9       7 May 2009       49.5         10       8 May 2009       49.5 | 2       12 Apr 2009       68.5         3       17 Apr 2009       68.5         4       18 Apr 2009       68.5         5       20 Apr 2009       68.5         6       23 Apr 2009       68.5         7       26 Apr 2009       68.5         9       7 May 2009       49.5         10       8 May 2009       49.5         11       9 May 2009       49.5 | 2       12 Apr 2009       68.5         3       17 Apr 2009       68.5         4       18 Apr 2009       68.5         5       20 Apr 2009       68.5         6       23 Apr 2009       68.5         7       26 Apr 2009       68.5         9       7 May 2009       49.5         10       8 May 2009       49.5         11       9 May 2009       49.5         12       12 May 2009       49.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2       12 Apr 2009       68.5         3       17 Apr 2009       68.5         4       18 Apr 2009       68.5         5       20 Apr 2009       68.5         6       23 Apr 2009       68.5         7       26 Apr 2009       68.5         9       7 May 2009       49.5         10       8 May 2009       49.5         11       9 May 2009       49.5         12       12 May 2009       49.5         13       14 May 2009       49.5                                                                                                                                                                                                                                                   | 2       12 Apr 2009       68.5         3       17 Apr 2009       68.5         4       18 Apr 2009       68.5         5       20 Apr 2009       68.5         6       23 Apr 2009       68.5         7       26 Apr 2009       68.5         9       7 May 2009       49.5         10       8 May 2009       49.5         11       9 May 2009       49.5         12       12 May 2009       49.5         13       14 May 2009       49.5         14       15 May 2009       49.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2       12 Apr 2009       68.5         3       17 Apr 2009       68.5         4       18 Apr 2009       68.5         5       20 Apr 2009       68.5         6       23 Apr 2009       68.5         7       26 Apr 2009       68.5         9       7 May 2009       49.5         10       8 May 2009       49.5         11       9 May 2009       49.5         12       12 May 2009       49.5         13       14 May 2009       49.5         14       15 May 2009       49.5         15       17 May 2009       49.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2       12 Apr 2009       68.5         3       17 Apr 2009       68.5         4       18 Apr 2009       68.5         5       20 Apr 2009       68.5         6       23 Apr 2009       68.5         7       26 Apr 2009       68.5         9       7 May 2009       49.5         10       8 May 2009       49.5         11       9 May 2009       49.5         12       12 May 2009       49.5         13       14 May 2009       49.5         15       17 May 2009       49.5         16       19 May 2009       49.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2       12 Apr 2009       68.5         3       17 Apr 2009       68.5         4       18 Apr 2009       68.5         5       20 Apr 2009       68.5         6       23 Apr 2009       68.5         7       26 Apr 2009       68.5         9       7 May 2009       68.5         10       8 May 2009       49.5         11       9 May 2009       49.5         12       12 May 2009       49.5         13       14 May 2009       49.5         15       17 May 2009       49.5         16       19 May 2009       49.5         17       20 May 2009       49.5         16       19 May 2009       49.5         17       20 May 2009       49.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2       12 Apr 2009       68.5         3       17 Apr 2009       68.5         4       18 Apr 2009       68.5         5       20 Apr 2009       68.5         6       23 Apr 2009       68.5         7       26 Apr 2009       68.5         9       7 May 2009       68.5         10       8 May 2009       49.5         11       9 May 2009       49.5         12       12 May 2009       49.5         13       14 May 2009       49.5         14       15 May 2009       49.5         15       17 May 2009       49.5         16       19 May 2009       49.5         17       20 May 2009       49.5         18       23 May 2009       49.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2       12 Apr 2009       68.5         3       17 Apr 2009       68.5         4       18 Apr 2009       68.5         5       20 Apr 2009       68.5         6       23 Apr 2009       68.5         7       26 Apr 2009       68.5         9       7 May 2009       49.5         10       8 May 2009       49.5         11       9 May 2009       49.5         12       12 May 2009       49.5         13       14 May 2009       49.5         14       15 May 2009       49.5         15       17 May 2009       49.5         16       19 May 2009       49.5         17       20 May 2009       49.5         18       23 May 2009       49.5         19       26 May 2009       49.5         19       26 May 2009       49.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2       12 Apr 2009       68.5         3       17 Apr 2009       68.5         4       18 Apr 2009       68.5         5       20 Apr 2009       68.5         6       23 Apr 2009       68.5         7       26 Apr 2009       68.5         9       7 May 2009       49.5         10       8 May 2009       49.5         11       9 May 2009       49.5         12       12 May 2009       49.5         13       14 May 2009       49.5         14       15 May 2009       49.5         15       17 May 2009       49.5         16       19 May 2009       49.5         17       20 May 2009       49.5         18       23 May 2009       49.5         19       26 May 2009       49.5         20       29 May 2009       49.5         20       29 May 2009       49.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2       12 Apr 2009       68.5         3       17 Apr 2009       68.5         4       18 Apr 2009       68.5         5       20 Apr 2009       68.5         6       23 Apr 2009       68.5         7       26 Apr 2009       68.5         9       7 May 2009       49.5         10       8 May 2009       49.5         11       9 May 2009       49.5         12       12 May 2009       49.5         13       14 May 2009       49.5         14       15 May 2009       49.5         15       17 May 2009       49.5         16       19 May 2009       49.5         17       20 May 2009       49.5         18       23 May 2009       49.5         19       26 May 2009       49.5         20       29 May 2009       49.5         21       4 Jun 2009       49.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2       12 Apr 2009       68.5         3       17 Apr 2009       68.5         4       18 Apr 2009       68.5         5       20 Apr 2009       68.5         7       26 Apr 2009       68.5         9       7 May 2009       49.5         10       8 May 2009       49.5         11       9 May 2009       49.5         12       12 May 2009       49.5         13       14 May 2009       49.5         14       15 May 2009       49.5         15       17 May 2009       49.5         16       19 May 2009       49.5         17       20 May 2009       49.5         18       23 May 2009       49.5         17       20 May 2009       49.5         18       23 May 2009       49.5         19       26 May 2009       49.5         20       29 May 2009       49.5         21       4 Jun 2009       49.5         22       5 Jun 2009       49.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2       12 Apr 2009       68.5         3       17 Apr 2009       68.5         4       18 Apr 2009       68.5         5       20 Apr 2009       68.5         7       26 Apr 2009       68.5         9       7 May 2009       49.5         10       8 May 2009       49.5         11       9 May 2009       49.5         12       12 May 2009       49.5         13       14 May 2009       49.5         14       15 May 2009       49.5         15       17 May 2009       49.5         16       19 May 2009       49.5         17       20 May 2009       49.5         18       23 May 2009       49.5         17       20 May 2009       49.5         18       23 May 2009       49.5         19       26 May 2009       49.5         20       29 May 2009       49.5         21       4 Jun 2009       49.5         22       5 Jun 2009       49.5         23       7 Jun 2009       49.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2       12 Apr 2009       68.5         3       17 Apr 2009       68.5         4       18 Apr 2009       68.5         5       20 Apr 2009       68.5         7       26 Apr 2009       68.5         9       7 May 2009       49.5         10       8 May 2009       49.5         11       9 May 2009       49.5         12       12 May 2009       49.5         13       14 May 2009       49.5         14       15 May 2009       49.5         15       17 May 2009       49.5         16       19 May 2009       49.5         17       20 May 2009       49.5         18       23 May 2009       49.5         19       26 May 2009       49.5         19       26 May 2009       49.5         20       29 May 2009       49.5         21       4 Jun 2009       49.5         22       5 Jun 2009       49.5         23       7 Jun 2009       49.5         24       12 Jun 2009       49.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2       12 Apr 2009       68.5         3       17 Apr 2009       68.5         4       18 Apr 2009       68.5         5       20 Apr 2009       68.5         7       26 Apr 2009       68.5         9       7 May 2009       49.5         10       8 May 2009       49.5         11       9 May 2009       49.5         12       12 May 2009       49.5         13       14 May 2009       49.5         14       15 May 2009       49.5         15       17 May 2009       49.5         16       19 May 2009       49.5         17       20 May 2009       49.5         18       23 May 2009       49.5         19       26 May 2009       49.5         19       26 May 2009       49.5         19       26 May 2009       49.5         20       29 May 2009       49.5         21       4 Jun 2009       49.5         22       5 Jun 2009       49.5         23       7 Jun 2009       49.5         24       12 Jun 2009       49.5         25       17 Jun 2009       49.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2       12 Apr 2009       68.5         3       17 Apr 2009       68.5         4       18 Apr 2009       68.5         5       20 Apr 2009       68.5         7       26 Apr 2009       68.5         9       7 May 2009       68.5         10       8 May 2009       49.5         11       9 May 2009       49.5         12       12 May 2009       49.5         13       14 May 2009       49.5         14       15 May 2009       49.5         15       17 May 2009       49.5         16       19 May 2009       49.5         17       20 May 2009       49.5         18       23 May 2009       49.5         19       26 May 2009       49.5         19       26 May 2009       49.5         20       29 May 2009       49.5         21       4 Jun 2009       49.5         22       5 Jun 2009       49.5         23       7 Jun 2009       49.5         24       12 Jun 2009       49.5         25       17 Jun 2009       49.5         26       18 Jun 2009       poly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-----------------------|-------------------|-----------------------------------|-------------------|---------------|--------------------|------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| conditions            | ANOC [C           | (ppbv) (pj                        | 1.6               | 3.1           |                    | 6.3                                      | 6.3 :<br>6.4 1                                                 | 6.3<br>6.4 1<br>6.5 2                                                                                                                               | 6.3<br>6.4 1<br>6.5 2<br>12.9                                                                                                    | 6.3<br>6.4 1<br>6.5 2<br>12.9<br>13.2 2                                                                                                   | 6.3<br>6.4 1<br>6.5 2<br>112.9<br>13.2 2<br>0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6.3<br>6.4<br>12.9<br>13.2<br>0.8<br>1.6                                                                                                                                                                                                                                                                      | 6.3<br>6.4<br>12.9<br>13.2<br>0.8<br>1.6<br>1.6<br>1.6                                                                                                                                                                                                                                                                                               | 6.3<br>6.4<br>112.9<br>113.2<br>0.8<br>11.6<br>11.6<br>1.6<br>1.6                                                                                                                                                                                                                                                                                     | 6.3         6.4         112.9         13.2         2.2         1.6         1.6         1.6         1.6         1.6         1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6.3         112.9         13.2         2.2         1.6         1.6         1.6         1.6         1.6         1.6         1.7         1.8         1.6         1.6         1.7         1.8         1.9         1.10         1.10         1.10         1.10         1.10         1.10         1.10         1.10         1.10         1.10         1.10         1.10         1.10         1.10         1.10         1.10         1.10         1.10         1.10         1.10         1.10         1.10         1.10         1.10         1.10         1.10         1.10         1.10         1.10         1.10         1.10         1.10         1.10         1.10         1.10         1 | 6.3         13.2         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.7         1.8         1.9         1.6         1.7         1.8         1.9         1.9         1.9         1.9         1.9         1.9         1.9         1.9         1.9         1.9         1.9         1.9         1.9         1.9         1.9         1.9         1.9         1.9         1.9         1.9         1.9         1.9         1.9         1.9         1.9         1.9         1.9         1.9         1.9         1.9         1.9         1.9         1.9         1.9         1.9         1.9         1.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.3         6.4         112.9         13.2         2.9         1.6         1.6         3.3         3.3         1.6         2.2         3.3         1.5         2.2         3.3         1.5         2.2         3.3         3.3         1.5         2.2         3.3         3.3         3.3         2.2         3.3         3.3         3.3         2.2         3.3         3.3         3.3         3.3         3.3         3.3         3.3         3.3         3.3         3.3         3.3         3.3         3.3         3.3         3.3         3.3         3.3         3.3         3.3         3.3         3.3         3.3         3.3         3.3 <t< td=""><td>6.3         13.2         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.7         1.8         1.9         1.9         1.10         1.10         1.10         1.10         1.10         1.10         1.10         1.10         1.10         1.10         1.10         1.10         1.10         1.10         1.10         1.10         1.10         1.10         1.10         1.10         1.10         1.10         1.10         1.10         1.10         1.10         1.10         1.10         1.10         1.10         1.10         1.10         1.10         1.10&lt;</td><td>6.5<br/>6.5<br/>1.5<br/>6.5<br/>1.5<br/>6.5<br/>1.5<br/>6.5<br/>1.5<br/>6.5<br/>1.5<br/>6.5<br/>1.5<br/>6.5<br/>1.5<br/>6.5<br/>1.5<br/>6.5<br/>1.5<br/>6.5<br/>1.5<br/>6.5<br/>1.5<br/>6.5<br/>1.5<br/>6.5<br/>1.5<br/>6.5<br/>1.5<br/>6.5<br/>1.5<br/>6.5<br/>1.5<br/>6.5<br/>1.5<br/>6.5<br/>1.5<br/>6.5<br/>1.5<br/>6.5<br/>1.5<br/>6.5<br/>1.5<br/>6.5<br/>1.5<br/>6.5<br/>1.5<br/>6.5<br/>1.5<br/>6.5<br/>1.5<br/>6.5<br/>1.5<br/>6.5<br/>1.5<br/>6.5<br/>1.5<br/>6.5<br/>1.5<br/>6.5<br/>1.5<br/>6.5<br/>1.5<br/>6.5<br/>1.5<br/>6.5<br/>1.5<br/>6.5<br/>1.5<br/>6.5<br/>1.5<br/>6.5<br/>1.5<br/>6.5<br/>1.5<br/>6.5<br/>1.5<br/>6.5<br/>1.5<br/>6.5<br/>1.5<br/>6.5<br/>1.5<br/>6.5<br/>1.5<br/>6.5<br/>1.5<br/>6.5<br/>1.5<br/>6.5<br/>1.5<br/>6.5<br/>1.5<br/>6.5<br/>1.5<br/>6.5<br/>1.5<br/>6.5<br/>1.5<br/>6.5<br/>1.5<br/>6.5<br/>1.5<br/>6.5<br/>1.5<br/>6.5<br/>1.5<br/>6.5<br/>1.5<br/>6.5<br/>1.5<br/>6.5<br/>1.5<br/>6.5<br/>1.5<br/>6.5<br/>1.5<br/>6.5<br/>1.5<br/>6.5<br/>1.5<br/>6.5<br/>1.5<br/>6.5<br/>1.5<br/>6.5<br/>1.5<br/>6.5<br/>1.5<br/>6.5<br/>1.5<br/>6.5<br/>1.5<br/>6.5<br/>1.5<br/>6.5<br/>1.5<br/>6.5<br/>1.5<br/>6.5<br/>1.5<br/>6.5<br/>1.5<br/>6.5<br/>1.5<br/>1.5<br/>1.5<br/>1.5<br/>1.5<br/>1.5<br/>1.5<br/>1</td><td>6.3         112.9         12.9         12.9         12.9         12.9         12.9         12.9         12.9         12.9         12.9         12.8         12.8         12.8</td><td><math display="block">\begin{array}{cccccccccccccccccccccccccccccccccccc</math></td><td>6.3         6.4         112.9         12.9         12.9         12.9         12.9         12.9         12.9         12.9         12.9         12.9         12.9         12.9         12.9         12.8         13.1         13.4</td><td>6.3         6.4         112.9         12.9         12.9         12.9         12.9         12.9         12.9         12.9         12.9         12.9         12.9         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8</td><td>6.3         6.4         112.9         13.2         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.7         1.3.1         1.1.4         1.2.8         1.3.1         1.1.4         1.2.4</td><td><math display="block">\begin{array}{cccccccccccccccccccccccccccccccccccc</math></td><td></td><td></td><td></td></t<> | 6.3         13.2         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.7         1.8         1.9         1.9         1.10         1.10         1.10         1.10         1.10         1.10         1.10         1.10         1.10         1.10         1.10         1.10         1.10         1.10         1.10         1.10         1.10         1.10         1.10         1.10         1.10         1.10         1.10         1.10         1.10         1.10         1.10         1.10         1.10         1.10         1.10         1.10         1.10         1.10<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6.5<br>6.5<br>1.5<br>6.5<br>1.5<br>6.5<br>1.5<br>6.5<br>1.5<br>6.5<br>1.5<br>6.5<br>1.5<br>6.5<br>1.5<br>6.5<br>1.5<br>6.5<br>1.5<br>6.5<br>1.5<br>6.5<br>1.5<br>6.5<br>1.5<br>6.5<br>1.5<br>6.5<br>1.5<br>6.5<br>1.5<br>6.5<br>1.5<br>6.5<br>1.5<br>6.5<br>1.5<br>6.5<br>1.5<br>6.5<br>1.5<br>6.5<br>1.5<br>6.5<br>1.5<br>6.5<br>1.5<br>6.5<br>1.5<br>6.5<br>1.5<br>6.5<br>1.5<br>6.5<br>1.5<br>6.5<br>1.5<br>6.5<br>1.5<br>6.5<br>1.5<br>6.5<br>1.5<br>6.5<br>1.5<br>6.5<br>1.5<br>6.5<br>1.5<br>6.5<br>1.5<br>6.5<br>1.5<br>6.5<br>1.5<br>6.5<br>1.5<br>6.5<br>1.5<br>6.5<br>1.5<br>6.5<br>1.5<br>6.5<br>1.5<br>6.5<br>1.5<br>6.5<br>1.5<br>6.5<br>1.5<br>6.5<br>1.5<br>6.5<br>1.5<br>6.5<br>1.5<br>6.5<br>1.5<br>6.5<br>1.5<br>6.5<br>1.5<br>6.5<br>1.5<br>6.5<br>1.5<br>6.5<br>1.5<br>6.5<br>1.5<br>6.5<br>1.5<br>6.5<br>1.5<br>6.5<br>1.5<br>6.5<br>1.5<br>6.5<br>1.5<br>6.5<br>1.5<br>6.5<br>1.5<br>6.5<br>1.5<br>6.5<br>1.5<br>6.5<br>1.5<br>6.5<br>1.5<br>6.5<br>1.5<br>6.5<br>1.5<br>6.5<br>1.5<br>6.5<br>1.5<br>6.5<br>1.5<br>6.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.3         112.9         12.9         12.9         12.9         12.9         12.9         12.9         12.9         12.9         12.9         12.8         12.8         12.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6.3         6.4         112.9         12.9         12.9         12.9         12.9         12.9         12.9         12.9         12.9         12.9         12.9         12.9         12.9         12.8         13.1         13.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.3         6.4         112.9         12.9         12.9         12.9         12.9         12.9         12.9         12.9         12.9         12.9         12.9         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.3         6.4         112.9         13.2         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.7         1.3.1         1.1.4         1.2.8         1.3.1         1.1.4         1.2.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                       | $ M_0 $           | pbv) (µ                           | 50 0.             | 50 1.         | ג <u>ט</u> - יז    |                                          | 100 <u> </u>                                                   | 6. 4 5                                                                                                                                              | 50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50                                                                         | 200<br>100<br>200<br>50<br>4. 9<br>50<br>15<br>50<br>15<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>5                        | 200<br>200<br>50<br>9.200<br>50<br>9.200<br>50<br>9.200<br>50<br>9.200<br>50<br>9.200<br>50<br>9.200<br>50<br>9.200<br>9.200<br>9.200<br>9.200<br>9.200<br>9.200<br>9.200<br>9.200<br>9.200<br>9.200<br>9.200<br>9.200<br>9.200<br>9.200<br>9.200<br>9.200<br>9.200<br>9.200<br>9.200<br>9.200<br>9.200<br>9.200<br>9.200<br>9.200<br>9.200<br>9.200<br>9.200<br>9.200<br>9.200<br>9.200<br>9.200<br>9.200<br>9.200<br>9.200<br>9.200<br>9.200<br>9.200<br>9.200<br>9.200<br>9.200<br>9.200<br>9.200<br>9.200<br>9.200<br>9.200<br>9.200<br>9.200<br>9.200<br>9.200<br>9.200<br>9.200<br>9.200<br>9.200<br>9.200<br>9.200<br>9.200<br>9.200<br>9.200<br>9.200<br>9.200<br>9.200<br>9.200<br>9.200<br>9.200<br>9.200<br>9.200<br>9.200<br>9.200<br>9.200<br>9.200<br>9.200<br>9.200<br>9.200<br>9.200<br>9.200<br>9.200<br>9.200<br>9.200<br>9.200<br>9.200<br>9.200<br>9.200<br>9.200<br>9.200<br>9.200<br>9.200<br>9.200<br>9.200<br>9.200<br>9.200<br>9.200<br>9.200<br>9.200<br>9.200<br>9.200<br>9.200<br>9.200<br>9.200<br>9.200<br>9.200<br>9.200<br>9.200<br>9.200<br>9.200<br>9.200<br>9.200<br>9.200<br>9.200<br>9.200<br>9.200<br>9.200<br>9.200<br>9.200<br>9.200<br>9.200<br>9.200<br>9.200<br>9.200<br>9.200<br>9.2000<br>9.2000<br>9.2000<br>9.2000<br>9.2000<br>9.2000<br>9.2000<br>9.2000<br>9.2000<br>9.2000<br>9.2000<br>9.2000<br>9.2000<br>9.2000<br>9.2000<br>9.2000<br>9.2000<br>9.2000<br>9.2000<br>9.2000<br>9.2000<br>9.2000<br>9.2000<br>9.2000<br>9.2000<br>9.2000<br>9.2000<br>9.2000<br>9.2000<br>9.2000<br>9.2000<br>9.2000<br>9.2000<br>9.2000<br>9.2000<br>9.2000<br>9.2000<br>9.2000<br>9.2000<br>9.2000<br>9.2000<br>9.2000<br>9.2000<br>9.2000<br>9.2000<br>9.2000<br>9.2000<br>9.2000<br>9.2000<br>9.2000<br>9.2000<br>9.2000<br>9.2000<br>9.2000<br>9.2000<br>9.2000<br>9.2000<br>9.2000<br>9.2000<br>9.2000<br>9.2000<br>9.2000<br>9.2000<br>9.2000<br>9.2000<br>9.2000<br>9.2000<br>9.2000<br>9.2000<br>9.2000<br>9.2000<br>9.2000<br>9.2000<br>9.2000<br>9.2000<br>9.2000<br>9.2000<br>9.2000<br>9.2000<br>9.2000<br>9.2000<br>9.2000<br>9.2000<br>9.2000<br>9.2000<br>9.2000<br>9.2000<br>9.2000<br>9.2000<br>9.2000<br>9.2000<br>9.2000<br>9.2000<br>9.2000<br>9.2000<br>9.2000<br>9.2000<br>9.2000<br>9.2000<br>9.2000<br>9.2000<br>9.2000<br>9.2000<br>9.2000<br>9.2000<br>9.2000<br>9.2000<br>9.2000<br>9.2000<br>9.2000<br>9.2000<br>9.2000<br>9.2000<br>9.2000<br>9.2000<br>9.2000<br>9.2000<br>9.2000<br>9.2000<br>9.2000<br>9.2000<br>9.2000<br>9.2000<br>9.2000<br>9.2000<br>9.2000<br>9.2000<br>9.2000<br>9.2000<br>9.20000<br>9.20000<br>9.20000<br>9.20000000000 | 50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50                                                                                                                                                                                                                                                      | 50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50                                                                                                                                                                                                                                                                                             | 200<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                         | 50 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0 | 50<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0. | 50 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 500<br>500<br>500<br>500<br>500<br>500<br>500<br>500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c} 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 10$                                                                                                                                                                                                                            | $\begin{array}{c} 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 10$                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c} 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 10$                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c} 50 \\ 50 \\ 50 \\ 50 \\ 50 \\ 50 \\ 50 \\ 50 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Measured of           | rg)outflow        | $\lg m^{-3}$ )                    | $4 \pm 0.0$       | $.1 \pm 0.0$  | $4\pm0.1$          | $3 \pm 0.3$                              |                                                                | $3\pm0.2$                                                                                                                                           | $3\pm0.2$<br>$3\pm0.4$                                                                                                           | $3 \pm 0.2$<br>$3 \pm 0.4$<br>$9 \pm 0.3$                                                                                                 | $3 \pm 0.2$<br>$3 \pm 0.4$<br>$3 \pm 0.3$<br>$1 \pm 0.3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $3 \pm 0.2$<br>$3 \pm 0.4$<br>$3 \pm 0.3$<br>$1 \pm 0.3$<br>$1 \pm 0.0$<br>$4 \pm 0.0$                                                                                                                                                                                                                        | $3 \pm 0.2$<br>$3 \pm 0.4$<br>$9 \pm 0.3$<br>$1 \pm 0.0$<br>$4 \pm 0.0$<br>$9 \pm 0.0$                                                                                                                                                                                                                                                               | $3 \pm 0.2$<br>$3 \pm 0.2$<br>$3 \pm 0.4$<br>$1 \pm 0.0$<br>$4 \pm 0.0$<br>$9 \pm 0.0$<br>$4 \pm 0.0$<br>$4 \pm 0.0$                                                                                                                                                                                                                                  | $3 \pm 0.2$<br>$3 \pm 0.2$<br>$3 \pm 0.4$<br>$9 \pm 0.3$<br>$4 \pm 0.0$<br>$9 \pm 0.0$<br>$4 \pm 0.0$<br>$8 \pm 0.0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3 ± 0.2<br>3 ± 0.2<br>9 ± 0.3<br>4 ± 0.0<br>8 ± 0.0<br>9 ± 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3 ±0.2<br>3 ±0.2<br>9 ±0.3<br>9 ±0.0<br>9 ±0.0<br>8 ±0.0<br>9 ±0.0<br>9 ±0.0<br>3 ±0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3 ± 0.2<br>3 ± 0.2<br>3 ± 0.2<br>4 ± 0.0<br>4 ± 0.0<br>5 ± 0.0<br>4 ± 0.0<br>5 ±                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3 ± 0.2<br>3 ± 0.2<br>3 ± 0.2<br>4 ± 0.0<br>9 ± 0.0<br>3 ± 0.0<br>3 ± 0.0<br>2 ± 0.0<br>2 ± 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3 ±0.2<br>3 ±0.2<br>9 ±0.3<br>9 ±0.3<br>9 ±0.0<br>3 ±0.0<br>9 ±0.0<br>3 ±0.0<br>3 ±0.0<br>3 ±0.0<br>3 ±0.2<br>2 ±0.0<br>3 ±0.0<br>3 ±0.2<br>2 ±0.0<br>3 ±0.0<br>3 ±0.2<br>3 ±0.2<br>3 ±0.0<br>3 ±0.0<br>4 ±0.0<br>5 ±0.0                                                                                                                                                                                                                                                                | 3 ±0.2<br>3 ±0.2<br>3 ±0.2<br>4 ±0.0<br>3 ±0.0<br>4 ±0.0<br>3 ±0.0<br>3 ±0.2<br>5 ±0.0<br>3 ±0.0<br>3 ±0.2<br>5 ±0.0<br>3 ±0.0<br>5 ±0.0                                                                                                                                                                                                                                                                | $3 \pm 0.2$<br>$3 \pm 0.2$<br>$3 \pm 0.2$<br>$4 \pm 0.0$<br>$4 \pm 0.0$<br>$4 \pm 0.0$<br>$4 \pm 0.0$<br>$3 \pm 0.0$ | $3\pm0.2$<br>$3\pm0.2$<br>$3\pm0.4$<br>$4\pm0.0$<br>$9\pm0.0$<br>$8\pm0.0$<br>$9\pm0.0$<br>$3\pm0.0$<br>$3\pm0.2$<br>$2\pm0.0$<br>$3\pm0.0$<br>$3\pm0.2$<br>$2\pm0.0$<br>$3\pm0.0$<br>$3\pm0.2$<br>$1\pm0.4$<br>$3\pm0.2$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>$3\pm0.0$<br>3 | 3 ± 0.2<br>3 ± 0.2<br>3 ± 0.2<br>4 ± 0.0<br>9 ± 0.0<br>9 ± 0.0<br>9 ± 0.0<br>3 ± 0.2<br>2 ± 0.0<br>3 ± 0.2<br>3 ± 0.2<br>3 ± 0.2<br>3 ± 0.2<br>3 ± 0.2<br>3 ± 0.0<br>3 ± 0.2<br>3 ± 0.0<br>3 ± 0.2<br>3 ± 0.0<br>3 ±                                                                     | 3 ± 0.2<br>3 ± 0.2<br>3 ± 0.2<br>4 ± 0.0<br>4 ± 0.0<br>4 ± 0.0<br>3 ± 0.2<br>3 ± 0.0<br>3 ± 0.2<br>3 ± 0.0<br>3 ± 0.2<br>3 ± 0.0<br>3 ± 0.2<br>4 ± 0.0<br>5 ±                                                                     | $3 \pm 0.2$<br>$3 \pm 0.2$<br>$3 \pm 0.2$<br>$4 \pm 0.0$<br>$9 \pm 0.0$<br>$4 \pm 0.0$<br>$9 \pm 0.0$<br>$3 \pm 0.0$ | $3 \pm 0.2$<br>$3 \pm 0.2$<br>$3 \pm 0.2$<br>$3 \pm 0.4$<br>$4 \pm 0.0$<br>$3 \pm 0.2$<br>$3 \pm 0.2$ | $3 \pm 0.2$<br>$3 \pm 0.2$<br>$3 \pm 0.2$<br>$3 \pm 0.2$<br>$4 \pm 0.0$<br>$3 \pm 0.0$ | $3 \pm 0.2$<br>$3 \pm 0.2$<br>$3 \pm 0.2$<br>$3 \pm 0.2$<br>$3 \pm 0.0$<br>$3 \pm 0.0$ |
| quantities            | 0:C H             |                                   | 0.49 1.           | 0.49 1.       | 0.45 1.            | 0.45 1.                                  | 0.43 1.                                                        | n 4n 1                                                                                                                                              | 0.70 1.                                                                                                                          | 0.36 1.                                                                                                                                   | 0.36 1.<br>0.53 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.36 1.<br>0.53 1.<br>0.53 1.                                                                                                                                                                                                                                                                                 | 0.36<br>0.53<br>0.53<br>0.51<br>1                                                                                                                                                                                                                                                                                                                    | 0.36 1<br>0.53 1<br>0.53 1<br>0.51 1<br>0.51 1                                                                                                                                                                                                                                                                                                        | 0.36<br>0.53<br>0.53<br>1<br>0.53<br>1<br>0.53<br>1<br>0.53<br>1<br>0.53<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.53<br>0.53<br>0.53<br>0.53<br>1<br>0.53<br>1<br>0.53<br>1<br>1<br>0.53<br>1<br>1<br>0.53<br>1<br>1<br>1<br>0.53<br>1<br>1<br>1<br>0.53<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.36 11<br>0.53 11<br>0.53 11<br>0.51 11<br>0.53 11<br>0.53 11<br>0.53 11<br>0.53 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.53 11<br>0.53 11<br>0.53 11<br>0.51 11<br>0.53 11<br>0.55 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.36 11<br>0.53 11<br>0.53 11<br>0.51 11<br>0.53 11<br>0.55 1 | 0.53 11<br>0.53 11<br>0.54 11<br>0.55 1 | 0.53 11<br>0.53 11<br>0.55 1 | 0.36<br>0.53<br>0.53<br>0.53<br>0.53<br>0.53<br>0.53<br>0.53<br>0.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.53 11<br>0.53 1                                                                                                                                              | 0.53<br>0.53<br>0.53<br>0.53<br>0.53<br>0.53<br>0.53<br>0.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.53<br>0.53<br>0.53<br>0.53<br>0.53<br>0.53<br>0.53<br>0.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                       | <br>              | (A                                | .51               | .49 1         | .48 1              | .49 1                                    | .49                                                            |                                                                                                                                                     | .48                                                                                                                              | .49                                                                                                                                       | .49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .48<br>.57<br>.52                                                                                                                                                                                                                                                                                             | .49<br>.57<br>.52                                                                                                                                                                                                                                                                                                                                    | .52<br>.51<br>.51                                                                                                                                                                                                                                                                                                                                     | .49<br>.51<br>.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .48<br>.57<br>.52<br>.51<br>.51<br>.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | .50<br>50<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .48<br>.49<br>.57<br>.52<br>.51<br>.51<br>.51<br>.51<br>.51<br>.51<br>.51<br>.51<br>.51<br>.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .48<br>.49<br>.57<br>.51<br>.51<br>.51<br>.51<br>.51<br>.51<br>.51<br>.51<br>.51<br>.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 49<br>50<br>49<br>50<br>50<br>49<br>49<br>49<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 449<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 449<br>449<br>449<br>50<br>449<br>449<br>1<br>449<br>1<br>449<br>1<br>448<br>1<br>448<br>1<br>448<br>1<br>449<br>1<br>449<br>1<br>449<br>449<br>449<br>449                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 449<br>449<br>449<br>449<br>449<br>449<br>449<br>448<br>448                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 51<br>51<br>51<br>51<br>51<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 51<br>51<br>51<br>51<br>51<br>51<br>51<br>51<br>51<br>51<br>51<br>51<br>51<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 448<br>550<br>550<br>550<br>550<br>550<br>550<br>550<br>55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .448       .51       .51       .51       .51       .51       .51       .51       .51       .51       .51       .51       .51       .51       .51       .51       .51       .51       .51       .51       .51       .51       .51       .51       .51       .52       .52       .51       .51       .51       .51       .51       .51       .52       .52       .53       .54       .54       .55       .51       .51       .52       .53       .54       .54       .55       .51       .51       .52       .53       .54       .54       .55       .55       .51       .51       .51       .51       .52       .53       .54       .54       .55       .55   <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 448<br>448<br>448<br>448<br>448<br>448<br>448<br>448                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                       | $\rho_{ m org}$   | MS-SMPS)<br>(kg m <sup>-3</sup> ) | I                 | $810 \pm 190$ | $450\pm110$        | $400 \pm 130$                            | $1520 \pm 90$                                                  | $1330\pm60$                                                                                                                                         |                                                                                                                                  | $1300 \pm 70$                                                                                                                             | $1300 \pm 70$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1300±70<br>-                                                                                                                                                                                                                                                                                                  | 300 ± 70<br>-<br>-                                                                                                                                                                                                                                                                                                                                   | 300 ± 70<br>-<br>-<br>-                                                                                                                                                                                                                                                                                                                               | 1300 ± 70<br>-<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 300±70<br> -<br> -<br> -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 300±70<br>-<br>-<br>-<br>-<br>-<br>520±100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 300±70<br>-<br>-<br>-<br>-<br>-<br>-<br>520±100<br>430±140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 300 ± 70<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $ 300 \pm 70 $<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $ 300 \pm 70 $<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $ 300 \pm 70 $<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 300±70<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $ 300 \pm 70 $<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $ 300 \pm 70 $<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $ 300 \pm 70 $<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $ 300 \pm 70 $<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $ 300 \pm 70 $<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $ 300 \pm 70 $<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Der                   | OM:OC             |                                   | 1.82              | 1.79          | 1.73               | 1.73                                     | 1.71                                                           | 1.66                                                                                                                                                |                                                                                                                                  | 1.61                                                                                                                                      | 1.61<br>1.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.61<br>1.90<br>1.87                                                                                                                                                                                                                                                                                          | 1.61<br>1.90<br>1.87<br>1.83                                                                                                                                                                                                                                                                                                                         | 1.61<br>1.90<br>1.87<br>1.83<br>1.86                                                                                                                                                                                                                                                                                                                  | 1.61<br>1.90<br>1.87<br>1.83<br>1.83<br>1.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.61<br>1.90<br>1.87<br>1.83<br>1.86<br>1.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.61<br>1.90<br>1.87<br>1.83<br>1.86<br>1.85<br>1.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c} 1.61 \\ 1.90 \\ 1.87 \\ 1.83 \\ 1.86 \\ 1.85 \\ 1.85 \\ 1.85 \\ 1.85 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.61<br>1.90<br>1.87<br>1.83<br>1.86<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.61<br>1.90<br>1.87<br>1.83<br>1.86<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.61<br>1.90<br>1.87<br>1.83<br>1.86<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.77<br>1.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.61<br>1.90<br>1.87<br>1.83<br>1.86<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.77<br>1.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.61<br>1.90<br>1.87<br>1.83<br>1.83<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.77<br>1.69<br>1.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.61<br>1.90<br>1.87<br>1.83<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.77<br>1.69<br>1.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{c} 1.61\\ 1.90\\ 1.87\\ 1.83\\ 1.86\\ 1.85\\ 1.85\\ 1.85\\ 1.69\\ 1.65\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\$                                                                                                                                                                           | $\begin{array}{c} 1.61\\ 1.90\\ 1.83\\ 1.86\\ 1.85\\ 1.85\\ 1.85\\ 1.69\\ 1.65\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c} 1.61\\ 1.90\\ 1.83\\ 1.86\\ 1.85\\ 1.85\\ 1.85\\ 1.69\\ 1.65\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c} 1.61\\ 1.90\\ 1.87\\ 1.88\\ 1.86\\ 1.85\\ 1.85\\ 1.69\\ 1.65\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\$                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c} 1.61\\ 1.90\\ 1.87\\ 1.86\\ 1.85\\ 1.85\\ 1.69\\ 1.65\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.85\\ 1.56\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ived quan             | $\overline{OS_c}$ |                                   | -0.54             | -0.51         | -0.58              | -0.59                                    | -0.62                                                          | -0.69                                                                                                                                               |                                                                                                                                  | -0.77                                                                                                                                     | -0.77<br>-0.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -0.77<br>-0.51<br>-0.46                                                                                                                                                                                                                                                                                       | -0.77<br>-0.51<br>-0.46<br>-0.47                                                                                                                                                                                                                                                                                                                     | -0.77<br>-0.51<br>-0.46<br>-0.47<br>-0.45                                                                                                                                                                                                                                                                                                             | -0.77<br>-0.51<br>-0.46<br>-0.47<br>-0.45<br>-0.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -0.77<br>-0.51<br>-0.46<br>-0.47<br>-0.47<br>-0.45<br>-0.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -0.77<br>-0.51<br>-0.46<br>-0.47<br>-0.47<br>-0.45<br>-0.45<br>-0.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.77<br>-0.51<br>-0.46<br>-0.47<br>-0.45<br>-0.45<br>-0.43<br>-0.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{r} -0.77\\ -0.51\\ -0.46\\ -0.47\\ -0.45\\ -0.45\\ -0.43\\ -0.48\\ -0.48\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{r} -0.77\\ -0.51\\ -0.46\\ -0.47\\ -0.47\\ -0.45\\ -0.43\\ -0.43\\ -0.48\\ -0.50\\ -0.53\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{r} -0.77 \\ -0.51 \\ -0.46 \\ -0.47 \\ -0.45 \\ -0.45 \\ -0.43 \\ -0.43 \\ -0.44 \\ -0.48 \\ -0.50 \\ -0.55 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{r} -0.77 \\ -0.51 \\ -0.46 \\ -0.47 \\ -0.45 \\ -0.45 \\ -0.43 \\ -0.43 \\ -0.44 \\ -0.43 \\ -0.43 \\ -0.43 \\ -0.43 \\ -0.43 \\ -0.45 \\ -0.50 \\ -0.55 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{r} -0.77 \\ -0.51 \\ -0.46 \\ -0.47 \\ -0.45 \\ -0.45 \\ -0.44 \\ -0.43 \\ -0.44 \\ -0.43 \\ -0.43 \\ -0.44 \\ -0.43 \\ -0.45 \\ -0.50 \\ -0.55 \\ -0.65 \\ -0.65 \\ -0.75 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{r} -0.77 \\ -0.51 \\ -0.46 \\ -0.47 \\ -0.45 \\ -0.46 \\ -0.43 \\ -0.44 \\ -0.48 \\ -0.50 \\ -0.53 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.75 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{r} -0.77 \\ -0.51 \\ -0.46 \\ -0.47 \\ -0.45 \\ -0.46 \\ -0.43 \\ -0.43 \\ -0.43 \\ -0.43 \\ -0.43 \\ -0.44 \\ -0.43 \\ -0.50 \\ -0.55 \\ -0.65 \\ -0.65 \\ -0.45 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{r} -0.77 \\ -0.46 \\ -0.47 \\ -0.45 \\ -0.46 \\ -0.43 \\ -0.43 \\ -0.44 \\ -0.43 \\ -0.43 \\ -0.53 \\ -0.53 \\ -0.65 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{r} -0.77 \\ -0.46 \\ -0.47 \\ -0.46 \\ -0.44 \\ -0.43 \\ -0.44 \\ -0.43 \\ -0.43 \\ -0.53 \\ -0.53 \\ -0.65 \\ -0.65 \\ -0.46 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{r} -0.77 \\ -0.51 \\ -0.46 \\ -0.47 \\ -0.45 \\ -0.43 \\ -0.43 \\ -0.44 \\ -0.43 \\ -0.43 \\ -0.44 \\ -0.43 \\ -0.53 \\ -0.53 \\ -0.55 \\ -0.65 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{r} -0.77 \\ -0.51 \\ -0.46 \\ -0.47 \\ -0.45 \\ -0.43 \\ -0.43 \\ -0.43 \\ -0.43 \\ -0.43 \\ -0.43 \\ -0.44 \\ -0.43 \\ -0.53 \\ -0.53 \\ -0.55 \\ -0.65 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.45 \\ -0.68 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| tities at steady      | β                 | (h <sup>-1</sup> )                | $1.04 \pm 0.11$   | $1.04\pm0.11$ | $1.04\pm0.11$      | $1.04\pm0.11$                            | $1.04\pm0.11$                                                  | $1.04\pm0.11$                                                                                                                                       |                                                                                                                                  | $1.04\pm0.11$                                                                                                                             | $1.04 \pm 0.11$<br>$1.04 \pm 0.11$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $1.04 \pm 0.11$<br>$1.04 \pm 0.11$<br>$1.04 \pm 0.11$                                                                                                                                                                                                                                                         | $\begin{array}{c} 1.04\pm 0.11\\ 1.04\pm 0.11\\ 1.04\pm 0.11\\ 0.49\pm 0.03 \end{array}$                                                                                                                                                                                                                                                             | $\begin{array}{c} 1.04\pm 0.11\\ 1.04\pm 0.11\\ 1.04\pm 0.11\\ 0.49\pm 0.03\\ 1.04\pm 0.11\end{array}$                                                                                                                                                                                                                                                | $\begin{array}{c} 1.04\pm 0.11\\ 1.04\pm 0.11\\ 1.04\pm 0.11\\ 0.49\pm 0.03\\ 1.04\pm 0.11\\ 1.04\pm 0.11\\ 1.04\pm 0.11\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c} 1.04\pm 0.11\\ 1.04\pm 0.11\\ 1.04\pm 0.11\\ 1.04\pm 0.11\\ 0.49\pm 0.03\\ 1.04\pm 0.11\\ 1.04\pm 0.11\\ 1.04\pm 0.11\\ 1.04\pm 0.11\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{c} 1.04\pm 0.11\\ 1.04\pm 0.11\\ 1.04\pm 0.11\\ 0.49\pm 0.03\\ 1.04\pm 0.11\\ 1.04\pm 0.11\\ 1.04\pm 0.11\\ 1.04\pm 0.11\\ 1.04\pm 0.11\\ 1.04\pm 0.11\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c} 1.04\pm 0.11\\ 1.04\pm 0.11\\ 1.04\pm 0.11\\ 0.49\pm 0.03\\ 1.04\pm 0.11\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c} 1.04\pm 0.11\\ 1.04\pm 0.11\\ 1.04\pm 0.11\\ 0.49\pm 0.03\\ 1.04\pm 0.11\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c} 1.04\pm 0.11\\ 1.04\pm 0.11\\ 1.04\pm 0.11\\ 0.49\pm 0.03\\ 1.04\pm 0.11\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{c} 1.04\pm 0.11\\ 1.04\pm 0.11\\ 1.04\pm 0.11\\ 0.49\pm 0.03\\ 1.04\pm 0.11\\ 1.04\pm 0.11\\$                                                                                                                                                                                                                                                    | $\begin{array}{c} 1.04\pm 0.11\\ 1.04\pm 0.11\\$                                                                                                                                                                                                                           | $\begin{array}{c} 1.04\pm 0.11\\ 1.04\pm 0.11\\$                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c} 1.04\pm 0.11\\ 1.04\pm 0.11\\ 1.04\pm 0.11\\ 0.49\pm 0.03\\ 1.04\pm 0.11\\ 1.04\pm 0.11\\$ | $\begin{array}{c} 1.04\pm 0.11\\ 1.04\pm 0.11\\$ | $\begin{array}{c} 1.04\pm 0.11\\ 1.04\pm 0.11\\$                                                                                                                                                                                                                           | $\begin{array}{c} 1.04 \pm 0.11 \\ 1.04 \pm 0.$                                                                                                                                                                                                                                                                                                    | $\begin{array}{c} 1.04\pm 0.11\\ 1.04\pm 0.11\\$                                                                                                                                                                                                                           | $\begin{array}{c} 1.04\pm 0.11\\ 1.04\pm 0.11\\$                                                                                                                                                                                                                           |
| s                     |                   | (µg m <sup>-</sup>                | $1.8 \pm 0.2$     | $5.3\pm0.4$   | $15.8 \pm 1.4$     | $20.0\pm2.0$                             | 9 C+7 DC                                                       |                                                                                                                                                     | $44.4 \pm 4.1$                                                                                                                   | $25.0 \pm 2.0$<br>$44.4 \pm 4.1$<br>$75.8 \pm 6.5$                                                                                        | $27.0 \pm 2.00$<br>$44.4 \pm 4.1$<br>$75.8 \pm 6.5$<br>$0.5 \pm 0.1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c} 22.0 \pm 2.0 \\ 44.4 \pm 4.1 \\ 75.8 \pm 6.5 \\ 0.5 \pm 0.1 \\ 1.7 \pm 0.2 \end{array}$                                                                                                                                                                                                     | $\begin{array}{c} 22.0 \pm 2.0 \\ 44.4 \pm 4.1 \\ 75.8 \pm 6.5 \\ 0.5 \pm 0.1 \\ 1.7 \pm 0.2 \\ 2.5 \pm 0.1 \end{array}$                                                                                                                                                                                                                             | $\begin{array}{c} 22.0 \pm 2.0 \\ 44.4 \pm 4.1 \\ 75.8 \pm 6.5 \\ 0.5 \pm 0.1 \\ 1.7 \pm 0.2 \\ 2.5 \pm 0.1 \\ 1.9 \pm 0.2 \end{array}$                                                                                                                                                                                                               | $\begin{array}{c} 44.4 \pm 4.1 \\ 75.8 \pm 6.5 \\ 0.5 \pm 0.1 \\ 1.7 \pm 0.2 \\ 2.5 \pm 0.1 \\ 1.9 \pm 0.2 \\ 3.7 \pm 0.3 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c} 44.4\pm4.1\\ 75.8\pm6.5\\ 0.5\pm0.1\\ 1.7\pm0.2\\ 2.5\pm0.1\\ 1.9\pm0.2\\ 3.7\pm0.3\\ 4.5\pm0.4\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c} 44.4\pm4.1\\ 75.8\pm6.5\\ 0.5\pm0.1\\ 1.7\pm0.2\\ 2.5\pm0.1\\ 1.9\pm0.2\\ 3.7\pm0.3\\ 4.5\pm0.4\\ 6.1\pm0.5\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c} 44.4\pm4.1\\ 75.8\pm6.5\\ 0.5\pm0.1\\ 1.7\pm0.2\\ 2.5\pm0.1\\ 1.9\pm0.2\\ 3.7\pm0.3\\ 4.5\pm0.4\\ 6.1\pm0.5\\ 15.2\pm1.3\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c} 44.4\pm4.1\\ 75.8\pm6.5\\ 0.5\pm0.1\\ 1.7\pm0.2\\ 2.5\pm0.1\\ 1.9\pm0.2\\ 3.7\pm0.3\\ 4.5\pm0.4\\ 6.1\pm0.5\\ 15.2\pm1.3\\ 19.9\pm1.7\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c} 44.4\pm4.1\\ 75.8\pm6.5\\ 0.5\pm0.1\\ 1.7\pm0.2\\ 2.5\pm0.1\\ 1.9\pm0.2\\ 3.7\pm0.3\\ 4.5\pm0.4\\ 6.1\pm0.5\\ 15.2\pm1.3\\ 19.9\pm1.7\\ 25.3\pm2.3\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{c} 44.4\pm4.1\\ 75.8\pm6.5\\ 0.5\pm0.1\\ 1.7\pm0.2\\ 2.5\pm0.1\\ 1.9\pm0.2\\ 3.7\pm0.3\\ 4.5\pm0.4\\ 6.1\pm0.5\\ 15.2\pm1.3\\ 19.9\pm1.7\\ 25.3\pm2.3\\ 44.4\pm3.8\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c} 44.4\pm4.1\\ 75.8\pm6.5\\ 0.5\pm0.1\\ 1.7\pm0.2\\ 2.5\pm0.1\\ 1.9\pm0.2\\ 3.7\pm0.3\\ 4.5\pm0.4\\ 6.1\pm0.5\\ 15.2\pm1.3\\ 19.9\pm1.7\\ 25.3\pm2.3\\ 44.4\pm3.8\\ 51.4\pm4.3\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c} 44.4\pm4.1\\ 75.8\pm6.5\\ 0.5\pm0.1\\ 1.7\pm0.2\\ 2.5\pm0.1\\ 1.9\pm0.2\\ 3.7\pm0.3\\ 4.5\pm0.4\\ 6.1\pm0.5\\ 15.2\pm1.3\\ 19.9\pm1.7\\ 25.3\pm2.3\\ 44.4\pm3.8\\ 51.4\pm4.3\\ 8\\ 51.4\pm4.3\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{c} 44.4\pm4.1\\ 75.8\pm6.5\\ 0.5\pm0.1\\ 1.7\pm0.2\\ 2.5\pm0.1\\ 1.9\pm0.2\\ 3.7\pm0.3\\ 4.5\pm0.4\\ 6.1\pm0.5\\ 15.2\pm1.3\\ 19.9\pm1.7\\ 25.3\pm2.3\\ 44.4\pm3.8\\ 51.4\pm4.3\\ 8\\ 1.8\pm0.2\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c} 44.4 \pm 4.1\\ 75.8 \pm 6.5\\ 0.5 \pm 0.1\\ 1.7 \pm 0.2\\ 2.5 \pm 0.1\\ 1.9 \pm 0.2\\ 3.7 \pm 0.3\\ 4.5 \pm 0.4\\ 6.1 \pm 0.5\\ 15.2 \pm 1.3\\ 19.9 \pm 1.7\\ 25.3 \pm 2.3\\ 19.9 \pm 1.7\\ 25.3 \pm 2.3\\ 19.9 \pm 1.7\\ 25.3 \pm 2.3\\ 11.4 \pm 4.3\\ 51.4 \pm 4.3\\ 1.8 \pm 0.2\\ 2.8 \pm 0.3\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c} 44.4\pm4.1\\ 75.8\pm6.5\\ 0.5\pm0.1\\ 1.7\pm0.2\\ 2.5\pm0.1\\ 1.9\pm0.2\\ 3.7\pm0.3\\ 4.5\pm0.4\\ 6.1\pm0.5\\ 15.2\pm1.3\\ 19.9\pm1.7\\ 25.3\pm2.3\\ 44.4\pm3.8\\ 51.4\pm4.3\\ 77.4\pm6.8\\ 1.8\pm0.2\\ 2.8\pm0.3\\ 2.1\pm0.2\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} 44.4\pm4.1\\ 75.8\pm6.5\\ 0.5\pm0.1\\ 1.7\pm0.2\\ 2.5\pm0.1\\ 1.9\pm0.2\\ 3.7\pm0.3\\ 4.5\pm0.4\\ 6.1\pm0.5\\ 15.2\pm1.3\\ 19.9\pm1.7\\ 25.3\pm2.3\\ 44.4\pm3.8\\ 51.4\pm4.3\\ 51.4\pm4.3\\ 1.8\pm0.2\\ 2.8\pm0.3\\ 2.1\pm0.2\\ 227.1\pm19.2\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c} 44.4\pm4.1\\ 75.8\pm6.5\\ 0.5\pm0.1\\ 1.7\pm0.2\\ 2.5\pm0.1\\ 1.9\pm0.2\\ 3.7\pm0.3\\ 4.5\pm0.4\\ 6.1\pm0.5\\ 15.2\pm1.3\\ 19.9\pm1.7\\ 25.3\pm2.3\\ 44.4\pm3.8\\ 51.4\pm4.3\\ 51.4\pm4.3\\ 1.8\pm0.2\\ 2.8\pm0.3\\ 2.1\pm0.2\\ 2.27.1\pm19.2\\ 40.0\pm3.5\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c} 44.4\pm4.1\\ 75.8\pm6.5\\ 0.5\pm0.1\\ 1.7\pm0.2\\ 2.5\pm0.1\\ 1.9\pm0.2\\ 3.7\pm0.3\\ 4.5\pm0.4\\ 6.1\pm0.5\\ 15.2\pm1.3\\ 19.9\pm1.7\\ 25.3\pm2.3\\ 44.4\pm3.8\\ 51.4\pm4.3\\ 51.4\pm4.3\\ 1.8\pm0.2\\ 2.8\pm0.3\\ 2.1\pm0.2\\ 2.27.1\pm19.2\\ 40.0\pm3.5\\ 172.6\pm16.6\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ate                   | Morg.corr         | 3                                 | <b>`</b>          |               |                    |                                          |                                                                |                                                                                                                                                     |                                                                                                                                  |                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

3168

The average ozonolysis lifetime of the first-generation products of  $\beta$ -caryophyllene was about 0.5 h (1860 s) based on a rate constant of  $(1.1 \pm 0.4) \times 10^{-16}$  molecule<sup>-1</sup> cm<sup>3</sup> s<sup>-1</sup> (Shu and Atkinson, 1995; Winterhalter et al., 2009). In comparison, the mean residence time of the Harvard Environmental Chamber for most experiments was 3.6 h (13100 s) (Shilling et al., 2008; King et al., 2009). The CMFR operation also improved the precision and accuracy of yield measurements at low  $M_{\text{org}}$  by providing sufficient observation time for significant signal averaging (Shilling et al., 2008). By establishing a steady state and thereby saturating the surface layers of the Teflon bag material (Matsunaga and Ziemann, 2010), CMFR operation also reduced the effects of wall interactions on reactive and non-reactive exchanges with gas-phase molecules, including the re-partitioning of condensable products (cf. further discussion in the Sect. A of the Supplement).

### 2.2 AMS data analysis

The spectra collected by the HR-ToF-AMS were used to calculate the mass concentrations and the elemental ratios of the particle-phase secondary organic material present in the outflow from the CMFR (Table 2). The spectra were analyzed using the software toolkits Sequential Igor Data Retrieval (SQUIRREL), Peak Integration by Key Analysis (PIKA), and Analytic Procedure for Elemental Separation (APES) (DeCarlo et al., 2006; Aiken et al., 2007). In the analysis, standard relative ionization efficiencies (RIE) were used, corresponding to 1.1 for nitrate, 1.2 for sulfate, 1.4 for organic molecules, 4.0 for ammonium, 1.3 for chloride, and 2.0 for water (Alfarra et al., 2004; Mensah et al., 2011). An AMS collection efficiency (a factor which potentially corrects for undetected particle mass concentration) of 1.0 was used, as supported by the agreement of the AMS-measured mass concentrations with the density-compensated volume concentrations measured by the SMPS (Sect. 2.3). Determination of the air correction factors, several updates to the fragmentation table, and the contributions of organic material to  $CO^+$ and H<sub>x</sub>O<sup>+</sup> signal intensities followed the method described in Chen et al. (2011).

#### 2.3 Material density

Under an assumption of spherical particles, volume-diameter distributions measured by the SMPS can be used in conjunction with mass-diameter distributions measured by the AMS to estimate the particle effective density  $\rho_{eff}$  (kg m<sup>-3</sup>). More specifically,  $\rho_{eff}$  was calculated by dividing the mass-mode particle diameter measured by the AMS (i.e., vacuum aero-dynamic diameter) by the volume-mode diameter measured by the SMPS (i.e., mobility diameter) (DeCarlo et al., 2004; Bahreini et al., 2005; Katrib et al., 2005). Figure S1 shows two examples of the mass-diameter distribution derived from the SMPS measurements compared to that measured by the

AMS for particles in the CMFR outflow. The SMPS massdiameter distributions were derived by multiplying the SMPS volume-diameter distributions by the  $\rho_{eff}$  value that was obtained using the mode diameters. The good agreement between the SMPS and AMS distributions suggests that within detection limits  $\rho_{eff}$  does not vary with diameter. The integrated area under the distributions represents the total particle mass concentration. Figure S2 shows the scatter plot of the total mass concentrations obtained from the AMS measurements against the SMPS-derived concentrations. The slope of  $0.99 \pm 0.02$  indicates that an AMS collection efficiency of unity can be assumed given the measurement uncertainties of the AMS and the SMPS (Matthew et al., 2008; Shilling et al., 2008).

For nonporous spherical particles, effective density is identical to material density (DeCarlo et al., 2004). Past work indicates the applicability of a nonporous spherical morphology for SOM-coated sulfate particles (King et al., 2007). Based on the  $\rho_{eff}$  value obtained for each experiment, the material density  $\rho_{org}$  of the SOM was calculated by the rule of volume additivity. As explained by Bahreini et al. (2005), in context of AMS data sets this rule states that  $\rho_{\rm org} =$  $M_{\rm org}/(M_{\rm particle}/\rho_{\rm eff}-M_{\rm AS}/\rho_{\rm AS})$ , where  $\rho_{\rm AS}$  is the material density of ammonium sulfate (1770 kg m<sup>-3</sup>),  $M_{\text{particle}}$  is the total particle mass concentration ( $\mu g m^{-3}$ ), and  $M_{AS}$  is the ammonium sulfate mass concentration ( $\mu g m^{-3}$ ). The presented equation is valid provided that the chemical components either do not mix or alternatively have a numerically small excess volume of mixing. The  $\rho_{\rm org}$  values obtained by this analysis and their uncertainties are listed in Table 2. The uncertainties of 5 to 10% were based on a Monte Carlo analysis. The parameters used in the analysis included the uncertainty in the SMPS and AMS mode diameters (i.e., as needed for calculating  $\rho_{eff}$ ) as well as the standard deviations of the temporal variation of  $M_{\text{particle}}$ ,  $M_{\text{org}}$ , and  $M_{\text{AS}}$  at steady state.

For experiment #27 (Table 2), independent measurements of  $\rho_{\text{eff}}$  and hence independent calculations of  $\rho_{\text{org}}$  were also made by the DMA-APM methodology (Kuwata et al., 2012). In this case,  $\rho_{\text{org}}$  was calculated from data of quasimonodisperse particles rather than for the entire particle population. The uncertainty of  $\rho_{\text{org}}$  for the DMA-APM method was estimated as 2% on the basis of calibrations using polystyrene latex particles.

Figure S3 shows that the  $\rho_{\rm org}$  values determined by the independent AMS-SMPS and DMA-APM methods were in agreement. The measured value of  $\rho_{\rm org}$  of  $1320 \pm 20 \,\mathrm{kg} \,\mathrm{m}^{-3}$  at high mass concentrations ( $M_{\rm org} > 50 \,\mathrm{\mu g} \,\mathrm{m}^{-3}$ ) was also consistent with the value reported previously by Bahreini et al. (2005) for  $\beta$ -caryophyllene ozonolysis for experiments at  $M_{\rm org} = 300 \,\mathrm{\mu g} \,\mathrm{m}^{-3}$ . Figure S3 also shows that there was a dependence of  $\rho_{\rm org}$  on organic particle mass concentration. A similar result was reported previously for  $\alpha$ -pinene ozonolysis (Shilling et al., 2009).

#### 2.4 Particle mass yield

Particle mass yield *Y* is defined as  $Y \equiv \Delta M_{\text{org}}/\Delta \text{VOC}$ , with the sign construed as positive. The term  $\Delta \text{VOC}$  is the difference in the  $\beta$ -caryophyllene concentration between the outflow and the inflow of the CMFR, meaning that negligible loss to any apparatus surface is assumed for unreacted  $\beta$ -caryophyllene at steady state. The accuracy of this assumption was supported by the agreement between the  $\beta$ caryophyllene concentrations in the CMFR outflow prior to initiation of reaction (as measured by the PTR-MS) and the concentrations calculated using the liquid injection rate of the syringe pump.

For  $\Delta M_{\rm org}$ , a simplification is that the inflow concentration is zero but a complication is that significant mass is lost to the walls of the bag and therefore does not contribute to concentration measured in the outflow. Therefore,  $\Delta M_{\text{org}} = (M_{\text{org}})_{\text{outflow}} + (M_{\text{org}})_{\text{wallloss}}$  $(M_{\rm org})_{\rm inflow}$ . We measure  $(M_{\rm org})_{\rm outflow}$  using the AMS, we know  $(M_{\text{org}})_{\text{inflow}} = 0$ , and we relate  $(M_{\text{org}})_{\text{wallloss}} = f$  $((M_{\rm org})_{\rm outflow})$  by calibration of wall-loss rates. More specifically,  $(M_{\text{org}})_{\text{wallloss}} = \beta \tau (M_{\text{org}})_{\text{outflow}}$  for an assumed firstorder diameter-independent particle wall-loss coefficient  $\beta$  $(s^{-1})$  and a mean residence time  $\tau$  (s) in the CMFR (Seinfeld et al., 2003; Pierce et al., 2008). Wall-loss mechanisms include Brownian diffusion, electrostatic forces, and gravitational sedimentation (McMurry and Grosjean, 1985). The final form of the equation for particle mass yield for the conducted experiments is as follows:

$$Y = \left| \frac{(1 + \beta \tau) (M_{\text{org}})_{\text{outflow}}}{\text{VOC}_{\text{outflow}} - \text{VOC}_{\text{inflow}}} \right|$$
(1)

For further use, we also introduce here the definition  $M_{\text{org,corr}} \equiv (1 + \beta \tau)(M_{\text{org}})_{\text{outflow}}$  as the wall-loss corrected organic particle mass concentration. Derivation of this equation is provided in the Sect. A of the Supplement.

The particle wall-loss coefficient  $\beta$  can be determined experimentally by measuring the change in number concentration of surrogate particles in the chamber (McMurry and Grosjean, 1985). For this purpose, experiments were conducted with populations of ammonium sulfate particles in the absence of organic material. On the basis of the particle number balance in the CMFR (Seinfeld et al., 2003),  $\beta = (2.9 \pm 0.3) \times 10^{-4} \text{ s}^{-1}$  was obtained, and no significant dependence of  $\beta$  on diameter was observed for the studied populations (Fig. 1). For numberdiameter distributions of SOM-coated sulfate particles of the actual experiments (Fig. S4), independent estimates of  $\beta = (2.8 \pm 0.4) \times 10^{-4} \text{ s}^{-1}$  were obtained by comparing the total particle number concentrations measured in the CMFR outflow to the total concentrations expected based on the seed particle concentrations in the CMFR inflow.

The measured wall-loss coefficients of the present study were greater than the measured values for the earlier experiments in the Harvard Environmental Chamber.



**Fig. 1.** Measurement of particle wall-loss coefficients  $\beta$  (s<sup>-1</sup>) in the Harvard Environmental Chamber. Data are shown for one experiment using a population of dry ammonium sulfate particles. Points show the wall-loss coefficient inferred at each diameter such that the outflow number-diameter distribution matches the inflow distribution. No trend with particle diameter is apparent. Therefore, wall losses are accurately represented by an average value, shown by the dotted line, for the investigated particle population. The error bars represent one-sigma standard deviation of three replicate experiments.



**Fig. 2.** A typical time series for the transient phase of the CMFR showing the loss of  $\beta$ -caryophyllene, the appearance of particle-phase secondary organic material following the introduction of ozone, and the increase of particle-phase organic material following the elevation of ozone concentration.



**Fig. 3.** Organic particle mass concentrations at steady state in the CMFR for increasing initial concentration of  $\beta$ -caryophyllene and three different ozone concentrations. The plotted concentrations are corrected for wall loss (Eq. 1). Uncertainties shown for the data points represent the propagated standard deviation (one sigma) of both the temporal variation of  $M_{\text{org}}$  as well as the wall-loss corrections. Lines are shown to guide the eye.

Shilling et al. (2008) reported  $\beta = 4.7$  to  $2.5 \times 10^{-5} \text{ s}^{-1}$  for dry ammonium sulfate particles of 50 to 150 nm. The explanation for the difference is the use of an aged bag in the study of Shilling et al. (2008) and a new Teflon bag for most experiments of the present study. In support of this explanation, the experiments described herein from April to June 2009 correspond to the reported  $\beta$  values, and no systematic temporal trend of wall losses was observed during this time period, suggesting that the effects of bag aging during the two months of experiments were minimal. In September 2010, with the by-then aged bag,  $\beta$  values in agreement with Shilling et al. (2008) were obtained, as represented by experiment #27 of Table 2. The additional aging of the bag surface significantly decreased the particle wall losses, perhaps because of surface alterations that influenced electrostatic charging (McMurry and Rader, 1985). In support of this explanation, re-neutralization of the seed particles prior to the injection decreased particle wall losses, as represented by experiment #10 of Table 2.

Experiments carried out at repeated conditions show differences no more than 30%, supporting the reproducibility of the results (Table 2). The particle-phase organic mass concentrations were corrected by 68 to 370% for the different  $\beta$ values of the experiments (Eq. 1). The corrected values lay on a self-consistent trend line within instrument uncertainty, supporting the accuracy of the applied corrections (Fig. S5).

#### 3 Results and discussion

Figure 2 shows a typical time series for the transient period prior to steady-state in the CMFR. The time traces show the loss of  $\beta$ -caryophyllene after the introduction of ozone and the appearance of particle-phase secondary organic material. Seed particles and  $\beta$ -caryophyllene were introduced into the CMFR and reached steady-state concentrations prior to the injection of ozone. Once ozone was introduced, the concentration of  $\beta$ -caryophyllene decreased rapidly. After a transient period, feedback control between the measured ozone concentration and the quantity of ozone injected into the bag maintained the ozone concentration at 50 ppbv. The steadystate concentrations of particle-phase SOM were reached after 8 h and were maintained until completion of the experiment after 56 h.

During the transient period of Fig. 2, the initial consumption of  $\beta$ -caryophyllene was primarily by the reaction of ozone with the endo-cyclic double bond. The ozonolysis rate constant of the endo-cyclic double bond of  $\beta$ -caryophyllene ( $k_{\text{endo}} = 1.16 \times 10^{-14} \text{ molecule}^{-1} \text{ cm}^3 \text{ s}^{-1}$ ) is 100× greater than that of the exo-cyclic double bond of the first-generation products ( $k_{\text{exo}} = 1.1 \times 10^{-16} \text{ molecule}^{-1} \text{ cm}^3 \text{ s}^{-1}$ ) (Shu and Atkinson, 1995; Winterhalter et al., 2009). The time decay of the  $\beta$ -caryophyllene concentration agreed well with that predicted for the CMFR (i.e., the modeled line in Fig. 2) using the rate constant  $k_{\text{endo}}$  and the measured ozone concentrations.

Subsequent to the first transient period, Fig. 2 shows that a further increase in the ozone concentration to 200 ppbv caused an increase in the mass concentration of particlephase SOM. The remaining exo-cyclic double bond of the first-generation products reacted at the higher ozone concentration, leading to additional low-volatility products that partitioned to the particle phase (Kanawati et al., 2008; Li et al., 2011). The data of Fig. 3 demonstrate the generalization of this result for a single injected  $\beta$ -caryophyllene concentration to all experiments, showing an increase in yield for 200 compared to 50 ppbv ozone for all injected  $\beta$ -caryophyllene concentrations.

The representation in Fig. 2 can be put into a quantitative context by comparing the ozone-dependent e-folding lifetimes  $\tau_{endo}(O_3)$  and  $\tau_{exo}(O_3)$  of the two double bonds at 50 and 200 ppbv (i.e.,  $\tau(O_3) = 1/k[O_3]$ ) to the mean CMFR residence time  $\tau_{CMFR}$ . The values are as follows:  $\tau_{endo}(50) = 70$  s,  $\tau_{endo}(200) = 20$  s,  $\tau_{exo}(50) = 7500$  s,  $\tau_{exo}(200) = 2000$  s, and  $\tau_{CMFR} = 13\ 100$  s. The relationships  $\tau_{CMFR}/\tau_{endo}(50) \gg 10$  and  $\tau_{CMFR}/\tau_{endo}(200) \gg 10$  imply that  $\beta$ -caryophyllene is consumed to nearly 100% for both ozone concentrations. This result is supported by the PTR-MS measurements that show a negligible residual  $\beta$ caryophyllene concentration in the CMFR outflow for 50 and 200 ppbv ozone (Fig. 2).

The population of first-generation products *i* has a distribution of reactivity  $\tau_{exo,i}$  with respect to ozonolysis



Fig. 4. (a) Mass fractions of first- and second-generation products for increasing ozone concentration, as quantified by UPLC-ESI-ToF-MS. The ordinate of mass fraction represents the sum of the mass concentrations of either the first- or second-generation products divided by the combined sum of first- and second-generation mass concentrations, all measured by UPLC-ESI-ToF-MS for filterextracted samples (Li et al., 2011). (b) The percent change in mass concentration at 50 compared to 200 ppbv O3 for the fifteen identified products. Experiments in this figure are for 13 ppbv of reacted  $\beta$ -caryophyllene. Error bars represent the one-sigma standard deviation of three replicate experiments. Labels x, y, and z represent a permutation of 1, 2, and 3. P254-1 is hashed because the data of the present study suggest that this product might have been assigned incorrectly in previous work as a first-generation product (Li et al., 2011); it can instead be assigned as a second-generation product (see main text).

of the remaining exo-cyclic double bond. This distribution in reactivity is assumed to be represented by a mean value  $\tau_{exo}$  and an associated variance  $\sigma^2$  for the population of products. The calculations  $\tau_{CMFR}/\tau_{exo}(50) = 1.8$  and  $\tau_{\rm CMFR}/\tau_{\rm exo}$  (200) = 6.6 suggest that for many products *i* the relationships  $0.1 < \tau_{\text{CMFR}}/\tau_{\text{exo},i}(50) < 10$  and  $0.1 < \tau_{\text{CMFR}}/\tau_{\text{exo},i}$  (200) < 10 hold, implying that there are significant differences among the various first-generation products in the timescales for conversion from first- to second-generation products. These differences are sensitive to the ozone concentration in the CMFR. For instance, a kinetics calculation (cf. Sect. B of the Supplement) suggests a mean conversion of 63 % from first- to second-generation products for 50 ppbv ozone compared to a mean conversion of 87% for 200 ppbv ozone. The actual overall conversion to second-generation products depends upon the unknown probability density function  $PDF(\tau_{exo},\sigma)$  of reactant concentrations and reactivity. The experimental observations of Fig. 2 show that there is a 60 % increase in  $(M_{\text{org}})_{\text{outflow}}$  for 200 compared to 50 ppbv ozone. This increase is caused by the additional conversion of first- to second-generation products at 200 ppbv ozone.

Differences in particle-phase molecular products between 50 and 200 ppbv ozone exposure, as highlighted in Fig. 4, are consistent with an enhancement of second-generation products relative to first-generation ones. Figure 4a shows the ozone-dependent mass fractions of first- compared to second-generation products, as determined by UPLC-ESI-ToF-MS for 15 compounds (Li et al., 2011). As the ozone concentration increases, the second-generation products are increasingly dominant.

Figure 4b shows the percent change in mass concentration for exposure to 50 compared to 200 ppbv ozone for each of the 15 products. The structures of the products labeled in Fig. 4 are provided in Li et al. (2011) and are reproduced for convenience in Fig. S6. Figure 4b shows that the mass concentrations of the first-generation products decrease and the concentrations of the second-generation products increase at higher ozone concentration, as is consistent with the conversion of the former into the latter. The concentration of P270-1 represents the largest relative change, possibly suggesting that its first-generation precursor compound has a relatively low ozonolysis rate constant. There are, however, a few exceptions apparent to this trend. Unlike other second-generation products, the mass concentrations of the products P252-4 and P302 do not change, suggesting that at 50 ppbv ozone they are already produced to completion from their first-generation precursors. Another exception is P238, showing a negative relative change in mass concentration. This species is produced from the first-generation product P236 by a stabilized Criegee intermediate channel that competes with an RO<sub>2</sub>-assisted isomerization channel (Fig. S6). At higher ozone concentrations, the importance of the isomerization channel possibly increases because of higher RO<sub>2</sub> concentrations, providing one possible explanation for the observed decrease in P238 concentration.

Unlike other first-generation products, the mass concentrations of the products P252-x and P254-1 increase at 200 ppbv ozone. The relative concentration change of P252-x is



Fig. 5. (a1–a3) Particle mass yield and basis-set parameterization for the dark ozonolysis of  $\beta$ -caryophyllene. (b1–b3) Optimized parameter  $\alpha_i$  for product classes of  $C_i^* = \{1, 10, 100\} \,\mu\text{g m}^{-3}$ . Data are shown for 50, 100, and 200 ppbv ozone.

negligible given the uncertainty. In this case, we can assign x = 1 because the second-generation product of P252-1 (i.e., P302) also changes negligibly but the products of P252-2 and P252-3 (i.e., P270-y, P270-z, P254-y, and P254-z) all show positive changes (Fig. S6). P254-1 was assigned previously as the first-generation product  $\beta$ -caryophyllinic acid, which has been observed in ambient samples and used as a tracer for  $\beta$ -caryophyllene SOM (Jaoui et al., 2007; Kleindienst et al., 2007; Hu et al., 2008). A second-generation product ( $\beta$ -nocaryophyllonic acid), however, has the same exact mass at P254-1 (Jaoui et al., 2003; Chan et al., 2011). The increased mass concentration of P254-1 for 200 ppbv ozone (Fig. 4b) suggests that P254-1 might be incorrectly assigned in Li et al. (2011) as  $\beta$ -caryophyllinic acid and that P254-1 should instead be assigned as the second-generation product  $\beta$ -nocaryophyllonic acid.

Figure 5 presents the yield data for increasing organic particle mass concentration. Yield data are customarily parameterized with the objective of further upscale modeling (e.g., air quality models). In common usage, parameterizations are based on either a two-product mode (Odum et al., 1996) or a basis-set approach (Presto and Donahue, 2006). Our application employs the latter. The products formed by the oxidation of  $\beta$ -caryophyllene are binned into product classes of mass yields  $\alpha_i$ , and the volatilities of the product classes are prescribed in decadal units of  $10^{-i}$ , where  $10^{-i}$  is denoted as  $C_i^*$ . Particle mass yield is then written (Seinfeld and Pankow, 2003; Presto and Donahue, 2006):

$$Y(M_{\rm org, corr}) \equiv \frac{\Delta M_{\rm org}}{\Delta \rm VOC} = \sum_{i=i_i}^{i_f} \alpha_i \left(1 + \frac{C_i^*}{M_{\rm org, corr}}\right)^{-1}$$
(2)

The yield data sets in panels a1–a3, which represent the three different ozone concentrations of this study, were each fit using Eq. (1) for  $i_i = 0$  and  $i_f = 2$ . The fit treated  $C_i^*(\mu \text{g m}^{-3})$  as fixed quantities, *Y* and  $M_{\text{org, corr}}$  as data, and  $\alpha_i$  as the quantities for optimization. The overall bar height in panels a1–a3 represents the cumulative potential yield (i.e.,  $\sum_{i=i_i}^{i_f} \alpha_i$ ). The coloring inside each bar represents the partitioning of the organic molecules between the gas (gray) and particle (green) phases (Donahue et al., 2006; Presto and Donahue, 2006). The different shades of green represent the volatility associated with a component of the particle phase. The optimized values for  $\alpha_i$  (Table S1) are plotted in the panels b1–b3 for each ozone concentration.

An approximate upper limit of 150 % for the maximum potential particle mass yield from  $\beta$ -caryophyllene ozonolysis can be established by assuming that two ozone molecules add to the original molecule and that all product molecules partition to the particle phase. The representation in panel a1 of Fig. 5 shows that the cumulative yield approaches 60 % for 50 ppbv ozone. By comparison, panel a3 for 200 ppbv ozone shows that the cumulative yield approaches 130 %, suggesting that the overall reaction is nearly complete. The implication is that the particle-phase mass yield represented by each green bar in panel a3 can be taken as the approximate representation of the ultimate yield.

From 50 to 200 ppbv ozone, the optimized mass yields  $\alpha_i$ have similar values for products of low volatility ( $C_i^* = 1$ ,  $10 \,\mu g \,m^{-3}$ ) but a trend of increasing values for products of relatively high volatility ( $C_i^* = 100 \,\mu \text{g m}^{-3}$ ) (panels b1–b3 of Fig. 5). The similar values of mass yields suggest that the low-volatility products are mainly second-generation products that are formed nearly to completion from their firstgeneration precursors even at 50 ppby, indicating fast formation pathways. In this case, the mass yields are not sensitive to the ozone concentration. Product P302 is the lowest volatility product among the 15 identified products and can therefore be supposed as the dominant species to condense to the particle phase at low  $M_{\text{org}}$  (Li et al., 2011). This conclusion that P302 is fast-forming low-volatility product is supported by the molecular data; there is a negligible change in the mass concentration for an increase in ozone concentration (Fig. 4b). By comparison, the trend of increasing  $\alpha_i$  values with increasing ozone concentration for  $C_i^* =$  $100 \,\mu g \,m^{-3}$  suggests that the relatively high-volatility products are mainly second-generation products that are formed by relatively slow pathways. The increase of ozone concentration leads to greater conversion of these products from their first-generation precursors. Panels a1-a3 show the consequence of these processes: the increase in particle mass yield from 50 to 200 ppby ozone is dominantly driven by products of relatively high volatility (cf. large light-green bar in panel a3 for  $C_i^* = 100 \,\mu \text{g m}^{-3}$ ).

The findings for  $\alpha_i$  represented in panels b1–b3 provide a formal framework for the observation that differences in particle mass yield for 200 ppbv compared to 50 ppbv ozone are small for  $M_{\text{org,corr}} < 10 \,\mu\text{g}\,\text{m}^{-3}$  but greater for higher  $M_{\text{org,corr}}$  (panels a1–a3). For low  $M_{\text{org,corr}}$ , the particlephase SOM is dominantly composed of products having low volatility. Therefore, the significantly increased production at 200 ppbv ozone of the high-volatility products of  $C_i^* = 100$  $\mu\text{g}\,\text{m}^{-3}$  causes little additional partitioning to the particle phase. By comparison, for  $10 \leq M_{\text{org,corr}} \leq 100 \,\mu\text{g}\,\text{m}^{-3}$ products of  $C_i^* = 100 \,\mu\text{g}\,\text{m}^{-3}$  increasingly partition to the particle phase, meaning that  $10 \,\%$  of these products partition to the particle phase for  $M_{\text{org,corr}} = 100 \,\mu\text{g}\,\text{m}^{-3}$  and 50 % of them to the particle phase for  $M_{\text{org,corr}} = 100 \,\mu\text{g}\,\text{m}^{-3}$  (Donahue et al., 2006).

There is a dependency of the O:C elemental ratio, as measured by the AMS, on  $M_{\rm org, corr}$ , and this dependency may also be explained by the volatility distribution of the products. The O:C ratios ranges from 0.5 to 0.3, corresponding to an average addition of 5 to 8 oxygen atoms to the  $C_{15}$ structure of  $\beta$ -caryophyllene. This average is consistent with a dominant presence of second-generation products in the particle phase because the first-generation products typically have 1 to 4 oxygen atoms (Winterhalter et al., 2009; Li et al., 2011). The experimental results for  $M_{\rm org, corr} < 10 \,\mu g \, {\rm m}^{-3}$ show that neither an increase in  $\triangle VOC$  (Fig. 6a) nor an increase in the steady-state O<sub>3</sub> concentration (Fig. 6b) changes the O:C ratio, at least within measurement uncertainty (O:C  $\approx 0.5$  and  $\overline{OS}_{c} \approx 0.5$ ; Table 2). This behavior is consistent with the dominant contribution of low-volatility, fastforming second-generation products to the particle phase. By comparison, for  $M_{\rm org, corr} > 10 \,\mu g \, {\rm m}^{-3}$  the O:C ratio steadily decreases for increasing  $\triangle VOC$  and ozone concentrations. This correspondence between decreased O:C ratio and increased contribution of high-volatility products (i.e.,  $C_i^* = 100 \ \mu g \ m^{-3}$ ) conforms to the expected structurefunction relationship between a molecule's oxygen content and its vapor pressure, meaning greater oxygen content of a molecule and an associated decreased vapor pressure (Pankow and Asher, 2008).

The yield data of this study are summarized as a function of  $M_{\text{org,corr}}$  in Fig. 7, including comparisons to data sets of previous studies. Panel a shows the yield data for  $M_{\rm org, corr} < 10 \,\mu {\rm g} \, {\rm m}^{-3}$ , corresponding to atmospheric concentrations. Panel b shows the yield data for a greater range of  $M_{\rm org, corr}$ . For  $M_{\rm org, corr} < 10 \ \mu g \ m^{-3}$ , prior to the present study no data are known to us for the particle mass yield of  $\beta$ -caryophyllene ozonolysis. For  $M_{\rm org, corr} > 10 \,\mu {\rm g \, m^{-3}}$ , two studies have previously been carried out for conditions of excess ozone (Jaoui et al., 2003; Lee et al., 2006a) (Table 1). Jaoui et al. (2003) reported a yield of 62 % but did not report  $M_{\rm org}$ , preventing a specific comparison to our data set. Lee et al. (2006a) reported a yield of 45 % for  $M_{\text{org}} = 336$  $\mu g m^{-3}$ . This yield is lower than the yield of 55–100 % reported in the present study for similar  $M_{\rm org}$ . The differences between the two studies might be related to the employed relative humidity, which was 40% in our study and 6% in Lee et al. (2006a). Winterhalter et al. (2009) showed that increased particle mass yields can be expected for higher relative humidity. Figure 7b also shows yields reported for  $\beta$ caryophyllene photooxidation. Differences in the chemical mechanisms of ozonolysis and photooxidation notwithstanding, Lee et al. (2006b) reported yields approximately similar to those of the present study. The photooxidation yields reported by Griffin et al. (1999), however, are greater than those of the present study. In the case of early stage photooxidation compared to ozonolysis, a possible shift to lower volatility might occur in the product population because of additional oxidation by OH, though the extent of such shift can be expected to depend strongly on reaction conditions.



**Fig. 6.** Oxygen-to-carbon elemental ratios of particle-phase SOM produced by  $\beta$ -caryophyllene ozonolysis for (**a**) increasing particle-phase organic mass concentration and (**b**) increasing ozone concentration. The elemental ratios were determined from the particle-phase high-resolution mass spectra (Aiken et al., 2007, 2008; Chen et al., 2011). Error bars represent the one-sigma measurement precision (Chen et al., 2011). Data are colored by the reacted concentration of  $\beta$ -caryophyllene.

Figure 7b omits a data set of Hoffmann et al. (1997) because the  $M_{\rm org}$  exceeds the abscissa scale of the figure. For atmospheric conditions, ozonolysis rather than photooxidation is the dominant degradation pathway of  $\beta$ -caryophyllene (Atkinson and Arey, 2003).



**Fig. 7.** Comparison of particle mass yields parameterized in this study to those reported in the literature for  $\beta$ -caryophyllene oxidation. Panel (**a**) shows the data in the atmospherically relevant range of organic particle mass concentration  $(0.1-10 \,\mu g \,m^{-3})$ . Panel (**b**) shows the data over an extended range of organic particle mass concentration  $(10-400 \,\mu g \,m^{-3})$ . A material density  $\rho_{\text{org}}$  of 1300 kg m<sup>-3</sup> was assumed to convert the volume-based data sets of Lee et al. (2006a) and Griffin et al. (1999) to mass-based data sets. This density corresponded to  $M_{\text{org, corr}} > 10 \,\mu g \,m^{-3}$  of the present study (Fig. S3). A vaporization enthalpy of 40 kJ mol<sup>-1</sup> was used for temperature compensation from 308 K to 298 K for the data reported by Griffin et al. (1999). The dashed lines show four different parameterizations that have been used in air quality and climate models.

## 4 Conclusions

This study investigated the role of second-generation products in the particle mass yield of  $\beta$ -caryophyllene ozonolysis. For concentrations that overlapped with those of the atmosphere (i.e., 0.1 to  $10 \,\mu g \, m^{-3}$ , Chen et al., 2009; Slowik et al., 2010), the particle mass yield increases from 2 to 30 %. The yield is not sensitive to the ozone concentration. The explanation is that for this range of mass concentration there is a dominant contribution of low-volatility, fast-forming secondgeneration products to the particle phase. The O:C elemental ratio of 0.5 indicates that these low-volatility products have 7 to 8 oxygen atoms with estimated vapor pressures of  $10^{-12}$ to  $10^{-14}$  Pa (Li et al., 2011). The data further show that organic particle mass concentration inversely correlates with the oxidation state and the material density of the particlephase organic material. Across the studied range of organic particle mass concentration  $(0.5-230 \,\mu g \, m^{-3})$ , the O:C ratio drops from 0.5 to 0.3, corresponding to a decrease in  $\overline{OS}_{c}$ from -0.5 to -0.8. Material density likewise decreases from 1600 to  $1300 \text{ kg m}^{-3}$ , corresponding to the decreases in relative oxygen content.

Prior to the present study, no data points for the particle mass yield of  $\beta$ -caryophyllene ozonolysis were available in the atmospheric limit of  $M_{\rm org} < 10 \,\mu {\rm g \, m^{-3}}$ . In the absence of data, regional and global chemical transport models have instead widely employed extrapolations of the data reported by Griffin et al. (1999) to estimate the contribution of sesquiterpene  $\beta$ -caryophyllene oxidation to atmospheric particle mass concentrations (Chung and Seinfeld, 2002; Sakulyanontvittaya et al., 2008b; Zhang and Ying, 2011) (details are provided in the Sect. C and Table S2 of the Supplement). Because the data reported by Griffin et al. (1999) were collected at 308 K and were volume-based, corrections were needed for model applications typically developed for 298 K. The corrections required estimates of the enthalpy of vaporization  $\Delta H_{\rm vap}$  and of material density. Different air-quality applications have used different estimates of these quantities, and as a result the parameterizations of mass yield have been different in various models, as represented by the dashed lines in Fig. 7. Using an updated  $\Delta H_{\text{vap}}$  of  $40 \text{ kJ mol}^{-1}$  as well as a material density  $\rho_{\rm org}$  of 1300 kg m<sup>-3</sup> (Bahreini et al., 2005; Offenberg et al., 2006), Carlton et al. (2010) present the state-of-the-art parameterization. The comparison between our data set and the parameterization of Carlton et al. (2010) suggests a possible underestimate by that parameterization of 100 % to 300 % for organic particle mass concentrations less than  $3 \,\mu g \,m^{-3}$  given that ozonolysis rather than photooxidation is the dominant degradation pathway of  $\beta$ -caryophyllene. The difference could be in the underlying chemistry, keeping in mind that the parameterization is based on the photooxidation data set of Griffin et al. (1999) whereas the data of this study correspond to ozonolysis experiments.

The ultimate particle mass yield of  $\beta$ -caryophyllene ozonolysis was parameterized for the present study

by mass-based stoichiometric yields  $\alpha_0 = 0.17 \pm 0.05$ ,  $\alpha_1 = 0.11 \pm 0.17$ , and  $\alpha_2 = 1.03 \pm 0.30$  for corresponding saturation concentrations of 1, 10, and 100 µg m<sup>-3</sup>. Terms  $\alpha_0$  and  $\alpha_1$  had low sensitivity to ozone exposure for the investigated range of conditions whereas term  $\alpha_2$  increased from  $0.32 \pm 0.13$  to  $1.03 \pm 0.30$  as ozone exposure was increased. These findings potentially allow for simplified yet accurate parameterizations in air quality and climate models that seek to represent the ozonolysis particle mass yield of certain classes of biogenic compounds. The influence of additional important reaction conditions, such as NO<sub>x</sub> concentrations, photolysis pathways, and particle aging, needs to be investigated in the future.

# Supplementary material related to this article is available online at: http://www.atmos-chem-phys.net/12/3165/2012/ acp-12-3165-2012-supplement.pdf.

Acknowledgements. This material is based upon work supported by the Office of Science (BES), US Department of Energy, Grant No. DE-FG02-08ER64529. Q. C. acknowledges support from the NASA Earth and Space Science Fellowship. Y. J. L. acknowledges support from the Hong Kong University of Science and Technology Overseas Research Award and the Research Grants Council of the Hong Kong Special Administrative Region, China (Project No. 610909). M. K. acknowledges support from the Japan Society for the Promotion of Science Postdoctoral Fellowship. The authors thank Amanda Mifflin and Mackenzie Smith for their assistance with the experiments. The authors thank Adam Bateman and Soeren Zorn for helpful discussion.

Edited by: H. Saathoff

## References

- Aiken, A. C., DeCarlo, P. F., and Jimenez, J. L.: Elemental analysis of organic species with electron ionization highresolution mass spectrometry, Anal. Chem., 79, 8350–8358, doi:10.1021/ac071150w, 2007.
- Aiken, A. C., Decarlo, P. F., Kroll, J. H., Worsnop, D. R., Huffman, J. A., Docherty, K. S., Ulbrich, I. M., Mohr, C., Kimmel, J. R., Sueper, D., Sun, Y., Zhang, Q., Trimborn, A., Northway, M., Ziemann, P. J., Canagaratna, M. R., Onasch, T. B., Alfarra, M. R., Prevot, A. S. H., Dommen, J., Duplissy, J., Metzger, A., Baltensperger, U., and Jimenez, J. L.: O/C and OM/OC ratios of primary, secondary, and ambient organic aerosols with high-resolution time-of-flight aerosol mass spectrometry, Environ. Sci. Technol., 42, 4478–4485, doi:10.1021/es703009q, 2008.
- Alfarra, M. R., Coe, H., Allan, J. D., Bower, K. N., Boudries, H., Canagaratna, M. R., Jimenez, J. L., Jayne, J. T., Garforth, A. A., Li, S. M., and Worsnop, D. R.: Characterization of urban and rural organic particulate in the lower Fraser valley using two aerodyne aerosol mass spectrometers, Atmos. Environ., 38, 5745– 5758, doi:10.1016/j.atmosenv.2004.01.054, 2004.

#### Q. Chen et al.: Particle mass yield from $\beta$ -caryophyllene ozonolysis

- Atkinson, R. and Arey, J.: Gas-phase tropospheric chemistry of biogenic volatile organic compounds: a review, Atmos. Environ., 37, S197–S219, doi:10.1016/s1352-2310(03)00391-1, 2003.
- Bahreini, R., Keywood, M. D., Ng, N. L., Varutbangkul, V., Gao, S., Flagan, R. C., Seinfeld, J. H., Worsnop, D. R., and Jimenez, J. L.: Measurements of secondary organic aerosol from oxidation of cycloalkenes, terpenes, and m-xylene using an Aerodyne aerosol mass spectrometer, Environ. Sci. Technol., 39, 5674– 5688, doi:10.1021/es048061a, 2005.
- Carlton, A. G., Bhave, P. V., Napelenok, S. L., Edney, E. D., Sarwar, G., Pinder, R. W., Pouliot, G. A., and Houyoux, M.: Model Representation of Secondary Organic Aerosol in CMAQv4.7, Environ. Sci. Technol., 44, 8553–8560, doi:10.1021/es100636q, 2010.
- Chan, A. W. H., Kroll, J. H., Ng, N. L., and Seinfeld, J. H.: Kinetic modeling of secondary organic aerosol formation: effects of particle- and gas-phase reactions of semivolatile products, Atmos. Chem. Phys., 7, 4135–4147, doi:10.5194/acp-7-4135-2007, 2007.
- Chan, M. N., Surratt, J. D., Chan, A. W. H., Schilling, K., Offenberg, J. H., Lewandowski, M., Edney, E. O., Kleindienst, T. E., Jaoui, M., Edgerton, E. S., Tanner, R. L., Shaw, S. L., Zheng, M., Knipping, E. M., and Seinfeld, J. H.: Influence of aerosol acidity on the chemical composition of secondary organic aerosol from beta-caryophyllene, Atmos. Chem. Phys., 11, 1735–1751, doi:10.5194/acp-11-1735-2011, 2011.
- Chen, Q., Farmer, D. K., Schneider, J., Zorn, S. R., Heald, C. L., Karl, T. G., Guenther, A., Allan, J. D., Robinson, N., Coe, H., Kimmel, J. R., Pauliquevis, T., Borrmann, S., Poschl, U., Andreae, M. O., Artaxo, P., Jimenez, J. L., and Martin, S. T.: Mass spectral characterization of submicron biogenic organic particles in the Amazon Basin, Geophys. Res. Lett., 36, L20806, doi:10.1029/2009g1039880, 2009.
- Chen, Q., Liu, Y., Donahue, N. M., Shilling, J. E., and Martin, S. T.: Particle-phase chemistry of secondary organic material: Modeled compared to measured O:C and H:C elemental ratios provide constraints, Environ. Sci. Technol., 45, 4763–4770, doi:10.1021/es104398s, 2011.
- Chung, S. H. and Seinfeld, J. H.: Global distribution and climate forcing of carbonaceous aerosols, J. Geophys. Res., 107, 4407, doi:10.1029/2001jd001397, 2002.
- DeCarlo, P. F., Slowik, J. G., Worsnop, D. R., Davidovits, P., and Jimenez, J. L.: Particle morphology and density characterization by combined mobility and aerodynamic diameter measurements, Part 1: Theory, Aerosol Sci. Technol., 38, 1185–1205, doi:10.1080/027868290903907, 2004.
- DeCarlo, P. F., Kimmel, J. R., Trimborn, A., Northway, M. J., Jayne, J. T., Aiken, A. C., Gonin, M., Fuhrer, K., Horvath, T., Docherty, K. S., Worsnop, D. R., and Jimenez, J. L.: Field-deployable, high-resolution, time-of-flight aerosol mass spectrometer, Anal. Chem., 78, 8281–8289, doi:10.1021/ac061249n, 2006.
- Donahue, N. M., Robinson, A. L., Stanier, C. O., and Pandis, S. N.: Coupled partitioning, dilution, and chemical aging of semivolatile organics, Environ. Sci. Technol., 40, 02635–02643, doi:10.1021/es052297c, 2006.
- Ehara, K., Hagwood, C., and Coakley, K. J.: Novel method to classify aerosol particles according to their mass-to-charge ratio – Aerosol particle mass analyser, J. Aerosol Sci., 27, 217–234, 1996.

- Fiore, A., Jacob, D. J., Liu, H., Yantosca, R. M., Fairlie, T. D., and Li, Q.: Variability in surface ozone background over the United States: Implications for air quality policy, J. Geophys. Res., 108, 4787, doi:10.1029/2003jd003855, 2003.
- Fu, P. Q., Kawamura, K., Chen, J., and Barrie, L. A.: Isoprene, monoterpene, and sesquiterpene oxidation products in the high arctic aerosols during late winter to early summer, Environ. Sci. Technol., 43, 4022–4028, doi:10.1021/es803669a, 2009.
- Griffin, R. J., Cocker, D. R., Flagan, R. C., and Seinfeld, J. H.: Organic aerosol formation from the oxidation of biogenic hydrocarbons, J. Geophys. Res., 104, 3555–3567, 1999.
- Grosjean, D., Williams, E. L., Grosjean, E., Andino, J. M., and Seinfeld, J. H.: Atmospheric oxidation of biogenic hydrocarbons: Reaction of ozone with β-pinene, d-limonene, and transcaryophyllene, Environ. Sci. Technol., 27, 2754–2758, 1993.
- Helmig, D., Balsley, B., Davis, K., Kuck, L. R., Jensen, M., Bognar, J., Smith, T., Arrieta, R. V., Rodriguez, R., and Birks, J. W.: Vertical profiling and determination of landscape fluxes of biogenic nonmethane hydrocarbons within the planetary boundary layer in the Peruvian Amazon, J. Geophys. Res., 103, 25519–25532, doi:10.1029/98JD01023, 1998.
- Helmig, D., Ortega, J., Duhl, T., Tanner, D., Guenther, A., Harley, P., Wiedinmyer, C., Milford, J., and Sakulyanontvittaya, T.: Sesquiterpene emissions from pine trees – Identifications, emission rates and flux estimates for the contiguous United States, Environ. Sci. Technol., 41, 1545–1553, doi:10.1021/es0618907, 2007.
- Hoffmann, T., Odum, J. R., Bowman, F., Collins, D., Klockow, D., Flagan, R. C., and Seinfeld, J. H.: Formation of organic aerosols from the oxidation of biogenic hydrocarbons, J. Atmos. Chem., 26, 189–222, 1997.
- Hu, D., Bian, Q., Li, T. W. Y., Lau, A. K. H., and Yu, J. Z.: Contributions of isoprene, monoterpenes,  $\beta$ -caryophyllene, and toluene to secondary organic aerosols in Hong Kong during the summer of 2006, J. Geophys. Res., 113, D22206, doi:10.1029/2008jd010437, 2008.
- Jaoui, M. and Kamens, R. M.: Gas and particulate products distribution from the photooxidation of  $\alpha$ -humulene in the presence of NO<sub>x</sub>, natural atmospheric air and sunlight, J. Atmos. Chem., 46, 29–54, 2003.
- Jaoui, M., Leungsakul, S., and Kamens, R. M.: Gas and particle products distribution from the reaction of  $\beta$ -caryophyllene with ozone, J. Atmos. Chem., 45, 261–287, 2003.
- Jaoui, M., Lewandowski, M., Kleindienst, T. E., Offenberg, J. H., and Edney, E. O.: β-caryophyllinic acid: An atmospheric tracer for β-caryophyllene secondary organic aerosol, Geophys. Res. Lett., 34, L05816, doi:10.1029/2006gl028827, 2007.
- Kanawati, B., Herrmann, F., Joniec, S., Winterhalter, R., and Moortgat, G. K.: Mass spectrometric characterization of  $\beta$ caryophyllene ozonolysis products in the aerosol studied using an electrospray triple quadrupole and time-of-flight analyzer hybrid system and density functional theory, Rapid Commun. Mass Spectrom., 22, 165–186, 2008.
- Katrib, Y., Martin, S. T., Rudich, Y., Davidovits, P., Jayne, J. T., and Worsnop, D. R.: Density changes of aerosol particles as a result of chemical reaction, Atmos. Chem. Phys., 5, 275–291, doi:10.5194/acp-5-275-2005, 2005.
- King, S. M., Rosenoern, T., Shilling, J. E., Chen, Q., and Martin, S. T.: Cloud condensation nucleus activity of secondary organic

aerosol particles mixed with sulfate, Geophys. Res. Lett., 34, L24806, doi:10.1029/2007gl030390, 2007.

- King, S. M., Rosenoern, T., Shilling, J. E., Chen, Q., and Martin, S. T.: Increased cloud activation potential of secondary organic aerosol for atmospheric mass loadings, Atmos. Chem. Phys., 9, 2959–2971, doi:10.5194/acp-9-2959-2009, 2009.
- Kleindienst, T. E., Smith, D. F., Li, W., Edney, E. O., Driscoll, D. J., Speer, R. E., and Weathers, W. S.: Secondary organic aerosol formation from the oxidation of aromatic hydrocarbons in the presence of dry submicron ammonium sulfate aerosol, Atmos. Environ., 33, 3669–3681, 1999.
- Kleindienst, T. E., Jaoui, M., Lewandowski, M., Offenberg, J. H., Lewis, C. W., Bhave, P. V., and Edney, E. O.: Estimates of the contributions of biogenic and anthropogenic hydrocarbons to secondary organic aerosol at a southeastern US location, Atmos. Environ., 41, 8288–8300, doi:10.1016/j.atmosenv.2007.06.045, 2007.
- Knutson, E. O. and Whitby, K. T.: Aerosol classification by electric mobility: Apparatus, theory, and applications, J. Aerosol Sci., 6, 443–451, 1975.
- Kroll, J. H., Donahue, N. M., Jimenez, J. L., Kessler, S. H., Canagaratna, M. R., Wilson, K. R., Altieri, K. E., R.Mazzoleni, L., Wozniak, A. S., Bluhm, H., Mysak, E. R., Smith, J. D., Kolb, C. E., and Worsnop, D. R.: Carbon oxidation state as a metric for describing the chemistry of atmospheric organic aerosol, Nature Chem., 3, 133–139, doi:10.1038/nchem.948, 2011.
- Kuwata, M., Zorn, S. R., and Martin, S. T.: Using elemental ratios to predict the density of organic material composed of carbon, hydrogen, and oxygen, Environ. Sci. Technol., 46, 787–794, doi:10.1021/es202525q, 2012.
- Lee, A., Goldstein, A. H., Keywood, M. D., Gao, S., Varutbangkul, V., Bahreini, R., Ng, N. L., Flagan, R. C., and Seinfeld, J. H.: Gas-phase products and secondary aerosol yields from the ozonolysis of ten different terpenes, J. Geophys. Res., 111, D07302, doi:10.1029/2005jd006437, 2006a.
- Lee, A., Goldstein, A. H., Kroll, J. H., Ng, N. L., Varutbangkul, V., Flagan, R. C., and Seinfeld, J. H.: Gas-phase products and secondary aerosol yields from the photooxidation of 16 different terpenes, J. Geophys. Res., 111, D17305, doi:10.1029/2006jd007050, 2006b.
- Li, Y. J., Chen, Q., Guzman, M. I., Chan, C. K., and Martin, S. T.: Second-generation products contribute substantially to the particle-phase organic material produced by  $\beta$ -caryophyllene ozonolysis, Atmos. Chem. Phys., 11, 121–132, doi:10.5194/acp-10-1-2010, 2011.
- Liu, B. Y. H. and Lee, K. W.: An aerosol generator of high stability, Am. Ind. Hyg. Assoc. J., 36, 861–865, doi:10.1080/0002889758507357, 1975.
- Matsunaga, A. and Ziemann, P. J.: Gas-wall partitioning of organic compounds in a Teflon film chamber and potential effects on reaction product and aerosol yield measurements, Aerosol Sci. Technol., 44, 881–892, doi:10.1080/02786826.2010.501044, 2010.
- Matthew, B. M., Middlebrook, A. M., and Onasch, T. B.: Collection efficiencies in an Aerodyne Aerosol Mass Spectrometer as a function of particle phase for laboratory generated aerosols, Aerosol Sci. Technol., 42, 884–898, doi:10.1080/02786820802356797, 2008.
- McMurry, P. H. and Grosjean, D.: Gas and aerosol wall losses in

Teflon film smog chambers, Environ. Sci. Technol., 19, 1176–1182, 1985.

- McMurry, P. H. and Rader, D. J.: Aerosol wall losses in electrically charged chambers, Aerosol Sci. Technol., 4, 249–268, 1985.
- Mensah, A. A., Buchholz, A., Mentel, T. F., Tillmann, R., and Kiendler-Scharr, A.: Aerosol mass spectrometric measurements of stable crystal hydrates of oxalates and inferred relative ionization efficiency of water, J. Aerosol Sci., 42, 11–19, doi:10.1016/j.jaerosci.2010.10.003, 2011.
- Neue, U. D., Kele, M., Bunner, B., Kromidas, A., Dourdeville, T., Mazzeo, J. R., Grumbach, E. S., Serpa, S., Wheat, T. E., Hong, P., and Gilar, M.: Ultra-Performance Liquid Chromatography Technology and Applications, in: Adv. Chromatogr. (Boca Raton, FL, U. S.), edited by: Grushka, E., and Grinberg, N., Advances in Chromatography, 99–143, 2010.
- Ng, N. L., Kroll, J. H., Keywood, M. D., Bahreini, R., Varutbangkul, V., Flagan, R. C., Seinfeld, J. H., Lee, A., and Goldstein, A. H.: Contribution of first- versus second-generation products to secondary organic aerosols formed in the oxidation of biogenic hydrocarbons, Environ. Sci. Technol., 40, 2283–2297, doi:10.1021/es052269u, 2006.
- Ng, N. L., Chhabra, P. S., Chan, A. W. H., Surratt, J. D., Kroll, J. H., Kwan, A. J., McCabe, D. C., Wennberg, P. O., Sorooshian, A., Murphy, S. M., Dalleska, N. F., Flagan, R. C., and Seinfeld, J. H.: Effect of NO<sub>x</sub> level on secondary organic aerosol (SOA) formation from the photooxidation of terpenes, Atmos. Chem. Phys., 7, 5159–5174, doi:10.5194/acp-7-5159-2007, 2007.
- Nguyen, T. L., Winterhalter, R., Moortgat, G., Kanawati, B., Peeters, J., and Vereecken, L.: The gas-phase ozonolysis of  $\beta$ -caryophyllene (C<sub>15</sub>H<sub>24</sub>). Part II: A theoretical study, Phys. Chem. Chem. Phys., 11, 4173–4183, 2009.
- Odum, J. R., Hoffmann, T., Bowman, F., Collins, D., Flagan, R. C., and Seinfeld, J. H.: Gas/particle partitioning and secondary organic aerosol yields, Environ. Sci. Technol., 30, 2580–2585, 1996.
- Offenberg, J. H., Kleindienst, T. E., Jaoui, M., Lewandowski, M., and Edney, E. O.: Thermal properties of secondary organic aerosols, Geophys. Res. Lett., 33, L03816, doi:10.1029/2005gl024623, 2006.
- Offenberg, J. H., Lewandowski, M., Edney, E. O., Kleindienst, T. E., and Jaoui, M.: Influence of aerosol acidity on the formation of secondary organic aerosol from biogenic precursor hydrocarbons, Environ. Sci. Technol., 43, 7742–7747, doi:10.1021/es901538e, 2009.
- Pankow, J. F.: An absorption-model of gas-particle partitioning of organic compounds in the atmosphere, Atmos. Environ., 28, 185–188, 1994a.
- Pankow, J. F.: An absorption-model of the gas aerosol partitioning involved in the formation of secondary organic aerosol, Atmos. Environ., 28, 189–193, 1994b.
- Pankow, J. F. and Asher, W. E.: SIMPOL.1: a simple group contribution method for predicting vapor pressures and enthalpies of vaporization of multifunctional organic compounds, Atmos. Chem. Phys., 8, 2773–2796, doi:10.5194/acp-8-2773-2008, 2008.
- Pierce, J. R., Engelhart, G. J., Hildebrandt, L., Weitkamp, E. A., Pathak, R. K., Donahue, N. M., Robinson, A. L., Adams, P. J., and Pandis, S. N.: Constraining particle evolution from wall losses, coagulation, and condensation-evaporation in smog-

#### Q. Chen et al.: Particle mass yield from $\beta$ -caryophyllene ozonolysis

chamber experiments: Optimal estimation based on size distribution measurements, Aerosol Sci. Technol., 42, 1001–1015, doi:10.1080/02786820802389251, 2008.

- Presto, A. A. and Donahue, N. M.: Investigation of  $\alpha$ -pinene plus ozone secondary organic aerosol formation at low total aerosol mass, Environ. Sci. Technol., 40, 3536–3543, doi:10.1021/es052203z, 2006.
- Sakulyanontvittaya, T., Duhl, T., Wiedinmyer, C., Helmig, D., Matsunaga, S., Potosnak, M., Milford, J., and Guenther, A.: Monoterpene and sesquiterpene emission estimates for the United States, Environ. Sci. Technol., 42, 1623–1629, doi:10.1021/es702274e, 2008a.
- Sakulyanontvittaya, T., Guenther, A., Helmig, D., Milford, J., and Wiedinmyer, C.: Secondary organic aerosol from sesquiterpene and monoterpene emissions in the United States, Environ. Sci. Technol., 42, 8784–8790, doi:10.1021/es800817r, 2008b.
- Seinfeld, J. H. and Pankow, J. F.: Organic atmospheric particulate material, Annu. Rev. Phys. Chem., 54, 121–140, doi:10.1146/annurev.physchem.54.011002.103756, 2003.
- Seinfeld, J. H., Kleindienst, T. E., Edney, E. O., and Cohen, J. B.: Aerosol growth in a steady-state, continuous flow chamber: Application to studies of secondary aerosol formation, Aerosol Sci. Technol., 37, 728–734, doi:10.1080/02786820390214954, 2003.
- Shilling, J. E., Chen, Q., King, S. M., Rosenoern, T., Kroll, J. H., Worsnop, D. R., McKinney, K. A., and Martin, S. T.: Particle mass yield in secondary organic aerosol formed by the dark ozonolysis of  $\alpha$ -pinene, Atmos. Chem. Phys., 8, 2073–2088, doi:10.5194/acp-8-2073-2008, 2008.

- Shilling, J. E., Chen, Q., King, S. M., Rosenoern, T., Kroll, J. H., Worsnop, D. R., DeCarlo, P. F., Aiken, A. C., Sueper, D., Jimenez, J. L., and Martin, S. T.: Loading-dependent elemental composition of α-pinene SOA particles, Atmos. Chem. Phys., 9, 771-782, doi:10.5194/acp-9-771-2009, 2009.
- Shu, Y. H. and Atkinson, R.: Atmospheric lifetimes and fates of a series of sesquiterpenes, J. Geophys. Res., 100, 7275–7281, doi:10.1029/95JD00368, 1995.
- Slowik, J. G., Stroud, C., Bottenheim, J. W., Brickell, P. C., Chang, R. Y.-W., Liggio, J., Makar, P. A., Martin, R. V., Moran, M. D., Shantz, N. C., Sjostedt, S. J., van Donkelaar, A., Vlasenko, A., Wiebe, H. A., Xia, A. G., Zhang, J., Leaitch, W. R., and Abbatt, J. P. D.: Characterization of a large biogenic secondary organic aerosol event from eastern Canadian forests, Atmos. Chem. Phys., 10, 2825–2845, doi:10.5194/acp-10-2825-2010, 2010.
- Solomon, P., Cowling, E., Hidy, G., and Furiness, C.: Comparison of scientific findings from major ozone field studies in North America and Europe, Atmos. Environ., 34, 1885–1920, 2000.
- Wang, S. C. and Flagan, R. C.: Scanning electrical mobility spectrometer, J. Aerosol Sci., 20, 1485–1488, doi:10.1016/0021-8502(89)90868-9, 1989.
- Winterhalter, R., Herrmann, F., Kanawati, B., Nguyen, T. L., Peeters, J., Vereecken, L., and Moortgat, G. K.: The gasphase ozonolysis of  $\beta$ -caryophyllene (C<sub>15</sub>H<sub>24</sub>). Part I: an experimental study, Phys. Chem. Chem. Phys., 11, 4152–4172, doi:10.1039/b817824k, 2009.
- Zhang, H. L. and Ying, Q.: Secondary organic aerosol formation and source apportionment in Southeast Texas, Atmos. Environ., 45, 3217–3227, doi:10.1016/j.atmosenv.2011.03.046, 2011.