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Abstract. The number concentration of cloud droplets deter-
mines several climatically relevant cloud properties. A major
cause for the high uncertainty in the indirect aerosol forcing
is the availability of cloud condensation nuclei (CCN), which
in turn is highly sensitive to atmospheric new particle forma-
tion. Here we present the effect of new particle formation on
anthropogenic aerosol forcing in present-day (year 2000) and
future (year 2100) conditions. The present-day total aerosol
forcing is increased from−1.0 W m−2 to −1.6 W m−2 when
nucleation is introduced into the model. Nucleation dou-
bles the change in aerosol forcing between years 2000 and
2100, from +0.6 W m−2 to +1.4 W m−2. Two climate feed-
backs are studied, resulting in additional negative forcings
of −0.1 W m−2 (+10 % DMS emissions in year 2100) and
−0.5 W m−2 (+50 % BVOC emissions in year 2100). With
the total aerosol forcing diminishing in response to air pollu-
tion control measures taking effect, warming from increased
greenhouse gas concentrations can potentially increase at a
very rapid rate.

1 Introduction

Atmospheric new particle formation is a frequent phe-
nomenon that enhances aerosol particle number concentra-
tions almost everywhere in the troposphere (Kulmala et al.,
2004; Spracklen et al., 2006, 2010; Yu et al., 2010). While
the initial nucleation occurs at about 1–2 nm of particle diam-
eter, nucleated particles are able grow up to cloud condensa-
tions nuclei (CCN) sizes if sufficient amounts of condensable

vapours are available (Lihavainen et al., 2003; Merikanto
et al., 2009; Pierce and Adams, 2009; Yu and Luo, 2009).
By this way, atmospheric new particle formation affects
cloud droplet number concentrations (CDNC) (e.g.,Kermi-
nen et al., 2005; Makkonen et al., 2009; Merikanto et al.,
2010). Modifications to cloud droplet concentrations lead
to aerosol indirect effects, namely the cloud albedo effect
(Twomey, 1974) and cloud lifetime effect (Albrecht, 1989).
The potential effect of nucleation on aerosol indirect effects
has been shown with global climate models (Wang and Pen-
ner, 2009; Kazil et al., 2010).

Sulphuric acid is thought to be the main precursor for at-
mospheric nucleation (Kulmala et al., 2006; Kerminen et al.,
2010; Sipilä et al., 2010), hence the emissions of oceanic
dimethyl sulphide (DMS) and both natural and anthro-
pogenic sulphur dioxide are expected to dominate the new
particle formation process. Anthropogenic SO2 emissions
have increased by three orders of magnitude in the last 250 yr,
from 0.06 Tg(S) yr−1 in the year 1750 to 54 Tg(S) yr−1 in
the year 2000 (Dentener et al., 2006). However, the global
SO2 emissions might already have peaked in the early 1970s
(Smith et al, 2011), and the application of flue-gas desulfu-
rization in power plants has decreased emissions in China
by 9.2 % between 2006 and 2010 (Lu et al., 2011). Due to
the relatively easy suppression of SO2 emissions, the pro-
jected future emission pathways show a strong decrease in
global emissions. Recently, “Representative Concentration
Pathways” (RCPs) (Moss et al., 2010; Lamarque et al., 2011)
have been introduced for the scenario development process
of IPCC AR5. All RCPs project a significant decrease in
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global anthropogenic SO2 emissions, with annual emissions
ranging from 6.5 Tg(S) to 13 Tg(S) in the year 2100. Not
only the SO2 emissions are expected to decrease: global
emissions of fossil fuel organic and black carbon are pre-
dicted to peak before 2030 and then to decline rapidly, such
that the levels at 2100 would be close to those at 1850. How-
ever, most RCPs predict a continuous increase of ammonia
emissions, at 2100 being 3 to 5 times those at 1850. Future
emissions of biomass burning aerosols behave very differ-
ently between the different RCPs in terms of both the sign
of the trend and absolute emission levels. The estimated
present-day to future changes in oceanic DMS emissions
are rather small: +6.5 % (Ramaswamy et al., 2001), +2.4 %
(Bopp et al., 2004) and−8.0 % (Stier et al., 2006).

Despite its importance for nucleation, sulphuric acid can
explain only a fraction of the subsequent nuclei growth.
Oxidation products of biogenic volatile organic compounds
(BVOCs) may provide the required growth for aerosols to
reach CCN sizes (Jimenez et al., 2009; Paasonen et al.,
2010). In addition, certain organic compounds might also
play a role in the first steps of nucleation (Metzger et al.,
2010). However, the centennial-scale changes in BVOC
emissions are highly uncertain, ranging from almost zero
to increases by more than 70 %, depending on which pro-
cesses are considered in the underlying emission algorithms
and prognostic vegetation models (Lathière et al., 2005; Ar-
neth et al., 2007).

Our aim is to study aerosol-cloud-climate interactions in
three emission environments: pre-industrial, present-day and
future. We provide a quantification of the impact of aerosol
nucleation on particle and cloud droplet number concentra-
tions and anthropogenic aerosol forcing, accounting also for
the possible impact of increase in biogenic precursor emis-
sions (BVOCs and oceanic DMS).

2 Methods

2.1 Global aerosol-climate model ECHAM5-HAM

We use the global climate model ECHAM5-HAM (Stier
et al., 2005) to simulate aerosol concentrations, cloud proper-
ties and total aerosol forcing with pre-industrial (year 1750),
present-day (year 2000) and future (year 2100) emissions.
The model is run in a T42 spectral resolution, correspond-
ing to a mean horizontal resolution of 2.8◦. In the vertical,
31 levels extend from surface up to 10 hPa. ECHAM5-HAM
includes the aerosol microphysics model M7 (Vignati et al.,
2004), which considers dust, sea salt, black carbon (BC), par-
ticulate organic matter (OC) and sulfate. Nitrate aerosols are
not included in the model. Aerosol size distribution is de-
scribed by four soluble (internally mixed) and three insolu-
ble (externally mixed) log-normal modes: nucleation-mode
(particle radiusr < 5 nm), Aitken-mode (5 nm< r < 50 nm),
accumulation-mode (50 nm< r < 500 nm) and coarse-mode

(r > 500 nm). The mode standard deviations are constant:
2.00 for the coarse modes and 1.59 for other modes. Bi-
nary sulphuric acid nucleation (Vehkam̈aki et al., 2002) is
included throughout the atmosphere, and activation-type nu-
cleation (Kulmala et al., 2006) is constrained to the boundary
layer. We assume monoterpene oxidation products to form
SOA with a 15 % yield, and this organic mass is partitioned
to the aerosol phase according to condensation sink of each
mode (Makkonen et al., 2009) in the boundary layer during
one timestep. No organics are traced in the gas-phase. The
modal setup of M7 is not ideal for studies of new particle
formation: for example, nucleation mode can not keep track
of newly formed particles and at the same time model the
growth of aged particles. To improve this, we convert the
nucleated particles to 3 nm size by using a parameterization
by Kerminen and Kulmala(2002). Some of the numerical
problems in the modal approach could be avoided by using
sectional models, for example SALSA (Kokkola et al., 2008;
Bergman et al., 2011).

The aerosol model is coupled to a double-moment cloud
microphysics scheme (Lohmann et al., 2007), and cloud
droplet activation is parameterized according toLin and
Leaitch(1997). The number concentration of particles with
wet radii larger than 35 nm,Na is given to the parameteriza-
tion, which calculates the number of activated cloud droplets
from Na, updraft velocity and cloud droplet concentration
from the previous timestep. The updraft velocity is obtained
from the grid-mean vertical velocity, turbulent kinetic energy
and convectively available potential energy. The activation
radii of 35 nm lies in the middle of the Aitken mode, how-
ever it is assumed that only the larger part of the log-normal
mode is able to activate. Only particles in the Aitken, accu-
mulation and coarse modes can activate into cloud droplets.
The model assumes a minimum cloud droplet number con-
centration of 40 cm−3, which was the highest value found
in a model intercomparison byQuaas et al.(2009). There
is evidence that this unphysical constraint affects the aerosol
indirect effect (Hoose et al., 2009), which might result in un-
derestimation of total aerosol forcing in this study.

ECHAM5-HAM utilises monthly-mean oxidation fields of
OH, H2O2, O3 and NO2, which are prescribed based on
simulations with the MOZART chemical transport model
(Horowitz et al., 2003). SO2 is oxidized by OH in the gas
phase and by H2O2 and O3 in the aqueous phase. The gas
phase reactions of DMS with OH and NO3 are considered.
The prescribed oxidant fields represent conditions of the year
2000, but we apply them also for the pre-industrial and future
simulations.

The sea-surface temperature and sea ice extent are pre-
scribed to present-day values. We integrate the model for
5 yr and calculate the total aerosol forcing as radiative flux
perturbation (Haywood et al., 2009; Lohmann et al., 2009).
The flux perturbation is calculated for total radiation (short-
wave+longwave). The technique is similar to what most
models used in the indirect effect intercomparison study by
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Quaas et al.(2009). Since our model setup couples aerosols
with cloud microphysics, the total effect includes the direct
effect, semi-direct effect, 1st indirect effect (cloud albedo),
and indirect effects beyond the cloud albedo effect: although
the prescribed sea-surface temperatures will keep the overall
climate fixed, changes in aerosols and cloud properties can
induce changes in e.g. precipitation and cloud cover.

We will conduct two sets of experiments, with and without
nucleation. In simulations without nucleation both boundary
layer nucleation and binary sulphuric acid-water nucleation
is turned off, but other microphysical processes are left un-
touched (e.g. sulphuric acid and BVOC oxidation products
can still condense on existing particles).

2.2 Anthropogenic emissions

Anthropogenic aerosol and precursor emissions are taken
from the AeroCom inventories for the years 1750 and 2000
(Dentener et al., 2006). For the future we apply three of the
four pathways constructed for the IPCC AR5 emission de-
velopment process, namely RCP 3-PD (van Vuuren et al.,
2007), RCP 4.5 (Smith and Wigley, 2006; Clarke et al., 2007;
Wise et al., 2009) and RCP 8.5 (Riahi et al., 2007). The evo-
lution of aerosols in these pathways has been presented in
detail by Lamarque et al.(2011), who found a strong de-
crease in anthropogenic aerosols by the year 2100. The an-
thropogenic emissions of aerosols and precursors are pro-
jected to be greatly reduced by the year 2100. The emis-
sions of SO2 will decrease from 107 Tg(SO2) yr−1 to 13–
26 Tg(SO2) yr−1. The emissions of BC will decrease from
7.8 Tg yr−1 to 3.4–4.4 Tg yr−1, showing a narrower range of
values in the year 2100 than SO2. The emissions of OC
will decrease from 36 Tg yr−1 to 19–32 Tg yr−1. The only
aerosol precursor showing a future increase is NH3, which
will increase from present-day emission of 49 Tg yr−1 to 53–
82 Tg yr−1 due to agricultural emissions.

The shapes of number size distributions of emitted primary
particles are assumed identical in all simulations, following
Stier et al.(2005). The primary emissions of OC and BC
from fossil-fuel and bio-fuel are assumed to have a number
mean radius of 30 nm. Wildfire emissions are assumed to
lead to larger primary OC and BC particles with the number
mean radius of 75 nm. The primary emission radii are based
on AeroCom recommendations (Dentener et al., 2006), but
have been adapted to the log-normal setup of M7 (Stier et al.,
2005). As a result, the used primary aerosol radii are larger
than those suggested by AeroCom, resulting in fewer emit-
ted primary particles. Although this has some effects on
simulated number concentrations, it is not straightforward to
test the sensitivity to the emission radii. Certain radii sug-
gested by AeroCom (Dentener et al., 2006) fall in between
the modes of M7, which would create undesired numerical
effects in aerosol microphysics.

Due to the rapid gas-to-particle conversion near source ar-
eas, we followedStier et al.(2005), assuming that 2.5 %

of all emitted SO2 (except from DMS) is converted to pri-
mary sulfate and partitioned to the Aitken, accumulation and
coarse modes. None of these particles are included in the nu-
cleation mode, even thoughStevens et al.(2012) highlighted
the importance of nucleation in power plant plumes.

2.3 Natural emissions

Natural emissions of sea salt and dust are modeled interac-
tively in all simulations (Stier et al., 2005), hence their emis-
sion strength might differ between experiments e.g. in re-
sponse to changes in the wind speed. The emissions of vol-
canic sulphur are identical in all the simulations performed
corresponding to present-day emissions (Stier et al., 2005).

The oceanic DMS emissions are modeled interactively ac-
cording toKettle and Andreae(2000) andNightingale et al.
(2000), which results in annual global DMS emission of
23.4 Tg(S) (Stier et al., 2005). In order to test the DMS emis-
sion sensitivity part of CLAW hypothesis (Charlson et al.,
1987), we performed a future scenario simulation where
oceanic DMS emissions are increased by 10 %. The applied
increase is higher than proposed in literature (+2.4 % inRa-
maswamy et al., 2001, +6.5 % inBopp et al., 2004).

For biogenic VOC emissions we consider only monoter-
pene emissions, which leads to an underestimation of SOA.
The monoterpene emissions are prescribed monthly fields
generated with the dynamic vegetation model LPJ-GUESS
(Schurgers et al., 2009). Depending on whether the increas-
ing atmospheric CO2 concentration affects monoterpene pro-
duction in the same way as it does for isoprene (Schurgers
et al., 2009), these emissions may remain more or less un-
changed, or they increase in response to warmer climate and
higher vegetation productivity. The annual global monoter-
pene emissions are 31, 30 and 28 Tg(C) for pre-industrial,
present-day and future, respectively. The applied monoter-
pene emissions are on the lower side of values reported in
the literature, ranging from 30 to 128 Tg(C) yr−1 (Carslaw
et al., 2010). To assess the responsiveness of the vegetation
to increase in temperature, we performed an additional future
scenario where future BVOC concentrations are increased by
50 % from the base-level of 28 Tg(C).

3 Results and discussion

3.1 Evolution of number concentrations

Spatial distributions and temporal changes in CN (condensa-
tion nuclei, i.e. aerosol particles with diameterdp > 3 nm)
concentrations for the three years, 1750, 2000 and 2100,
are shown in Fig. 1. The upper panels show the results
from simulations with nucleation turned off, indicating pri-
mary emission distribution, although condensation of SO2
and BVOC oxidation products make a minor contribution to
CN. Pre-industrial primary emissions were low in terms of
aerosol number: primary aerosols contributed significantly to
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Fig. 1. Annual average concentration (cm−3) of CN (condensation nuclei, aerosol particles with diameterdp > 3 nm) in the boundary layer
for the years 1750 (left), 2000 (center) and 2100 (right). The results for the year 2100 are an average from all three future emission pathways
(RCP 3-PD, RCP 4.5, RCP 8.5). The upper panels show results from simulations without nucleation, and lower panels with nucleation
included.

aerosol number concentration only in regions with intensive
wild-land fires (Africa, South America, North-East Eurasia).
The only location showing a decrease in CN concentration
since the pre-industrial period is high-latitude boreal forests
in North America and eastern Siberia, where increased fire
suppression has decreased emissions (Brenkert et al., 1997).
There is a clear change in the spatial distribution of primary
emissions when moving to the year 2100: in general, num-
ber concentrations increase in India and Africa, and decrease
elsewhere.

When aerosol nucleation is turned on (Fig. 1, lower pan-
els), CN concentrations are increased significantly. Pre-
industrial anthropogenic sources of SO2 were low, hence
aerosol nucleation originated mostly from natural precursors.
Some of these sources can be identified in lower panels of
Fig. 1: volcanoes (Philippines, areas west of New Caledo-
nia, and southern Japan) and DMS (the band around 60◦ S).
The human impact is clearly visible under present-day con-
ditions. Increases in primary emissions and new particle for-
mation lead to doubled CN concentrations in US, Europe,
Middle East, India, China and South Africa. There are sev-
eral large areas inside these regions where CN concentra-
tions are up to five times above the pre-industrial values.
There are significant reductions in CN concentrations from
present-day to the year 2100: aerosol number concentrations
are decreased by 50–90 % in North America, Europe, East-
ern China and South Africa. Certain equatorial regions, such
as Middle Africa, show increased CN concentrations due to
increases in wildfires.

The present-day CN concentrations simulated in this study
are similar to those in Fig. 7e byYu et al. (2010), who also
considered activation-type nucleation in the boundary layer.

However, the land-ocean contrast in the CN concentration
is stronger in our study. The global average CN concentra-
tion of 3017 cm−3 simulated here exceeds the estimate of
1063 cm−3 by Merikanto et al.(2009), but comparing the
spatial CN concentration distribution modeled here to Fig. 5
in Merikanto et al.(2009) indicates that a major part of the
discrepancy might be due to nucleation in the DMS belt
around 60◦ S: Merikanto et al.(2009) shows CN concentra-
tions of<1000 cm−3 while our simulations indicate concen-
trations of about 3000 cm−3. Over the continents, our results
seem to be relatively constistent with those byMerikanto
et al.(2009).

Figure 2 presents values for pre-industrial, present-day and
future CCN (cloud condensation nuclei,dp > 70 nm) con-
centrations. Due to extremely low pre-industrial CCN con-
centrations without nucleation (upper panels), the present-
day anthropogenic emissions introduce a global average in-
crease by a factor of 4 to the boundary layer CCN concen-
tration. Similarly to CN concentrations without nucleation,
CCN concentrations increase in Africa and India by year
2100, but otherwise show a decrease.

When nucleation is turned on (lower panels), the relative
present-day anthropogenic effect on CCN concentrations is
smaller. The present-day emissions lead to doubled CCN
concentrations in almost all locations above land, as com-
pared with the pre-industrial values. CCN concentrations in-
crease more than fivefold in North America, central Europe,
India and China, compared to pre-industrial. The present-
day CCN distribution compares well with that bySpracklen
et al. (2008), although our study finds slightly higher CCN
concentration over the oceans.
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Fig. 2. Annual average concentration (cm−3) of CCN (cloud condensation nuclei,dp > 70 nm) in the boundary layer for the years 1750
(left), 2000 (center) and 2100 (right). The results for the year 2100 are an average from all three future emission pathways (RCP 3-PD, RCP
4.5, RCP 8.5). The upper panels show results from simulations without nucleation, and lower panels with nucleation included.

Table 1. Annual global average boundary layer CN and CCN concentration (cm−3), and cloud-top CDNC (cm−3) in simulations with and
without nucleation.

Future
Nucleation Pre-industrial Present-day RCP 3-PD RCP 4.5 RCP 8.5

CN
Off 22 122 120 117 141
On 2233 3017 2336 2426 2437

CCN
Off 21 86 69 64 77
On 236 397 275 277 296

CDNC
Off 56 83 62 62 66
On 167 203 167 171 172

Even with decreasing global emissions, CCN concentra-
tions in the year 2100 are still doubled to the pre-industrial
values in India, Middle East, and some parts of Europe and
Africa. The CCN hotspots are similar in simulations with
and without nucleation. The simulated overall strong future
decrease in the availability of condensation nuclei for cloud
droplets are expected to lead to drastic changes in cloud prop-
erties.

The global average concentrations of CN, CCN and cloud
droplet number are summarized in Table 1. In a pre-
industrial world without nucleation, the total aerosol num-
ber concentration of 22 cm−3 was mainly of CCN size. The
particle number concentrations were mostly below 40 cm−3,
which is the applied minimum limit for cloud droplet num-
ber concentration. Anthropogenic primary emissions lead to
a factor of 5 increase in CN concentration by the year 2000.
Future CN concentrations from primary emissions either de-
crease slightly (RCP 3-PD, RCP 4.5) or increase due to in-
creased emissions in Africa and India (RCP 8.5). Turning on

nucleation in the model increases the CN concentration by
a factor of 100, 25 and 20 in the pre-industrial, present-day
and future conditions, respectively. Without nucleation, the
relative increase in the CN concentration from pre-industrial
to future is 500 %. Including nucleation increases the pre-
industrial CN concentration significantly, causing relative in-
crease of only 5–9 % between pre-industrial and future.

The global 5-yr-average CDNC at the cloud-top height
with and without nucleation are shown in Fig. 3. Including
nucleation in the model increases the overall global CDNC
by a factor of 2–3 compared with CDNC without nucle-
ation. Our model shows a 70 % increase in the boundary
layer CCN concentration (from 236 cm−3 in year 1750 to
397 cm−3 in year 2000) and 20 % increase in the cloud-
top CDNC from the year 1750 to 2000 (from 167 cm−3 to
203 cm−3). Wang and Penner(2009) found a rather simi-
lar anthropogenic perturbation of +85 % to boundary layer
CCN.Pierce and Adams(2009) conducted simulations with
pre-industrial and present-day emissions and found increases
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of +220 % and +200 % in the tropospheric CCN(0.2 %) con-
centration with binary and ternary nucleation, respectively.
The CDNC in the altitude range 300–1000 m was found to
increase from 145 cm−3 (year 1850) to 240 cm−3 (year 1750)
by Merikanto et al.(2010), which is much more than the
CDNC increase found in our study (but identical to the 70 %
increase we found for the CCN concentration).Spracklen
et al. (2008) found a 10 % increase in the CCN(0.2 %) con-
centration and 20 % increase in CCN(1.0 %) concentration
due boundary layer nucleation when using the same activa-
tion coefficient. Although our results presented here compare
simulations with nucleation turned off completely, our model
shows an increase of about 20–30 % in the boundary layer
CCN due to activation-type nucleation. The sensitivity of
our modeled CCN and CDNC to present-day anthropogenic
perturbation seems to be consistent with earlier literature, al-
though our result is on the smaller side. This might be due to
overestimation of the pre-industrial CCN and CDNC due to
nucleation. Also the minimum CDNC of 40 cm−3 affects the
pre-industrial CDNC, and the relative changes in CDNC.

Figure 3 also shows that the reductions in primary aerosol
and aerosol precursor emissions by the year 2100 lead to a
strong decrease in CDNC. In simulations without nucleation,
the decrease is 17 cm−3 (22 %). When nucleation is turned
on, the relative decrease is smaller (16 %), which would in-
dicate that nucleation actually slows the decrease in cloud
albedo. The CDNC in the year 2100 ranges from 167 cm−3

to 172 cm−3 (red shading in Fig. 3), showing very little vari-
ation due to anthropogenic emission uncertainties. It should
be noted that without nucleation, the CDNC in the year 2100
is still 15 % higher than in year 1750, while the future CDNC
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in nucleation simulations it is only 2 % higher than in pre-
industrial period.

The climate feedback simulations show a clear increase in
CDNC, +2 % and +5 % for an emission increase of +10 %
DMS and +50 % BVOC, respectively. The two experiments
work in very different ways: the increase in DMS emission
leads to increase in both nucleation and aerosol growth over
oceans, whereas the increase in BVOC emission only pro-
vides more growth for particles over land.

3.2 Total aerosol forcing

Figure 4 shows the total anthropogenic aerosol forcing for
the years 2000 and 2100. The results clearly indicate how
accounting for atmospheric nucleation is critical for aerosol
forcing calculations. In the present-day atmosphere, includ-
ing new particle formation increases the magnitude of the
total aerosol forcing from−1.03 W m−2 to −1.61 W m−2,
indicating more cooling from anthropogenic aerosols. Our
present-day forcing estimates are within the 90 % confidence
range by (Forster et al., 2007), from −2.2 to −0.5 W m−2,
which does not consider the cloud lifetime effect included
here. Hansen et al.(2011) used observations of the ocean
heat uptake and global temperature change, and found the
aerosol climate forcing at 2010 to be−1.6± 0.3 W m−2,
which is identical to our study. The total aerosol forcing
of −1.61 W m−2 simulated here is also similar to−1.57±

0.66 W m−2 obtained for the total aerosol forcing averaged
over ten global models byQuaas et al.(2009). While
nucleation increases the present-day aerosol forcing, more
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importantly the change in aerosol forcing from present-day
to year 2100 is +1.3–1.4 W m−2 when nucleation is consid-
ered, while it is only +0.5–0.8 W m−2 without nucleation. It
should be noted that the minimum CDNC of 40 cm−3 ap-
plied here can be considered rather high especially for pre-
industrial clouds, hence causing an underestimation of the
anthropogenic forcing (Hoose et al., 2009).

All simulations performed in this study use coupled
aerosol-cloud microphysics and prescribed sea-surface tem-
peratures. Calculation of aerosol direct forcing would require
fixing of meteorology, i.e. nudging the model. To give some
idea on the contribution of direct/indirect effects on the sim-
ulated total aerosol effect, we diagnosed the clear-sky top-of-
atmosphere shortwave aerosol direct forcing. We can com-
pare these forcings toLamarque et al.(2011), who used the
same emission pathways and calculated the clear-sky top-of-
atmosphere shortwave aerosol forcing. We can also com-
pare our present-day forcing to AeroCom intercomparison
study bySchulz et al.(2006). Both our present-day simula-
tions show a−0.70 W m−2 clear-sky forcing, which is almost
identical to−0.68±0.28 W m−2 in Schulz et al.(2006) and
slightly smaller than−0.8 W m−2 in Lamarque et al.(2011).
In simulations without nucleation, the direct aerosol forc-
ing is decreased to−0.26 W m−2 (RCP 3-PD),−0.22 W m−2

(RCP 4.5) and−0.28 W m−2 (RCP 8.5) by the year 2100.
These findings are similar toLamarque et al.(2011), who
found a future aerosol direct forcings of−0.24 W m−2 (RCP
3-PD), −0.24 W m−2 (RCP 4.5) and−0.37 W m−2 (RCP
8.5). The slight discrepancy is partly explained by the fu-
ture increase in ammonium nitrate forcing by 0–0.05 W m−2,
which is not considered in our study. Including nucleation
in the model decreases the future clear-sky aerosol direct
forcing to −0.05 W m−2. In the AeroCom intercomparison
(Schulz et al., 2006), the present-day clear-sky direct forc-
ing of −0.68±0.28 resulted in an all-sky direct forcing of
−0.22 W m−2, hence it is very likely that a major part of the
total aerosol forcing shown in this study is due to aerosol
indirect effects.

The applied emission pathways show strong changes in
anthropogenic emissions of black carbon (BC, 40–60 %
reduction) and organic carbon (OC, 10–60 % reduction).
It has been shown that a 50 % reduction in the primary
BC/OC mass and number emissions alone would lead to
+0.19 W m−2 forcing in present-day climate (Chen et al.,
2010), when taking into account both the cooling from re-
duced BC (−0.12 W m−2) and simultaneous warming from
decreased CDNC (+0.31 W m−2). The findings byLamarque
et al. (2011) indicate a 0.06–0.09 W m−2 positive clear-sky
forcing from reduced BC, when applying the same emission
pathways as in this study. Hence, the BC/OC reduction could
explain a major part of the simulated future warming without
nucleation (+0.64 W m−2).

Kloster et al.(2008) showed that even a +1.13 W m−2

warming until 2030 from the reduced aerosol load would
be plausible under a “maximum feasible reduction” sce-

nario. Although their present-day total aerosol forcing
(−2.00 W m−2) is stronger compared with our simulations,
the applied 80 % reduction in anthropogenic SO2 is compa-
rable to future scenarios used here.

While the simulated present-day total aerosol forcing
(−1.61 W m−2) is rather close (but of opposite signal) to
the present-day forcing of CO2 (+1.66 W m−2, Forster et al.,
2007), the future warming from applied air pollution con-
trol and the resulting decrease in aerosol effects (a change
of +1.38 W m−2 in total aerosol forcing, when averaged over
future scenarios) would accelerate the rate of climate warm-
ing in response to increasing greenhouse gas concentrations.
For example, in the scenario of RCP 3-PD (van Vuuren
et al., 2007) the CO2 forcing is estimated to increase from
+1.5 W m−2 (year 2000) to +2.3 W m−2 (year 2100), hence
the warming resulting from reduced aerosol forcing alone
might be more than that due to CO2 concentration over the
same time period.

Could changes in natural aerosol precursors counteract the
effects of anthropogenic emission changes? This seems un-
likely, as shown in Fig. 4. The simulation with +50 % BVOC
emission shows increased particle growth from oxidized or-
ganics, leading to 5 % increase in CDNC and finally an ad-
ditional negative forcing of−0.46 W m−2. Similarly, an in-
crease of +10 % in DMS emission can only add an extra cool-
ing of −0.12 W m−2 to the future aerosol forcing. It should
be noted, however, that the effect of these additional emis-
sions is not negligible, and that there might be other pro-
cesses and feedbacks involved.

4 Conclusions

Our analysis provides evidence on how the present-day cli-
mate forcing by aerosol particles is controlled strongly by at-
mospheric new particle formation. This is due to a favourable
combination of anthropogenic sulphur and biogenic organic
vapour emissions, which together produce effectively new
cloud condensation nuclei that enhance the negative cloud
forcing.

We have shown that even though the total number con-
centration of primary aerosols might stay constant or even
increase slightly by the year 2100, the strong reduction in
anthropogenic SO2 emissions will lead to less aerosol nu-
cleation, rendering the total number concentrations close to
pre-industrial values. More importantly, due to the simulated
strong coupling of SO2 and CCN, the future cloud droplet
concentrations will be decreased to almost pre-industrial
concentrations. Hence, the current cooling effect by aerosol
particles (total aerosol forcing of−1.61 W m−2) will be re-
duced close to zero (−0.23 W m−2) by 2100. The two cli-
mate feedbacks studied (increase in either DMS or BVOC)
show increased CDNC and result in additional negative forc-
ing, yet they can not compensate for the effects of decreasing
anthropogenic emissions. The suppression of future aerosol
forcing, if true, would lead to even a larger warming of
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climate than what is expected based on increased greenhouse
gas concentrations (Andreae et al., 2005).
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