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Abstract. Tropical tropospheric ozone affects Earth’s radia-
tive forcing and the oxidative capacity of the atmosphere.
Considerable work has been devoted to the study of the pro-
cesses controlling its budget. Yet, large discrepancies be-
tween simulated and observed tropical tropospheric ozone
remain. Here, we characterize some of the mechanisms by
which the photochemistry of isoprene impacts the budget of
tropical ozone. At the regional scale, we use forward sensi-
tivity simulation to explore the sensitivity to the representa-
tion of isoprene nitrates. We find that isoprene nitrates can
account for up to 70 % of the local NOx = NO+NO2 sink.
The resulting modulation of ozone can be well characterized
by their net modulation of NOx. We use adjoint sensitivity
simulations to demonstrate that the oxidation of isoprene can
affect ozone outside of continental regions through the trans-
port of NOx over near-shore regions (e.g., South Atlantic)
and the oxidation of isoprene outside of the boundary layer
far from its emissions regions. The latter mechanism is pro-
moted by the simulated low boundary-layer oxidative condi-
tions. In our simulation,∼20 % of the isoprene is oxidized
above the boundary layer in the tropics. Changes in the in-
terplay between regional and global effect are discussed in
light of the forecasted increase in anthropogenic emissions
in tropical regions.

1 Introduction

The impact of tropical ozone on Earth’s radiative forcing
(Forster et al., 2007) and oxidative capacity have motivated
considerable work to unravel the complex interplay between
dynamics, surface emissions and chemistry that controls its

distribution. Spatial patterns such as the South Atlantic
ozone maximum (Thompson et al., 2000; Wang et al., 2006)
have been explored in great depth and the sensitivity of ozone
to NO emissions from lightning (Sauvage et al., 2007b),
biomass burning (Jacob et al., 1996; Chandra et al., 2002;
Ziemke and Chandra, 1999; Jourdain et al., 2007; Edwards
et al., 2006) and soil (Jaegĺe et al., 2004) or to dynamics
(Wang et al., 2006; Nassar et al., 2009) has been charac-
terized. However, significant discrepancies between model
and observations remain (Zhang et al., 2010). Since ozone is
photochemically produces, we focus here on the uncertain-
ties in the chemical transfer function that relates emissions
and ozone, a topic that has been seldom addressed (Bowman
et al., 2009).

The tropics are characterized by very large biogenic
emissions, whose photooxidation impacts the budgets of
Ox=O3+NO2 and HOx=OH+HO2 (Lelieveld et al., 2008).
The influence of the photooxidation of isoprene, a five-
carbon dialkene that accounts for 30 % to 50 % of bio-
genic volatile organic compound (BVOC) emissions (Guen-
ther et al., 1995; Guenther et al., 2006) on photochemistry
has recently motivated considerable laboratory (Paulot et al.,
2009a,b; Lockwood et al., 2010; Crounse et al., 2011), field
(Thornton et al., 2002; Ren et al., 2008; Lelieveld et al.,
2008) and theoretical work (Peeters et al., 2009; Dibble,
2004a,b). Simulations suggest that the effect of isoprene
chemistry on the Ox budget extends to much larger scale
than isoprene’s short atmospheric lifetime would suggest
(Roelofs and Lelieveld, 2000; von Kuhlmann et al., 2004;
Pfister et al., 2008). In this study, we first use forward
sensitivity simulations to show that the impact of different
representations of isoprene nitrate chemistry on the regional
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Table 1. Summary of the changes to the standard GEOS-Chem mechanism (Horowitz et al.(1998), see alsohttp://acmg.seas.harvard.edu/
geos/wiki docs/chemistry/chemistryupdatesv6.pdf)

ISOP+OH→ ISOPO2 2.7×10−11
×exp(390/T) (1)

ISOPO2+NO→ NO2+HO2+0.378IALD (1−Y )×kb
NO (2)

+0.378MVK+0.244MACR+0.622CH2O

ISOPO2+NO→ ING0 Y ×kb
NO (3)

ISOPO2+HO2 → ISOPOOH ka
HO2

(4)

ISOPO2 → OH+2HO2+CH2O+0.5(MGLY +GLYC+GLYX +HAC) 4.07×108
×exp(−7694/T) (5)

ING0+OH→ ING0O2 1.28×10−11
×exp(380/T) (6)

ING0O2+NO→ 2NO2+HO2+OVOC α×2.7×10−12
×exp(350/T) (7)

ING0O2+NO→ 0.5ING1+0.5ING2+HO2+NO2 (1−α)×2.7×10−12
×exp(350/T) (8)

ING0O2+HO2 → ka
HO2

ING0+O3 → NO2+HO2+OVOC α×1.09×10−13
×exp(−2100/T) (9)

ING0+O3 → 0.5ING1+0.5ING2+HO2 (1−α)×1.09×10−13
×exp(−2100/T) (10)

ISOP+NO3 → INO2 3.15×10−12
×exp(−450/T) (11)

MVK +OH→ MVKO2 2.6×10−12exp(610/T)

MVKO2+NO→ NO2+0.28HO2+OVOC kb
NO

MVKO2+NO→ ING1 kb
NO

MACR+OH→ MRO2+MAO3 kb
NO

MRO2+NO→ NO2+HO2+HAC+CH2O kb
NO

MRO2+NO→ ING1 kb
NO

INO2+NO→ 1.15NO2+0.8HO2+0.85ING0+0.1MACR kb
NO

0.15CH2O+0.05MVK
INO2+HO2 → INPN ka

HO2

INPN+OH→ 0.3INO2+0.7OH+0.7ING0 3.8×10−12
×exp(200/T)

IALD +OH→ 0.430IAO2+0.570IAO3 3.7×10−11

IAO2+NO→ OVOC+0.920HO2+0.920NO2+0.080ING1 kb
NO

INPN+OH→ ING1+OH 5×10−11

ING1+OH→ NO2+HO2+OVOC 8×10−12 (12)

ING2+OH→ HO2+NO2+OVOC 4×10−13 (13)
ING2 → NO2+PA+HO2 JING2 (14)

IAO2 → CO+MEK +OH k−H
=Oxc

IAO3 → PACLD+HO2 k−H
=Oxc

MRO2 → CO+HAC+OH k−H
=Oxc

ISOPOOH+OH→ IEPOX+OH 1.9×1011
×exp(390/T)

ISOPOOH+OH→ 0.387RIO2+0.613OH+0.613IALD 4.75×10−12exp(200/T)

PACLD→ 1.000OH+0.500(MCO3+GLYX +CO+HO2) JPACLD

a kHO2 = 2.91×10−13exp(1300/T)(1−exp(−0.245nC)) (Saunders et al., 2003)
b kNO = 2.7×10−12

×exp(350/T)
c k−H

=O = 8.81×109exp(−7510/T) (Crounse et al., submitted)
d JING2 estimated using average of cross sections fromRoberts and Fajer(1989); quantum yield estimated byJenkin et al.(1997)
e JPACLD estimated using 2× the cross section of MACR and a quantum yield of 1 (Peeters and M̈uller, 2010)

budget of ozone can be well understood by characterizing
their overall impact on NOx. We then use adjoint sensitiv-
ity simulations to trace the processes that contribute to the
long-range influence of the isoprene photochemical cascade
on tropical ozone.

The photooxidation of isoprene is primarily initiated by
its reaction with OH (Table1, Reaction (R1)). This reaction
produces isoprene peroxy radicals (ISOPO2), whose fate is
critical to the Ox budget. When ISOPO2 reacts with NO, iso-
prene photooxidation promotes Ox formation (Reation (R2)).
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This reaction is especially important in regions where ur-
ban centers are embedded in forested areas (e.g., Atlanta,
Chameides et al.(1988)). The auto-catalytic production of
Ox is terminated by radical losses, e.g., the formation of
nitric acid (OH+ NO2 → HNO3) and hydrogen peroxide
(HO2 + HO2 → H2O2). Since the ozone production effi-
ciency (OPE) – the number of molecules of O3 produced per
molecule of NOx consumed (Liu et al., 1987) – generally in-
creases as the ratio of NOx to VOC decreases (Seinfeld and
Pandis, 1998), tropical regions with high isoprene emissions
and low anthropogenic NOx emissions can be expected to
be extremely sensitive to increasing NO emissions (Thornton
et al., 2002). For instance, ozone production in the outflow of
Manaus (Brazil) is similar to that of major North American
cities (Kuhn et al., 2010).

When ISOPO2 reacts with HO2, HOx is destroyed (Reac-
tion (R4)). This slows the local photochemistry, contributing
to the very low ozone levels over remote tropical forests.

Because isoprene emissions are so large, its photooxida-
tion can modulate the local photochemical conditions. Un-
der very low NOx conditions, the removal of HOx via Re-
action (R4) is predicted to result in very low concentra-
tions of HOx in the isoprene-rich boundary layer (Houweling
et al., 1998). Under these conditions, the lifetime of ISOPO2
can become long (∼ 60 s) and unimolecular processes (Re-
action (R5)) become competitive with Reactions (R4) and
(R2) (Peeters et al., 2009; Crounse et al., 2011). This at-
tenuates the removal of HOx by isoprene photochemistry,
more consistent with field observations of HOx (Peeters and
Müller, 2010; Stavrakou et al., 2010; Archibald et al., 2010).
Here we do not explicitly represent the intermediate carbonyl
(HPALD) that is produced by the isomerization and assumes
it photolyzes readily (Peeters and M̈uller, 2010).

Understanding low oxidative photochemical conditions is
important for determining the extent of the isoprene photo-
chemical cascade as such conditions promote the transport
of isoprene and its photochemical products. In particular, the
transport of biogenics to the upper troposphere through con-
vection has been suggested to influence the budget of ozone
on the global scale as ozone and NOx are much longer lived
in this region of the atmosphere than at the surface (Doherty
et al., 2005; Collins et al., 1999; Moxim and Levy, 2000).

The modulation of NOx through isoprene nitrates
(ISOPONO2), minor products of the reaction of ISOPO2
with NO, is another mechanism that allows the impact of
isoprene photochemistry to propagate to larger scales (e.g.,
Wu et al., 2007; Gauss et al., 2006; Ito et al., 2007; Horowitz
et al., 2007; Fiore et al., 2005; Stevenson et al., 2006). The
formation of ISOPONO2 (R3) modulates Ox by diminish-
ing its local formation through NOx sequestration. Further-
more, with high isoprene emissions, the fraction of NOx seg-
regated in ISOPONO2 can become large enough that their
formation contributes to the loss of NOx. Unlike nitric acid,
usually a terminal sink of NOx in the boundary layer, or-
ganic nitrates may not be a terminal sink of NOx but rather

a reservoir (like peroxyacetylnitrate (PAN)). Depending on
their lifetime and fate, the transport of these organic nitrates
contribute to the export of NOx away from its emission re-
gions. The efficiency of this export depends on the fraction
of NOx that is returned to the atmosphere through the pho-
tooxidation of ISOPONO2 and its nitrate-containing oxida-
tion products R?ONO2.

ISOPONO2
OH, O3, hν
−−−−−−→ NO2 (R15)

OH, O3, hν
−−−−−−→ R?ONO2 (R16)

wet/dry deposition
−−−−−−−−−−→ (R17)

There has been considerable laboratory research to de-
termine the yield of ISOPONO2 (Y = (R3)/((R3) + (R2))∼
10%± 5%, (Chen et al., 1998; Sprengnether et al., 2002;
Paulot et al., 2009a; Lockwood et al., 2010). Laboratory
(Paulot et al., 2009a; Lockwood et al., 2010) and field obser-
vations (Grossenbacher et al., 2001, 2004; Giacopelli et al.,
2005; Perring et al., 2009b) suggest isoprene nitrates have
a short atmospheric lifetime. However, there is much un-
certainty regarding the relative importance of deposition and
photochemical sinks (by OH and ozone).Ito et al.(2007) and
Perring et al.(2009a) estimated that the fate of isoprene ni-
trates is dominated by photochemical losses whileHorowitz
et al. (2007) andGiacopelli et al.(2005) concluded that de-
position is their primary sink.

If the isoprene nitrates are primarily lost through photoox-
idation, assessing their impact on the budget of reactive ni-
trogen and ozone must include proper representation of their
photochemical products (Grossenbacher et al., 2001), about
which very little is known. Paulot et al.(2009a) reported
the formation of propanone nitrate and ethanal nitrate from
ISOPONO2 oxidation by OH and inferred that the ratio of
Reactions (R15) to (R16) is ∼1, i.e., that∼ 50% of the NOx
segregated in ISOPONO2 is promptly recycled. In the fol-
lowing we will refer to this fraction asα. Similarly, Gia-
copelli et al.(2005) proposed a suite of possible ozonoly-
sis products. The formation of long-lived organic nitrates is
significant as they may contribute to the long-range trans-
port of NOx and the unexplained burden of organic nitrates
in the free troposphere (Horowitz et al., 2007; Perring et al.,
2009a). There are also large uncertainties on the yield and
fate of organic nitrates formed at night from isoprene+NO3
chemistry (Horowitz et al., 2007; Brown et al., 2009).

The representation of NOx recycling (Reaction (R15)),
segregation (Reaction (R16)) and depositional loss (Reac-
tion (R17)) vary considerably across models. This is known
to contribute to differences in simulated ozone (Stevenson
et al., 2006; Wu et al., 2007; Jacob and Winner, 2009).
For instance, in the standard release of GEOS-Chem, iso-
prene nitrates are assumed to deposit readily, such that they
behave like a terminal sink for NOx much like nitric acid
in the boundary layer (Fiore et al., 2005). In MOZART
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(Horowitz et al., 2007), isoprene nitrates are short-lived and
a large fraction is oxidized by ozone and OH to yield second-
generation organic nitrates that are then solely deposited.

To determine the impact of isoprene photochemistry, the
relative importance of Reactions (R2), (R3) (R4) and (R5)
must be known. It remains, however, very uncertain. In par-
ticular the fate of ISOPO2 depends critically on:

1. The rate of the reaction of RO2 with HO2. GEOS-
Chem and MOZART assume that the rate of RO2+HO2
is independent of R (forn(C) > 2) with kHO2 = 7.4×

10−13exp(700/T) (Horowitz et al., 1998, 2007). Kinet-
ics studies suggest, however, that the rate of RO2+HO2
increases with the size of the molecule. The expres-
sion derived bySaunders et al.(2003), k

′

HO2
= 2.91×

10−13exp(1300/T)(1−exp(−0.245n(C))), is in good
agreement with the rate measured byBoyd et al.(2003)
for ISOPO2. For isoprene at 298 K,k

′

HO2
/kHO2 ∼ 2.

2. The isoprene emission inventory. Compared with
MEGAN, the GEIA emissions inventory (Guenther
et al., 1995) is characterized by higher isoprene emis-
sions in the northern mid-latitudes, which favor the re-
action of isoprene peroxy radicals with NO. Using the
GEIA inventory andkHO2, Paulot et al.(2009b) found
the fate of isoprene peroxy radicals to be dominated by
their reaction with NO.

3. The isomerization rate of isoprene peroxy radicals. The
rate derived byCrounse et al.(2011) is significantly
slower than the theoretical rate derived byPeeters et al.
(2009). It follows that the overall importance of the
isomerization is much smaller than previous estimates
(e.g.,Peeters and M̈uller, 2010).

In this study, we focus on the regions located between 15◦S
and 7◦N (Fig. 1) where more than 50 % of the global terres-
trial isoprene emissions are located. These estimates remain
uncertain (Guenther et al., 2006) as (a) bottom-up estimates
are derived from ground studies that are too sparse to cap-
ture the diversity of plants in the rain forest, and (b) top-
down estimates using satellite measurements of formalde-
hyde (Palmer et al., 2003; Barkley et al., 2008) rely on chem-
ical mechanisms that are known to poorly represent the pho-
tochemistry under high biogenics and low NOx conditions
(e.g.,Lelieveld et al., 2008; Stone et al., 2010). In particu-
lar, the yield of formaldehyde from isoprene oxidation under
these conditions is ill-defined.

The ratio between emitted isoprene and NOx exhibits a
strong seasonality that is primarily driven by NOx emis-
sions from biomass burning (Fig. S1). This is in contrast
to the Northern mid latitudes where this ratio is driven by
the seasonality of isoprene emissions. The ratio of isoprene
to NOx emissions spans a very wide range from less than
10 in the peak biomass burning season in Africa and South-
east Asia to more than 100 outside the biomass burning sea-
son in South America. In the following, we take advantage

of the diversity of chemical regimes resulting from the very
broad range of NOx-to-isoprene ratios to examine how the
impact of isoprene photooxidation on Ox is modulated by
local photochemical conditions. In Sect.2, we briefly de-
scribe the model and its adjoint. In Sect.3.1, we detail the
treatment of isoprene chemistry used in our reference sim-
ulation that is used as a starting point for the forward sen-
sitivity simulations (Sect.3.2.1) and the adjoint sensitivity
simulations (Sect.3.2.2). We then discuss the different pro-
cesses that control the impact of the isoprene photochemical
cascade at the regional scale (Sect.4.1), far from isoprene
sources (Sect.4.2) and immediately downwind of large iso-
prene sources (Sect.4.3). Finally, we conclude by presenting
some avenues that may help tease out these different pro-
cesses and improve their representations in chemical trans-
port models (Sect.4.4).

2 Model description

We use the GEOS-Chem global 3-D chemical transport
model v8.2.1 (Bey et al., 2001, www.geos-chem.org) and
its adjoint (Henze et al., 2007). The model is driven by the
GEOS-5 assimilated meteorology from the NASA Goddard
Earth Observing System. Here the resolution of the model
is 4◦

×5◦ and 47 vertical layers. The reported results corre-
spond to the period spanning June 2006 to May 2007 after
a one and a half year spin-up. Isoprene emissions are calcu-
lated using MEGANv2.0 (Guenther et al., 2006; Millet et al.,
2008). Anthropogenic emissions of NOx are calculated us-
ing the EDGAR v3.2 inventory scaled to the model run year
according to fossil fuel usage (Olivier and Berdowski, 2001).
NOx is also emitted from biomass burning (from GFED2 in-
ventory, Randerson et al., 2006), soil (Yienger and Levy,
1995) and lightning (Price et al., 1997; Wang et al., 1998;
Sauvage et al., 2007a). Dry deposition is calculated us-
ing a resistance-in-series model (Wesely, 1989; Wang et al.,
1998). Wet deposition is calculated following the approach
presented byMari et al.(2000) andJacob et al.(2000). Emis-
sions and dry deposition are uniformly distributed in the
planetary boundary layer.

Isoprene nitrate photochemistry is represented here using
three surrogates: ING0, ING1 and ING2 (Table1). ING0 rep-
resents first-generation nitrates formed from isoprene pho-
tooxidation during day and nighttime. ING0 retains a double
bond, such that it is rapidly oxidized by OH (k(298 K) =

4.6 × 10−11cm3molec−1s−1, Reaction (R6)) and ozone
(k(298 K) = 9.5 × 10−17cm3molec−1s−1, Reactions (R9)
and (R10)), consistent with laboratory observations (Paulot
et al., 2011; Lockwood et al., 2010). For simplicity, the ox-
idation of ING0 by OH and ozone is assumed to yield the
same products. ING1 and ING2 are both second-generation
organic nitrates. ING1 represents nitrates from methacrolein
(MACR), methylvinylketone (MVK) and other hydroxycar-
bonyls formed from isoprene photooxidation (e.g., HC5 and

Atmos. Chem. Phys., 12, 1307–1325, 2012 www.atmos-chem-phys.net/12/1307/2012/
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Fig. 1. OMI/MLS tropospheric column ozone in Dobson units (Ziemke et al., 2006) compared with simulated tropospheric column ozone in
the new reference simulation (cf. Sect.3.1) and in a standard simulation where ING0 is a terminal sink of NOx. The different geographical
regions used in this study are denoted by white contours. The tropical region extends from 15◦ S to 7◦ N. Top row: June 2006–October 2006,
middle row: November 2006–February 2007, bottom row: March 2007–May 2007.

ING0, Paulot et al., 2009a). ING1 is assumed to react rapidly
with OH (kOH(298 K) = 8× 10−12cm3molec−1s−1, Reac-
tion (R12)), since it represents compounds that generally fea-
ture an aldehyde group. Lacking a double bond, ING1 does
not react with ozone. ING0 photooxidation also yields ING2.
This species represents the formation of long-lived nitrates
and its oxidation by OH (kOH = 4.0×10−13cm3molec−1s−1,
Zhu et al.(1991), Reaction (R13)) and photolysis (Jenkin
et al.(1997); Roberts and Fajer(1989), Reaction (R14)) are
derived from propanone nitrate. Wet and dry deposition of
ING0, ING1 and ING2 are treated as terminal losses of NOx.
In the following, we will use the notation ING to denote
ING0+ING1+ING2.

Besides the representation of the isoprene nitrates, the
standard GEOS-Chem mechanism has been modified to in-
corporate the isomerization of the isoprene peroxy radicals
(Crounse et al., 2011), the formation of the isoprene epoxide
(Paulot et al., 2009b) as well as the carbon dependence of the
reaction of HO2 with peroxy radicals (Saunders et al., 2003).
These changes are detailed in Table1.

3 Simulations

ING photochemistry can affect ozone production in two dif-
ferent ways: (a) their formation depletes NOx, diminishing
local ozone production and the concentration of OH, and (b)
their photooxidation releases NOx, which, conversely, pro-
motes local photochemistry and ozone formation. If ING
lifetime is short and NOx is recycled efficiently, (a) and (b)
largely compensate each other and the regional effect of ING
is reduced. Conversely, if ING lifetime is long, their for-
mation and transport modulate NOx concentration and thus
ozone production in both local and remote regions.

Forward sensitivity simulations are used to explore the lo-
cal and regional impacts of the representation of isoprene ni-
trate photochemistry. The long lifetime of ozone makes it
difficult to ascribe large-scale changes in ozone to either (a),
(b) or the transport of ozone using forward simulations. We
use adjoint modeling to evaluate the large scale impact of

the isoprene photochemical cascade, as it allows us to ex-
plore the sensitivity of a given function of the model outputs
(J ) to small perturbations of many parameters (Giering and
Kaminski, 1998),

3.1 Reference simulation

Both adjoint and forward sensitivity simulations use the same
reference simulation. We set the yield of the isoprene ni-
trate (Y) to 10 %, the recycling to 50 % (α). Henry’s con-
stants are taken fromIto et al. (2007) for ING0 and ING1
(H = 1.7× 104 M atm) and fromSander(1999) for ING2
(H = 103 M atm). The oxidation of isoprene in this simu-
lation is dominated by OH in every region (∼ 85 % globally,
Fig. 2). The lifetime of isoprene can exceed six hours over
South America, because of very low OH. This long lifetime
results in the efficient transport of isoprene to the free tropo-
sphere through convection, such that 20 % of isoprene is ox-
idized outside of the boundary layer (Fig. S2). In the tropics,
isoprene peroxy radicals react primarily with HO2 (∼60 %).
Reaction with NO and isomerization (Peeters et al., 2009;
Crounse et al., 2011) accounts for∼25 % and 10 % of iso-
prene peroxy radical fate, respectively.

The fate of isoprene peroxy radicals has important con-
sequences regarding the yield of its second- and third-
generation products. In the reference simulation, we find
that IEPOX, the epoxide formed from the oxidation of
isoprene hydroxyhydroperoxide (ISOPOOH) has a global
yield of ∼ 32%, significantly larger than that simulated by
Paulot et al.(2009a) usingkI

HO2
, the GEIA emission inven-

tory and neglecting isomerization (Fig.2). This has im-
portant implications for the representation of secondary or-
ganic aerosol from isoprene photooxidation under low NOx
conditions (Surratt et al., 2010; Froyd et al., 2010). The
chemical representation of the isoprene photochemical cas-
cade also affects the use of the formaldehyde total column
to estimate isoprene emissions in tropical regions as the
yield of formaldehyde from the photooxidation of HPALD
and ISOPOOH, which together account for∼65 %–75 % of

www.atmos-chem-phys.net/12/1307/2012/ Atmos. Chem. Phys., 12, 1307–1325, 2012
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Fig. 2. Overview of the isoprene photochemical cascade (thick
color bars) for the reference simulation in different regions (Tropics
(t), Africa (A), South America (S), Southeast Asia (s) and World
(w)). Branching ratios for the reference run (in percent) are indi-
cated by bars for isoprene oxidation (A, left axis), isoprene per-
oxy radical fate (B, left axis), isoprene nitrate sources (C, left axis),
ING0 fate (D, right axis), ING1 fate (E, right axis), ING2 fate (F,
right axis). Black open circles indicate the lifetime (in hours) of
isoprene (A, right axis), ING0 (D, left axis), ING1 (E, left axis)
and ING2 (F, left axis), and the fractional loss of NOx caused by
isoprene nitrate chemistry,DING/LNOx (C, right axis in %). The
extent of the error bars represents the minimum and maximum val-
ues calculated using the different representations of isoprene nitrate
chemistry. J designates the isomerization of isoprene peroxy radical
(B, Peeters et al.(2009)) or the photolysis of ING2 (F).

isoprene photooxidation in the tropics, is not known (Palmer
et al., 2003; Barkley et al., 2008).

ING0 sources are dominated by OH/NO chemistry
(Fig. 2). As noted byHorowitz et al. (2007) and Brown
et al. (2009), however, nocturnal formation of organic ni-
trates (from NO3 chemistry) can be a significant source of
reactive organic nitrates. ING0 loss is dominated by pho-
tooxidation, consistent withIto et al.(2007). The mean pho-
tochemical lifetime of ING0 is shorter than that of isoprene
primarily because the formation of ING0 is favored by higher
concentrations of NO, which correlate with higher OH and
ozone. Photochemical sinks of ING0 are dominated by ozone
(Fig. 2). This reflects both the short atmospheric lifetime of
ING0 with respect to ozone (Lockwood et al., 2010) and the
importance of nocturnal sources of ING0 when OH oxida-
tion is negligible. Because of its short atmospheric lifetime,
the impact of ING0 on the transport of reactive nitrogen to
the upper troposphere and to oceanic basins is very limited,
suggesting the fraction of NOx recycled from ING0 photoox-
idation, as well as the fate of ING1 and ING2, are essential
for assessing the overall effect of ING photochemistry.

Accounting for the photochemistry of isoprene nitrates re-
sults in an increase of∼5 DU in tropospheric ozone down-

wind of continents compared to the standard GEOS-Chem
simulations that treats isoprene nitrates as terminal NOx
sinks (Fig. 1). The general seasonal and spatial patterns
are in reasonable agreements with OMI-MLS measurements
(Ziemke et al., 2006).

3.2 Sensitivity simulations

3.2.1 Forward sensitivity simulations

To assess the effect of different representations of isoprene
nitrate photochemistry, we carry out 27 simulations that span
three different isoprene nitrates yields (Y = 0.05, 0.10, 0.15
– Reaction (R3)), three different NOx recycling efficiency
(α = 0,0.5,1) from the reaction of ING0 with ozone (Re-
actions (R9) and (R10)) and OH/NO-NO3 (Reactions (R6),
(R7) and (R8)), and three different wet and dry deposition of
ING0, ING1 and ING2. The deposition rate of INGs is mod-
ified by adjusting their associated Henry’s constants. The ef-
fect of model resolution is not investigated.Ito et al.(2009)
have shown that the optimal representation of isoprene ni-
trates may depend on the grid resolution: coarser grid results
in greater dilution of NOx emissions increasing the simu-
lated OPE (Valin et al., 2011). However, the different mech-
anisms identified in this study should operate regardless of
the resolution though their relative magnitude may change.
We expect this artifact to be most severe in regions with high
biomass burning. Outside of these periods, when the sensi-
tivity to isoprene nitrate chemistry is greatest, NOx emissions
are low over most isoprene source regions with an important
contribution of soil NOx, resulting in limited segregation be-
tween NOx and isoprene source. The impact of resolution
is expected to be reduced on the synoptic scale (Fiore et al.,
2003).

In the base case, Henry’s constants are taken fromIto
et al. (2007) for ING0 and ING1 (H = 1.7×104 M atm−1)
and fromSander(1999) for ING2 (H = 103 M atm−1). In
the slow deposition case, INGs are deposited like PAN (H =

3.6 M atm−1, no wet deposition) while in the fast deposi-
tion case, they are all assumed to behave like nitric acid
(H = 1×1014 M atm−1). This range of parameters captures
the uncertainty in the representation of isoprene nitrates in
chemical models.

In addition, one simulation is carried out where the yield
of ING0 (Reaction (R3)) is set to 0 %. In another simula-
tion, the yield ING0 is set to 10 % (Reaction (R3)) but ING0
does not undergo any additional photochemistry. The later
simulation is similar to the treatment of ING0 in the default
GEOS-Chem chemical mechanism.

Modifying the treatment of isoprene nitrate chemistry has
little impact on the relative importance of the oxidation chan-
nels of isoprene, because variation in ozone and OH mix-
ing ratios are well correlated. However the lifetime of iso-
prene is strongly impacted by the representation of isoprene
nitrate chemistry with variations exceeding∼ ±20% across
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Fig. 3. Isoprene nitrate chemistry significantly affects the budget of NOx in the tropics. Positive numbers represent the fraction of the net
chemical loss of NOx (LNOx ) accounted for by isoprene nitrate photochemistry (DING > 0) in the tropospheric column. Negative numbers
denote the fraction of the net chemical source of NOx accounted for by isoprene nitrate photochemistry (DING < 0) in the tropospheric
column.

the different simulations (Fig.2). The largest changes are
found over South America, where NO is very low.

The branching between night and day formation of ING0
depends on the assumed yield of isoprene nitrates (Y, Reac-
tion (R3)). For an organic nitrate yield of 5 % from OH/NO
chemistry, NO3 chemistry (Reaction (R11)) becomes the pri-
mary source of ING0 consistent with the conclusions from
Horowitz et al. (2007) (Fig. 2). Even when ING0 is as-
sumed to deposit as fast as nitric acid, its fate remains dom-
inated by photooxidation reflecting its short photochemical
lifetime. Because of their slower photooxidative sinks, ING1
and ING2 are much more sensitive to the treatment of de-
position. Better constraints on the relative importance of
photochemical and depositional sinks are especially critical
for ING2 since it contributes significantly to the transport of
NOx. From this analysis, it is clear that the treatment of ING0
as a terminal sink of NOx (e.g., the assumption that they fully
deposit) in the GEOS-Chem standard simulations cannot be
reconciled with laboratory data presented byLockwood et al.
(2010) andPaulot et al.(2009a).

3.2.2 Adjoint sensitivity simulations

The adjoint of GEOS-Chem has been primarily used in in-
version problems to improve emissions inventories (Henze
et al., 2009; Kopacz et al., 2010). It was recently used by
Kopacz et al.(2011) to constrain the sources of black carbon
in the Himalayas and Tibetan Plateau and byZhang et al.
(2009) to investigate the impact of intercontinental transport
on ozone pollution on the west coast of the United States.

Here we use the adjoint of GEOS-Chem to explore the sen-
sitivity of ozone and NOx to some of the photochemical pro-
cesses controlling the isoprene photochemical cascade: the
emissions of isoprene and NOx, Y andα. Similar adjoint ap-
proaches have been used previously to investigate the chem-
ical processes controlling ozone pollution in urban settings
(Menut et al., 2000; Vautard et al., 2000; Schmidt and Mar-
tin, 2003; Martien et al., 2006). Here, the cost functionJ is

defined as either the mean tropospheric ozone or NOx mixing
ratio (in ppbv). We consider three time periods: July 2006 to
October 2006 (high biomass burning in all tropical continen-
tal regions, Fig. S1); December 2006 to February 2007 (high
biomass burning in Northern Africa, low biomass burning
over South America and Southeast Asia); April 2007 to May
2007 (low biomass burning for all tropical regions); and four
geographical regions (Fig.1) that are largely isolated from
transport of ozone from Northern midlatitudes. For each time
period, the model is run for one additional buffer month in or-
der to limit the bias for long-range influence and initial condi-
tions (Figs. S3 and S4). For instance, the sensitivity of a cost
function defined over the period April to May is calculated
by running the adjoint back through March. We defineR1

X ŝA
B

as the normalized sensitivity of A in region R1 to changes in
B in the model box X located at latitude lat, longitude lon,
and altitude z, i.e.,B(X)

J
∂J

∂B(X)
whereJ = A|R1 and(.) des-

ignates the tropospheric mean. We define:

R1
R2
SA

B =

∑
lat∈R2;z≤zt

R1
X ŝA

B

1lon(X)
(15)

wherezt is the tropopause altitude and1lon(X) = 5◦ is the
longitudinal resolution of the model. Acronyms used for R1

and R2 are listed in TableA. For instance,aAS
O3
OH+ING0

refers
to the normalized sensitivity of Atlantic mean tropospheric
ozone (in % per◦ longitude) to the rate of oxidation of ING0
by OH over Africa. We will use the notationR1SA

B to refer to
zonal changes in the sensitivity of A in region R1 to B.

4 Discussion

The modeled tropical ozone over continental regions is very
sensitive to the treatment of ING photochemistry (Figs.1 and
S5). Over continental regions, ozone can vary by as much as
±20% from the reference simulation as a result of changes
in the representation of ING photochemistry. Changes in
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ozone are not limited to continental regions with high iso-
prene emissions. Downwind of Africa and South America,
for instance, the Atlantic and Pacific basins exhibit a sensi-
tivity to ING chemistry similar to continental regions. Ozone
over remote oceanic regions is also found to be affected by
isoprene photochemistry.

NOx concentrations play a critical role in modulating
ozone production. In order to rationalize the simulated sen-
sitivity of ozone to changes in the representation of isoprene
nitrates, we thus define the local net removal of NOx by iso-
prene nitrate chemistry as:

DING =PING0 +P?
ING1

−LING1 −LING2 −α×LING0

wherePING0 andP?
ING1 are the photochemical sources of

ING0 and ING1 (excluding the source from ING0); LING0,
LING1 and LING2 are the photochemical losses of ING0,
ING1 and ING2. DING defines three regimes associated with
different regions of the tropics (Fig.3): the continents, where
isoprene nitrate photochemistry results in NOx loss (DING >

0); the near-shore oceanic basins, where isoprene nitrate pho-
tochemistry contributes to NOx production (DING < 0); and
the remote oceanic basins (DING ∼ 0).

In this section, we show that the impact of isoprene photo-
chemistry on ozone in each of these regions reflect different
mechanisms: modulation of NOx whereDING > 0, transport
of ozone produced in the upper troposphere whereDING ∼ 0
and finally the competition between the transport of ozone
and NOx whereDING < 0.

4.1 NOx removal efficiency controls the impact of
isoprene nitrates over tropical continental regions
(DING>0)

Over regions with high isoprene and low NOx emissions (e.g,
South America, New Guinea),DING can account for up to
70 % of NOx loss (LNOx ). On continental scales, however,
a large fraction of the NOx segregated in isoprene nitrates
is cycled back to the atmosphere (61 % for Africa, 48 % for
South America).

The sensitivity of Ox production (POx ) to ING photochem-
istry is well correlated with its effect onDING (Fig. 4). It
follows that very different representations of the ING chem-
istry can have comparable effects on continentalPOx : {Y =
15 %, α = 100 %, fast deposition}, {Y = 10 %, α = 50 %,
fast deposition}, {Y = 15 %, α = 50 %, default deposition}
yield similarPOx over South America. However, as the NOx
loss mechanisms (export to oceanic basins and deposition)
are different in each of these representations, they result in
diverse predictions regarding nitrogen deposition and ozone
formation downwind from continents, such that the need to
accurately constrain ING photochemistry is not relaxed.

The sensitivity ofPOx to DING varies regionally and sea-
sonally reflecting changes in the fraction of NOx lost through
the isoprene nitrate chemistry (Fig. S6). Continental ozone
is most sensitive to isoprene nitrate chemistry outside the
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Fig. 4. The correlation betweenDING andPOx on the regional
scale (South America) across a large range of representations of
ING chemistry suggests that the influence of ING chemistry on
POx is primarily controlled by its net impact on NOx. Upward-
pointing triangles/Circles/downward-pointing triangles denote dif-
ferent ING0 yields: Y = 5 %/10 %/15 %; red/black/blue colors refer
to fast/medium/slow ING deposition; empty/half filled/filled sym-
bols denote different NOx recycling from the photooxidation of
ING0: α = 0/50/100 %. The reference simulation is indicated by
a vertical cross. The purple diamond indicates a simulation where
the yield of ING0 from ISOPO2+NO is set to zero. The green di-
amond indicates a simulation where ING0, ING1 and ING2 have
no photochemical sink (similar to the standard GEOS-Chem mech-
anism).

biomass burning seasons, when isoprene impact onLNOx

is largest. Conversely, the representation of isoprene ni-
trate chemistry has little regional impact on ozone during
the biomass burning period regardless of isoprene emissions.
This difference can be understood through the seasonal vari-
ation of DING/LNOx . While increasing the production of
INGs, large emissions of NOx during the biomass burning
season favor the production of OH and ozone such that the
lifetime of INGs is reduced and their effect on the ozone
budget is diminished. This effect is not captured when iso-
prene nitrates are assumed to be a terminal sink of NOx (i.e.,
independent of the photochemical conditions) such as in the
standard GEOS-Chem mechanism (Fig.1). The sensitivity
to changes in isoprene or biomass burning emissions is thus
expected to be different.

The adjoint sensitivity of tropical ozone to isoprene ni-
trate yield (tSO3

Y ) is negative everywhere (Fig.5). This is
consistent with the regional removal of NOx dominating the
impact of isoprene nitrate photochemistry on ozone. Sea-
sonal and regional variations in the sensitivity reflect those of
DING/LNOx , e.g., the sensitivity of tropical ozone to changes
in the isoprene nitrate yield over Africa,t

AS
O3
Y , is ∼ 5 times

greater from April to May than from December to February.
tSO3

Y is significantly greater thantSO3
ISOP+O3, suggesting that
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Fig. 5. Adjoint sensitivity of tropical ozone (solid lines) and NOx (dashed lines) to changes in the isoprene nitrate yield (red), the isoprene
nitrate recycling (blue,×5 ), the loss rate of methane (green, CH4 +OH), the rate of OH+NO2 (black, ×0.5). For example, the mean
sensitivity of tropospheric tropical ozone to methane oxidation from July to October is∼ 0.028% per degree longitude (from−15◦N to
7◦N). Hence, a uniform increase of 1 % of the oxidation rate of methane by OH is predicted to cause an increase in tropospheric tropical
ozone of∼ 0.1%. In contrast, an increase of the isoprene nitrate yield (Y) by 1 % would result in a decrease in ozone of∼0.02 %. Increases
in the absolute sensitivity of ozone to NOx losses from one season to another (e.g., over Africa from December–February to April–May)
reflect changes in OPE. The grey shaded region denotes the region over which the cost functions are evaluated.

the segregation of NOx by isoprene nitrate is more effective
at reducing ozone than its direct destruction by ISOP+O3
(Fig. S9).

The sensitivity of tropical ozone to the yield of the nitrate,
Y, can be compared to its sensitivity to methane oxidation
(Fig. 5). tSO3

OH+CH4 is always positive and its zonal variations
largely reflect the fraction of methylperoxy radicals reacting
with NO (Jaegĺe et al., 2001; Wennberg et al., 1998). As a
result, tSO3

OH+CH4
is generally larger over continents, where

NO emissions are concentrated. An important exception is
South America where the oxidation of methane is limited by
the low OH concentrations simulated by the model in low-
NOx, high-biogenic environments.

Ozone is very sensitive to the formation rate of nitric acid
(tSO3

OH+NO2
), a major sink of NOx in much of the atmosphere,

emphasizing the need for very accurate understanding of the
reaction of OH with NO2 (Mollner et al., 2010). The produc-
tion of both ING0 and nitric acid result in the loss of NOx.
As a result,tSO3

OH+NO2
and tSO3

Y are negative throughout the
tropics. Nitric acid formation is most efficient when the con-
centrations of OH and NO2 are elevated, i.e., over large NOx
sources (biomass burning in Africa or anthropogenic and
biomass burning in Java, Fig.5). Unlike nitric acid, the pho-

tochemical lifetime of ING0 is very short under these condi-
tions and it is not an efficient sink of NOx. However, under
low NOx conditions and high isoprene emissions, ING0 pho-
tooxidation is limited and it behaves, at least locally, as an
important sink of NOx (Fig. 3). It follows that tSO3

OH+NO2

and tSO3
Y have opposite dependence on surface NOx con-

ditions. This is supported by their seasonal variations over
South America wheretSS

O3
OH+NO2 is greater thantSS

O3
Y during

the biomass burning season (DING/LNOx �1), but signifi-
cantly lower outside the biomass burning seasons (Fig.5).
Seasonal variations are even greater in Africa wheret

AS
O3
Y

is almost negligible from December to February (Fig.5)
when isoprene and biomass burning emissions are collocated
(Fig. S1), but comparable totAS

O3
OH+NO2

from April to May.
A similar mechanism may also explain the large contrast
between Java, wheretsS

O3
Y �

t
sS

O3
OH+NO2

as a result of large
anthropogenic activities, and the more pristine New Guinea
wheret

sS
O3
Y ∼

t
sS

O3
OH+NO2

.

tSO3
α suggests, however, that the impact of isoprene ni-

trate photochemistry (and more generally of isoprene pho-
tochemistry) on ozone is not restricted to the modulation of
the local photochemistry. Indeed, whiletSO3

α is generally
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Fig. 6. Adjoint sensitivity of tropical ozone (solid lines) and NOx
(dash lines) to changes in the emissions of isoprene (green), light-
ning NOx (red, ×0.5), biomass burning NOx (blue), soil NOx
(cyan) and anthropogenic NOx (black). The grey shaded region
denotes the region over which the cost functions are evaluated.

positive, as would be expected from its impact on the lo-
calDING (Fig. 3), it becomes negative when isoprene emis-
sions and biomass burning are collocated, e.g., in Africa
from December to February. Similarly, the sensitivity of
ozone to tropical emissions of isoprene (tSO3

E(ISOP), Fig. 6)

switches sign seasonally and regionally, unliketSO3
E(NOx)

that
is always positive regardless of the source of NOx. For in-
stance,tSS

O3
E(ISOP) is positive during the biomass burning sea-

son (Fig.6, July–October) and becomes negative as biomass
burning emissions decrease (December–February and April–
May). Similarly, t

sS
O3
E(ISOP) switches sign between western

Southeast Asia and eastern Southeast Asia. The next two
sections are devoted to unraveling the mechanisms that gov-
ern the interactions of the isoprene photochemical cascade
with Ox at the local and global scales.

4.2 Long-range impact of isoprene photochemistry
through transport to the upper troposphere
(DING ∼ 0)

The contrast between the remote and local impacts of iso-
prene photooxidation on Ox is directly illustrated by the
large regional variability ofSSO3

E(ISOP) (Fig. 7). S
SS

O3
E(ISOP)

is negative and well correlated withSSS
NOx
E(ISOP).

S
SS

O3
E(ISOP)

is minimum from December to May whenDING contributes
most toLNOx . Unlike the regional effect of isoprene emis-
sions on ozone, their long-range impact (dominated by
Africa) is generally positive and not associated with a local
production of ozone, asSAS

NOx
E(ISOP) is very small.

Large-scale ozone enhancement fueled by isoprene pho-
tochemistry may impact the transport of ozone formed over

Fig. 7. Adjoint sensitivity of tropospheric ozone (solid lines) and
NOx (dashed lines) over South America (shaded region) to changes
in the emissions of isoprene (green), lightning NOx (red), biomass
burning NOx (blue) and anthropogenic NOx (black).

continental regions, through the well-known “Atlanta” mech-
anism (Chameides et al., 1988), i.e., by the boundary layer
oxidation of isoprene under elevated NOx conditions (e.g.,
from December to February in Africa). The spatial impact
of this mechanism is usually limited in the midlatitudes be-
cause the lifetime of Ox is relatively short in the boundary
layer. In the tropics, however, efficient convective transport
may allow Ox to be carried to the free troposphere, where it
can be advected over much larger spatial scales thanks to a
significantly longer lifetime (Jacob et al., 1996).

The “Atlanta” mechanism does not, however, account for
the maximum inS

AS
O3
E(ISOP) outside the biomass burning sea-

sons (April–May for Africa, Fig.7). We propose that this
reflects ozone production in the free troposphere driven by
the transport of boundary layer isoprene and its photochem-
ical products by convection. Observations of high concen-
trations of isoprene (up to∼1 ppbv) and its photochemical
products in the upper troposphere have been reported over
Europe (Colomb et al., 2006; Stickler et al., 2006), Africa
(Bechara et al., 2010; Murphy et al., 2010), and South Amer-
ica (Warneke et al., 2001). The model exhibits a very char-
acteristic “C”-profile for isoprene in the tropics and a signif-
icant fraction of isoprene oxidation takes place outside the
boundary layer (∼ 20% in the tropics, Fig. S2). In these con-
ditions, the production of ozone is extremely efficient as (a)
isoprene peroxy radicals react almost entirely with NO, and
(b) DING ∼ 0 as ING fate is almost entirely driven by NOx-
neutral photochemical reactions. The injections of reactive
isoprene can have a very large impact on ozone production
in particular if it is accompanied by emissions of NOx (e.g.,
from lightning) (Collins et al., 1999; Poisson et al., 2000; Ja-
cob et al., 1996; Prather and Jacob, 1997). The formation of
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photooxidation (α) summed from the surface topl=500 mbar (R1SO3
α =

∑
p>pl

R1 ŝ
O3
α in ‰/◦

2
)). Contours indicate the mean ratio between

the loss of isoprene peroxy radicals through reaction with HO2 and the loss of isoprene peroxy radicals through reaction with HO2 and NO.

NOx reservoirs in the upper troposphere (e.g., PAN) further
amplifies the impact of isoprene photochemistry on NOx by
promoting the transport of NOx to remote regions (Poisson
et al., 2000). Indeed, we find that an increase in the decom-
position rate of PAN would generally result in a decrease of
tropical ozone (Fig. S9). This mechanism would be consis-
tent with the study ofAghedo et al.(2007), who reported that
most of the production of ozone fueled by African emissions
does not take place over the African continent, but rather
downwind.

Ozone production in the free troposphere increases as the
supply of isoprene and its photochemical products from the
boundary layer increases, i.e., under low boundary layer ox-
idative conditions. Thus, the production of ozone in the up-
per troposphere is favored, somewhat paradoxically, by its
destruction in the boundary layer. Since ozone is also trans-
ported to the upper troposphere, the net effect of the transport
of isoprene to the upper troposphere depends on the relative
magnitude of these two processes. Unlike Africa, where NOx
is generally high enough such that isoprene photochemistry
does not significantly depressPOx in the boundary layer, the
segregation of NOx by isoprene nitrates in South America re-
sults in very low boundary layer Ox (Fig.7). The competition
between the local destruction of ozone and its downwind pro-
duction is reflected in the greater sensitivity of Pacific ozone
to isoprene emissions from Africa compared to South Amer-
ica outside the biomass burning seasons (Fig. S7). Similarly,
S
SS

O3
E(ISOP) is generally negative, reflecting its impact on the

removal of NOx by ING, whilep
SS

O3
E(ISOP) can be positive dur-

ing the biomass burning season, when boundary layer ozone
over South America is less impacted by isoprene photochem-
istry. The importance of VOC transport thus depends on the
boundary layer budget of ozone, which is largely controlled
byDING. It follows that ING photochemistry may indirectly
modulate the large-scale effect of isoprene photooxidation on
the Ox budget.

The large-scale influence of isoprene emissions can be
contrasted to that of lightning and biomass burning NOx. The
large-scale effect of lightning is significantly greater than that
of isoprene emissions and may not proceed through the same
mechanisms asp/S

A SNOx
Eli (NOx)

>0 suggests a direct impact on
the local ozone production far from its source regions. In
contrast, the intercontinental effect of biomass burning is
much more limited than that of isoprene and is not associ-
ated with large-scale transport of NOx. Injection of biomass
burning emissions outside of the boundary layer (Val Mar-
tin et al., 2010) as well as the formation of PAN in biomass
burning plumes (Hudman et al., 2007; Yokelson et al., 2009;
Alvarado et al., 2010) may, however, extend the spatial im-
pact of biomass burning on tropical ozone (Poisson et al.,
2000; Roelofs and Lelieveld, 2000).

4.3 Isoprene nitrates as NOx reservoirs (DING<0)

In this section, we focus on near shore oceanic basins, down-
wind of major isoprene emissions. In these regions, ING
photooxidation contributes significantly to the NOx source
(Fig. 3). The impact of isoprene photochemistry on Ox bud-
get reflects the competition between the transport of con-
tinental ozone over continental regions (greater continental
DING) and greater ozone production downwind. Despite the
loss of NOx during its export (through deposition), this com-
petition can result in an increase in Ox downwind of ING pro-
duction regions, since the OPE is generally greater far from
NOx sources.

It follows that ING0 and ING1 are too short-lived
to contribute significantly to the transport of NOx since
SSO3

OH+ING0
+SSO3

O3+ING0
and SSO3

OH+ING1
are positive, even

over oceanic basins: their impact primarily reflects their
modulation of ozone production and transport from conti-
nental regions.SSO3

OH+ING0
is negative reflecting the compe-

tition with the O3 channel that has a greater NOx recycling
efficiency. Unlike ING0 and ING1, SSO3

OH+ING2 is generally
negative: ING2 contribution to NOx transport to high OPE
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Fig. 9. Schematic representation of the spatial modulation of the
Ox budget by the isoprene photochemical cascade. Isoprene chem-
istry alters ozone production (blue) locally by altering the abun-
dance of NOx; reduction in NOx due to formation of isoprene ni-
trates (DING/LNOx , continent) leads to reductions in Ox. Down-
wind of continents, however, the release of NOx by ING promotes
ozone formation. The resulting net impact of isoprene photochem-
istry on regional ozone, thus, depends on the NOx conditions near
isoprene source regions. Under high–NOx, an increase in the con-
tinental removal of NOx (green filled arrow, right panel) by iso-
prene results in a net increase of ozone downwind of continents
(1O3 > 0, red empty arrows). This reflects the enhanced transport
of nitrogen reservoirs from regions of low OPE (continents) to re-
gions of high OPE (oceans). Conversely, under low–NOx, a similar
increase in NOx removal (green filled arrow, left panel) can result
in a decrease of ozone downwind of continents, as the contrast in
OPE is not sufficient to overcome the decrease in continental ozone
advected as well as the increased loss of NOx during its transport
(e.g., deposition of ING). The removal of NOx by isoprene nitrate
chemistry also increases the amount of BVOCs injected in the free
troposphere, promoting the production of ozone. This indirect ef-
fect of isoprene chemistry on ozone is of opposite sign to the direct
effect and impacts ozone away from isoprene sources.

regions outweighs the associated increase in the removal of
NOx (Fig. S8).

An example of this competition between transport of NOx
and transport of ozone is the sensitivity of South Atlantic
ozone to the recycling of NOx from ING0 phootooxidation
(α). aSO3

α vary seasonally and spatially in response to chang-
ing photochemical conditions over Africa (Fig.8). a

AS
O3
α is

positive where isoprene peroxy radicals react primarily with
HO2 (e.g., from April to May). Under these conditions, the
increase in OPE between the isoprene emission region and
the receptor region is not large enough to compensate for the
loss of NOx during its export. Conversely,aAS

O3
α is nega-

tive where isoprene peroxy radicals primarily react with NO,
i.e. whereDING is low and the impact of ING chemistry
on the localPOx is limited (e.g., from December to Febru-
ary, where biomass burning and isoprene emissions are col-
located). Under these conditions, the contrast in OPE can be
very large and the increase in the transport of NOx outweighs

the decrease in the local production of ozone. Fromt
AS

O3
α <0

andA
AS

O3
α > 0 (consistent with∂DING/∂α <0) in the Decem-

ber to February period, it follows that the large–scale impact
dominates over the regional–scale one under elevated NOx
conditions.

4.4 Can the effect of chemistry, emissions and dynamics
on the tropical Ox budget be separated using
experimental observations?

In the previous sections, we have shown that the oxidation of
biogenics modulates the budget of Ox and that this modula-
tion can vary dramatically in space and time as summarized
in Fig. 9. Thus, the difference in the representation of this
coupling across models need to be accounted for when ana-
lyzing intermodel differences of tropical Ox (Stevenson et al.,
2006). More generally, uncertainties in the model chemical
transfer functions should be better characterized.

Most studies focusing on tropical ozone have been devoted
to improving the estimates of NOx emissions from lightning,
biomass burning and soil to achieve better agreement with
ozone measurements (Sauvage et al., 2007b; Jaegĺe et al.,
2004; Ziemke et al., 2009). It follows from this study, how-
ever, that the impact of changes in NOx emissions on the Ox
budget cannot be readily separated from their modulation by
different representations of the photooxidation of biogenics
and transport processes (in particular deep convection (Nas-
sar et al., 2009)). Thus, the uncertainty of NOx emissions
derived from ozone or NO2 measurements will be commen-
surate with errors in the representation of these processes.

The different factors investigated here exhibit different
seasonal and geographical behavior that can be used to un-
ravel their coupling. Several avenues for further study can be
inferred from this work:

– the ozone contrast between land and ocean is predicted
to be amplified by biomass burning but reduced by
lightning and the transport of NOx reservoirs. The
differences in seasonal and interannual variability of
biomass burning and biogenic emissions combined with
the availability of long record of tropospheric ozone
(e.g., OMI) may help disentangle the different contrib-
utors to tropical ozone (Martin et al., 2000). In particu-
lar, we find thataAS

O3
E(ISOP) anda

AS
O3
Ebb(NOx)

are of similar
magnitudes (Fig. S10). This is at odds with the con-
clusions ofSauvage et al.(2007b) who found that the
dependence of Atlantic ozone on isoprene emissions is
negligible. This may be associated with the treatment of
isoprene nitrates as a terminal sink of NOx in the stan-
dard GEOS-Chem mechanism.

– the fraction of isoprene (and more generally biogenic
volatile organic compound) oxidized in the upper tro-
posphere (i.e., vertical profile of isoprene or formalde-
hyde) governs the large-scale impact of short-lived
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volatile organic compound on the Ox budget. Instru-
ments such as TES, IASI and ACE-FTS provide some
information on the vertical profile of many chemical
compounds that are impacted differently by NOx and
biogenic emissions. These multi-compounds analysis
has been used to investigate the budget of ozone (Bow-
man et al., 2009; Cooper et al., 2011) or formic acid
(Gonz̀alez Abad et al., 2009; Paulot et al., 2011). Ver-
tical profiles also provide essential constraints on the
photooxidative conditions in the boundary layer, com-
plementing surface measurements. In particular, if the
fraction of isoprene oxidized outside of the bound-
ary layer is found to be overestimated by the model,
this would confirm that HOx concentration in high
isoprene/low NOx environments are higher than simu-
lated (Stone et al., 2010). Such a multi-compound ap-
proach may also be useful to constrain isoprene emis-
sions from satellite observations of formaldehyde total
column (Palmer et al., 2003). Under low-NOx condi-
tions, i.e., where the fate of ISOPO2 is dominated by
reactions with HO2 and isomerization, it is unlikely that
isoprene emissions can be directly related to formalde-
hyde total columns (Barkley et al., 2008). Instead, a
formal inversion approach explicitly taking into account
the spatial and vertical footprint of isoprene emissions
on formaldehyde is probably required (Fig. S11). Bet-
ter experimental constraints on the yield of CH2O from
ISOPOOH and IEPOX are also critical.

– The sensitivity of ozone to isoprene photochemistry
can be altered by changes in anthropogenic activities.
This is illustrated by the sensitivity of ozone to anthro-
pogenic NOx emissions in Java. Ozone is also very sen-
sitive to soil NOx emissions (Fig.6), which are also af-
fected by human activities such as deforestation (Keller
et al., 1991, 2005). To explore further the sensitivity
of the interplay between ozone and biogenics activi-
ties, we modify anthropogenic emissions of NOx such
that NOx emissions per capita are identical to those of
North America (7.8 kg(NO)/yr/person, circa 2005) ev-
erywhere. This extreme scenario yields a large increase
in OH (∼ 30%) and tropical ozone (Fig. S12).tSO3

E(ISOP)
increases throughout the tropics (Fig.10). This increase
can be large enough to maketSO3

E(ISOP) positive in re-
gions where it is negative in the present-day simula-
tion. Since some tropical crops are known to emit more
isoprene than the rain forest they replace, this would
further amplify the ozone increase associated with di-
rect anthropogenic emissions (Hewitt et al., 2009). Sim-
ilarly, negativetSO3

α are not isolated to Africa as in the
reference simulation but extend to large regions of the
tropics (Fig. S13), underlying the profound change in
the chemical regime of the tropics if all inhabitants had
the same NOx emissions per capita as North Americans.

Fig. 10. Absolute changes in the adjoint sensitivity of tropospheric
tropical ozone resulting from a large increase in anthropogenic

emissions of NOx (cf. Sect. 4.41tSO3
X =tSO3

X (high tropical NOx

emissions)− tSO3
X (reference), withtSO3

X in %/◦) to changes in the
emissions of isoprene (green), lightning NOx (red), biomass burn-
ing NOx (blue) and anthropogenic NOx (black) resulting from a
very large increase in anthropogenic NOx emissions. Green-shaded

areas denote regions wheretSO3
X become positive because of higher

NOx emissions. The grey shaded region denotes the regions over
which the cost function are evaluated.

5 Conclusions

The rapid economic development of the tropical regions calls
for a better assessment of how anthropogenic perturbations
may influence the concentration of ozone and assess the con-
sequences of this change on food security (Van Dingenen
et al., 2009; Hewitt et al., 2009), human health (World Health
Organization, 2005) and radiative forcing (directly or indi-
rectly (e.g.,Sitch et al., 2007).

In this work, we have shown that accurate simulation of
tropical ozone must take into account the modulation of the
Ox budget by the photooxidation of biogenics. In particular,
the regional simulation of ozone is shown to be very sensi-
tive to the removal and export of NOx by isoprene nitrates. In
South America and New Guinea, the high ratio of isoprene-
to-NOx emissions makes isoprene nitrates chemistry the pri-
mary sink of NOx.

We have also shown that the impact of isoprene photoox-
idation on tropical ozone is not limited to the regional scale.
We hypothesize that this long-range effect is the result of dy-
namic and photochemical processes: efficient vertical mix-
ing (through deep convection) and low boundary layer HOx
(as a result of high biogenics and low NOx emissions). These
conditions, promote the oxidation of isoprene outside of the
boundary layer, where its contribution to ozone production
is amplified. The inability of models to reproduce ground
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HOx observations may thus have consequences beyond the
regional scale.

From this work, it is clear that the effect of the photochem-
istry of biogenics on ozone cannot be simply isolated from
that of emissions, even on the global scale. In particular, a
better understanding of the coupling of isoprene with NOx
emissions requires a much improved representation of the
isoprene photochemical cascade as a whole, since many of
the large scale effects presented here result from the photo-
chemistry of second-, third-, etc.-generation photochemical
products.

Appendix A

Notations

Ry
Rx
SY

X normalized sensitivity of mean tropospheric
Y over the regionRy to changes inX
over the regionRx . For photochemical
processes, unless otherwise noted,
Ry extends from the surface to the

tropopause.
Ry

Rx
SY

X is expressed in % per
degree longitude.

a Atlantic (Rx , Ry)
A Africa (Rx , Ry)
p Pacific (Rx , Ry)
S South America (Rx , Ry)
s Southeast Asia (Rx , Ry)
t Tropics (Rx , Ry)
w World (Rx , Ry)
DING net effect of ING chemistry on the NOx

budget
LNOx Loss of NOx (account for the role of PAN and

ING as NOx reservoirs)
PX Photochemical production of X
Ebb(NOx) NOx emissions from biomass burning
Eli (NOx) NOx emissions from lightning
E(ISOP) Isoprene emissions
Y Isoprene nitrate yield
α NOx recycling from ING0 photooxidation

Supplement related to this article is available online at:
http://www.atmos-chem-phys.net/12/1307/2012/
acp-12-1307-2012-supplement.pdf.
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