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Abstract. Biogenic volatile organic compounds (BVOCs)
can react in the atmosphere to form organic nitrates, which
serve as NOx (NO + NO2) reservoirs, impacting ozone and
secondary organic aerosol production, the oxidative capacity
of the atmosphere, and nitrogen availability to ecosystems.
To examine the contributions of biogenic emissions and the
formation and fate of organic nitrates in a forest environment,
we simulated the oxidation of 57 individual BVOCs emitted
from a rural mixed forest in northern Michigan. Key BVOC-
oxidant reactions were identified for future laboratory and
field investigations into reaction rate constants, yields, and
speciation of oxidation products. Of the total simulated or-
ganic nitrates, monoterpenes contributed∼ 70 % in the early
morning at∼ 12 m above the forest canopy when isoprene
emissions were low. In the afternoon, when vertical mixing
and isoprene nitrate production were highest, the simulated
contribution of isoprene-derived organic nitrates was greater
than 90 % at all altitudes, with the concentration of secondary

isoprene nitrates increasing with altitude. Notably, reaction
of isoprene with NO3 leading to isoprene nitrate formation
was found to be significant (∼ 8 % of primary organic ni-
trate production) during the daytime, and monoterpene re-
actions with NO3 were simulated to comprise up to∼ 83 %
of primary organic nitrate production at night. Lastly, forest
succession, wherein aspen trees are being replaced by pine
and maple trees, was predicted to lead to increased afternoon
concentrations of monoterpene-derived organic nitrates. This
further underscores the need to understand the formation and
fate of these species, which have different chemical pathways
and oxidation products compared to isoprene-derived organic
nitrates and can lead to secondary organic aerosol formation.
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1 Introduction

Globally, biogenic volatile organic compound (BVOC) emis-
sions (∼ 1150 Tg C yr−1) comprise∼ 90 % of total non-
methane VOC emissions, and isoprene and monoterpenes
alone are estimated to account for∼ 55 % of total non-
methane VOC emissions (Guenther et al., 1995; Goldstein
and Galbally, 2007). These BVOCs typically have atmo-
spheric lifetimes of minutes to hours for reactions with
the hydroxyl (OH) radical, ozone (O3), and the nitrate
(NO3) radical (Atkinson and Arey, 2003a). In the atmo-
sphere, BVOCs exist as complex mixtures with individ-
ual BVOC mole fractions ranging from a few ppb to sub-
ppt (Bouvier-Brown et al., 2009). The chemistry and fate
of atmospheric BVOCs have important implications for
ozone and secondary organic aerosol production, yet many
questions remain regarding these processes (Goldstein and
Galbally, 2007).

Tropospheric ozone is produced via oxidation of NO to
NO2 by organic peroxy radicals and HO2 (e.g., Hauglus-
taine et al., 1996). Organic nitrates serve as NOx (NO + NO2)

reservoirs. Therefore, they impact nitrogen availability to
ecosystems (Lockwood et al., 2008), ozone production (both
locally and downwind) (e.g., Fiore et al., 2005; Wu et al.,
2007; Farmer et al., 2011; Paulot et al., 2012), and the ox-
idative capacity of the atmosphere, impacting trace gas re-
moval and secondary organic aerosol formation and process-
ing (e.g., Rollins et al., 2010). Organic nitrates (RONO2) are
formed via reactions of VOCs with OH in the presence of
NO, as shown in Reactions (1)–(3), which show H-atom ab-
straction from a C-H bond, followed by O2 addition yielding
a peroxy radical that can react with NO to produce RONO2
(Orlando et al., 2003).

RH+
·OH → R·

+ H2O (R1)

R·
+ O2 → RO·

2 (R2)

RO·

2 + NO·
→ RONO2 (R3)

Alternatively, organic nitrates can also be formed from VOCs
through addition of NO3 or OH, followed by peroxy radi-
cal formation and reaction with NO. Olefins constitute the
largest VOC emission flux globally, and OH reactions with
olefins are primarily via addition. Therefore, most organic
nitrates are “multifunctional” (O’Brien et al., 1995) and not
simple “alkyl nitrates”, produced via H-atom abstraction. Or-
ganic nitrates have been shown to be a major component (12–
20 %) of NOy (measured as NO + NO2 + HNO3 + peroxy
acetyl nitrates + RONO2) over the eastern United States dur-
ing summer (Perring et al., 2009a). During the aircraft-based
study by Perring et al. (2009a),∼ 75 % of the organic nitrates
below 0.5 km were estimated to be derived from isoprene.
At night, isoprene nitrates formed via reaction of isoprene
with NO3 were estimated to comprise 2–9 % of NOy (Brown
et al., 2009). Correspondingly, modeled tropospheric ozone

production rates and concentrations are sensitive to isoprene
emission rates and the yield of isoprene nitrates (Fiore et al.,
2005; Wu et al., 2007). Further, the fate of organic nitrates
and associated recycling of NOx is highly uncertain, even for
isoprene, the most abundant BVOC (Horowitz et al., 2007).

While the measurement of a large contribution of organic
nitrates to NOy raises important questions about their nature
and sources, measurement of the contributions of specific
RONO2 compounds in the atmosphere remains an analytical
challenge, due to low ambient concentrations and the adsorp-
tive nature of multifunctional nitrates (e.g., Muthuramu et
al., 1993). Thus, few atmospheric measurements of speciated
organic nitrates from BVOC precursors exist; in fact, only
select nitrates resulting from isoprene oxidation have been
measured (Werner et al., 1999; Grossenbacher et al., 2001,
2004; Giacopelli et al., 2005; Beaver et al., 2012). Isolation
of specific RONO2 isomers is further complicated by sec-
ondary chemistry and loss processes (Giacopelli et al., 2005),
the contributions of which change spatially and temporally
(Day et al., 2003).

The rural mixed forest environment at the University of
Michigan Biological Station (UMBS) in northern Michigan
is an excellent location for studying the atmospheric chem-
istry of a wide variety of individual BVOCs. At this site,
the forest composition and succession are well characterized
(Bergen and Dronova, 2007), and the tree species-specific
fluxes of BVOCs have been measured (Ortega et al., 2007,
2008). Together, this unique information and the well-studied
atmospheric environment at UMBS represent a unique op-
portunity to study the specifics of BVOC-derived organic ni-
trate production. This study utilized a simple atmospheric
chemistry one-dimensional model to simulate the formation
and fate of organic nitrates produced from the oxidation of
57 individual BVOCs locally emitted at UMBS. Several pre-
vious studies of BVOCs have utilized more complex one-
dimensional modeling to gain insight into local-scale chem-
istry (Trainer et al., 1991; Gao et al., 1993; Makar et al.,
1999; Spanke et al., 2001; Stroud et al., 2005; Forkel et al.,
2006; Boy et al., 2011; Mogensen et al., 2011; Wolfe and
Thornton, 2011; Wolfe et al., 2011a, b; Rinne et al., 2012).
These recent BVOC-focused modeling studies combine de-
tailed micrometeorology with atmospheric chemistry to sim-
ulate chemistry in and above the forest canopy. The goal of
this study was to investigate the full suite of the 57 BVOCs
observed to be emitted in the UMBS forest; however, exist-
ing chemical mechanisms cannot capture this large number
of BVOC species. For example, one of the most complex
mechanisms at this time is the Master Chemical Mechanism
(MCM, http://mcm.leeds.ac.uk/MCM); yet of the BVOCs
emitted at UMBS, this mechanism only includes isoprene,
α-pinene,β-pinene, limonene, andβ-caryophyllene. Further,
most chemical mechanisms require lumped species, not al-
lowing the examination of individual BVOCs. These various
BVOCs are characterized by different and complex chem-
ical structures, resulting in variations in reactivity, as well
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as different oxidation products with subsequently different
lifetimes, which are often not represented by lumped cate-
gories. Therefore, the model herein includes a simplified at-
mospheric treatment with more complex chemistry to inves-
tigate the contributions of the full suite of observed BVOCs
to organic nitrate production and concentrations with respect
to time of day and height above the forest canopy. As the as-
pen forests (Populus grandidentata and Populus tremuloides)
in the upper Great Lakes region are maturing and will be re-
placed by northern hardwoods (Acer rubrum, Acer saccha-
rum, Fagus grandifola) and upland pine (Pinus strobus, Pi-
nus resinosa) (Bergen and Dronova, 2007), the impacts of
forest succession on atmospheric composition are also ex-
amined. The focus of this study was to highlight the role of
individual BVOC contributions to organic nitrate formation
and to identify key species that require further examination
in future laboratory and field studies.

2 Experimental

2.1 Measurements

Atmospheric summertime BVOC emissions and oxidation
chemistry were evaluated in northern Michigan at the Pro-
gram for Research on Oxidants: Photochemistry, Emissions
and Transport (PROPHET) tower site at the University of
Michigan Biological Station (UMBS, 45◦30′ N, 84◦42′ W,
elevation 238 m) (Carroll et al., 2001). An AmeriFlux site is
located 132 m north-northeast of the PROPHET tower. The
nearest town is Pellston, Michigan (population< 800), lo-
cated∼ 5.5 km to the west; Detroit, Michigan is the near-
est major metropolitan area,∼ 350 km to the southeast. To
eliminate the need to account for wet deposition, only sunny
and partly sunny days with no precipitation during July–
August 2008 were considered for the following analysis.
Ambient air measurements of isoprene, total monoterpenes,
methacrolein (MACR), and methyl vinyl ketone (MVK)
were conducted using the proton-transfer reaction linear ion
trap mass spectrometer (PTR-LIT), described previously by
Mielke et al. (2008, 2010), sampling at∼ 34 m above ground
(∼ 12 m above canopy) at UMBS in July–August 2008. NO,
NO2, and NO∗

y (∼ NOy-HNO3) were measured using a cus-
tom chemiluminescence instrument with thermal decompo-
sition inlets, constructed following the designs of Ridley and
Grahek (1990), Bollinger et al. (1983), and Day et al. (2002).
All times are given in Eastern Standard Time (EST), one hour
behind Eastern Daylight Time.

2.2 Model description

A simplified atmospheric chemistry one-dimensional model
was constructed to simulate the emissions, transport, and
reactions of 57 locally-produced BVOCs at the UMBS
PROPHET site. The atmosphere was represented by 25 verti-
cal bins, including 2 bins within the forest canopy, extending

from 12 m above the surface to approximately 4 km; due to
the simplicity of the canopy bins, atmospheric chemistry is
only discussed for the bins above the forest canopy. BVOC
concentrations were calculated according to transport and re-
action kinetics following Eq. (1), which describes the change
in the concentration (c) of VOCi at altitudez and with timet :

dci(z)

dt
= Ei + Pi + F↓,i − Li − F↑,i − Di − Hi (1)

VOC terms, described below, include emission (E) into the
first canopy bin, chemical production(P ) and loss (L) based
on chemical kinetics, upward and downward vertical fluxes
(F↑ andF↓, respectively), dry deposition (D), and horizontal
advection (H). The model time step was 0.2 s, and one day
of spin-up was utilized prior to the model day discussed.

2.2.1 BVOC emissions

Based on mean green-leaf dry mass, characterized during
litter trap studies of 101 plots in 2008 and 2010, the lo-
cal UMBS forest (1.4 km2) is primarily composed of big-
tooth aspen (Populus grandidenta, ∼ 23 %), red maple (Acer
rubrum, ∼ 23 %), red oak (Quercus rubra, ∼ 22 %), quak-
ing aspen (Populus tremuloides, ∼ 8 %), sugar maple (Acer
saccharum, ∼ 7 %), paper birch (Betula papyrifera, ∼ 7 %),
white pine (Pinus strobus, ∼ 7 %), American beech (Fagus
grandifolia, ∼ 3 %), and red pine (Pinus resinosa, ∼ 1 %).
The average canopy height is∼ 22 m. Speciated emission
rates were measured from these individual tree species by
branch-enclosure experiments, including measurements at
UMBS during the summers of 2003, 2005 (Ortega et al.,
2007, 2008), 2009, and 2010; thus, these emission rate mea-
surements are expected to be characteristic of the modeled
summer emissions. A total of 57 BVOCs were identified, in-
cluding isoprene, 2 aromatics, 3 alkanes, 20 monoterpenes
(MTs), 8 oxygenated species, and 23 sesquiterpenes (SQTs),
and are shown in Tables 1 and S1. To estimate emission rates
for the whole canopy, the basal emission rates (µgC g−1 h−1)

for each compound were multiplied by the mean green-leaf
dry mass (g m−2) for each tree species, obtained through lit-
ter trap studies. To estimate future BVOC emissions due to
forest succession predicted by Bergen and Dronova (2007),
a simplified replacement of aspen (Populus grandidentata,
Populus tremuloides) by northern hardwoods (Acer rubrum,
Acer saccharum, Fagus grandifola) or upland pine (Pinus
strobus, Pinus resinosa) was carried out and is described in
the supporting information.

Since isoprene emission is both temperature- and light-
dependent, its diurnal emission rates were calculated accord-
ing to the algorithm given by Guenther et al. (1993), which
includes light and temperature correction factors (CPAR and
CT , respectively):

ER(T ,PAR) = ER(Ts) · CPAR · CT (2)
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Table 1.BVOCs identified during branch-enclosure emission mea-
surements for UMBS tree species. Corresponding reaction rate con-
stants (units of cm3 molec−1 s−1) for OH, O3, and NO3 at 298 K
(kOH, kO3, andkNO3, respectively) and RONO2 yields for reactions
with OH and NO3 (γOH andγNO3, respectively) are included for
each BVOC identified. Individual BVOCs are displayed in order
of simulated RONO2 contribution; BVOCs contributing< 0.5 ppt
RONO2 (at∼ 12 m above forest canopy) are shown in Table S1.

BVOC Structure kOH kO3 kNO3
(cm3 molec−1 s−1)

RONO2:
γOH γ NO3

isoprene
(C5H8)

1.0× 10−10,a

1.27× 10−17,a

7.0× 10−13,a

0.07b

0.68c

trans-ocimene
(C10H16)

3.03× 10−10,d

3.85× 10−16,d

2.20× 10−11,e

0.18f

0.31g

limonene
(C10H16)

1.64× 10−10,e

2.1× 10−16,e

1.22× 10−11,e

0.28h

0.30i

β−pinene
(C10H16)

7.43× 10−11,e

1.5× 10−17,e

2.51× 10−12,e

0.23j

0.43k

α−pinene
(C10H16)

5.3× 10−11,a

9.0× 10−17,a

6.16× 10−12,e

0.18l

0.20m

γ−terpinene
(C10H16)

1.77× 10−10,e

1.4× 10−16,e

2.9× 10−11,e

0.18f

0.31g

sabinene
(C10H16)

1.17× 10−10,e

8.3× 10−17,e

1.0× 10−11,e

0.23n

0.31g

β−myrcene
(C10H16)

3.35× 10−10,d

3.85× 10−16,d

1.1× 10−11,e

0.18f

0.31g

cis-ocimene
(C10H16)

3.03× 10−10,d

3.85× 10−16,d

2.20× 10−11,e

0.18f

0.31g

α−thujene
(C10H16)

7.10× 10−11,o

6.2× 10−17,o

5.5× 10−12,p

0.18f

0.31g

a Atkinson et al. (2006),b Lockwood et al. (2010),c Average of Perring et al. (2009b)
and Rollins et al. (2009),d Kim et al. (2011),e Atkinson and Arey (2003b),f Estimated
based on Arey et al. (2001) and O’Brien et al. (1998),g Average ofα-pinene,β-pinene,
and limonene yields,h Leungsakul et al. (2005),i Fry et al. (2011),j Davis et al. (2005),
k Fry et al. (2009),l Nozière et al. (1999),m Spittler et al. (2006),n β-pinene used as a
proxy,o Pinto et al. (2007),p Estimated based on Pfrang et al. (2006).

ER(Ts) is the normalized basal isoprene emission rate at a
standard temperature of 303.15 K and a standard photosyn-
thetic active radiation (PAR) flux of 1000 µmol m−2 s−1. The
light correction factorCPAR is given by:

CPAR =
αcL1PAR√
1+ α2PAR2

(3)

α (= 0.0021) andcL1 (= 1.013) are coefficients to account
for shading that were calculated according to Guenther et
al. (1999) (Eq. 4b and c) using a measured leaf area index of
3.1 m2 m−2 and assuming equal distribution across the 8.8 m
primary canopy bin; these calculated values are similar to
those measured by Guenther et al. (1993). Photosynthetic
photon flux density was measured at 46 m above ground at
the AmeriFlux tower using a LI-COR PAR sensor. The tem-
perature correction factorCT is given by:

CT =
expcT 1(T −Ts)

RT sT

1+ expcT 2(T −TM )
RT sT

(4)

whereT is the temperature measured at the PROPHET tower
at 32 m,R is the ideal gas constant (8.314 J K−1 mol−1),
Ts is the standard temperature (303.15 K), andcT 1
(95 000 J mol−1), cT 2 (230 000 J mol−1), andTM (314 K) are
empirical coefficients given by Guenther et al. (1993).

At UMBS, MT and SQT emissions are primarily driven
by temperature. This was parameterized by an empiricalβ-
factor, measured for the different tree species during branch-
enclosure experiments. Therefore, the diurnal emission rates
of the BVOCs were calculated according to Guenther et
al. (1993):

ER(T ) = ER(Ts) · expβ(T − Ts) (5)

ER(Ts) is the BVOC emission rate at a standard tempera-
ture of 303.15 K. Previous measurements of MTβ-factors
showed an average value of 0.14 K−1 with inner-quartile
ranges of 0.11–0.17 K−1; the corresponding average SQTβ-
factor was 0.17 K−1 with an inner-quartile range of 0.15–
0.21 K−1 (Ortega et al., 2008). These average, upper, and
lower β-factors were utilized for the base, minimum, and
maximum production rate scenarios, described below. Of
the monoterpenes considered here,trans-ocimene has been
shown to be light- and temperature-dependent (Ortega et al.,
2007). Thus, thetrans-ocimene emission rates were scaled
by the light correction factorCPAR (Eq. 3) and an exponential
temperature dependence (Eq. 5).

BVOC emissions were found to vary considerably be-
tween individual trees at UMBS (Ortega et al., 2008), similar
to previous observations elsewhere by Guenther et al. (1991).
Therefore, to examine the model sensitivity to BVOC emis-
sions, three emissions scenarios were constructed as de-
scribed in the supporting information. For this study, the base
emission scenario values are reported, with minimum and
maximum values reported in brackets, to evaluate the im-
pacts of measurement uncertainties and emission variabil-
ity. BVOC volumetric emission rates (molecules m−3 s−1)

were calculated by dividing the BVOC fluxes (molecules
m−2 s−1) by the width of the first canopy bin (8.8 m),
which extends from 12.1–20.9 m above the ground and cov-
ers the majority of the leaf biomass at the site (Schmid et
al., 2003); thus, for the model, all leaf biomass was as-
sumed to exist in the lowermost bin. As noted above, for the
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light-dependent BVOCs isoprene andtrans-ocimene, shad-
ing within the large canopy bin was accounted for using
the coefficientsα and cL1. Despite the fact that multiple
finely-resolved canopy bins were not utilized in this model,
there was good agreement between measured and modeled
above-canopy VOC concentrations (discussed below). This
suggests that our treatment with BVOCs being emitted into
one large canopy bin was sufficient for the purposes of un-
derstanding the local contributions of individual BVOCs to
biogenic organic nitrate formation.

2.2.2 Vertical transport

The vertical flux of each chemical species (Fi) was calcu-
lated as:

Fi = −KH,z

1[VOCi]

1z
(6)

where1[VOCi ] is the concentration difference between ad-
jacent bins, and1z is the vertical distance between the cen-
ters of these two bins. The vertical transport of BVOCs fol-
lowing emission was described by thermal eddy diffusiv-
ity (KH ) profiles based on modeled mixing by the CACHE
model (Forkel et al., 2006; Bryan et al., 2012) for sunny and
partly sunny days during the summer 2009 CABINEX cam-
paign at UMBS. Mixing within the canopy and up to 1.5
times the canopy height (1.5h) was parameterized with a
modified K-theory that uses observations of vertical veloc-
ity standard deviation at two heights within and above the
canopy (0.92h and 1.5h) to account for “near-field” mix-
ing effects (Raupach, 1989). ModeledKH values were lin-
early interpolated from the modeledKH at the base of the
crown space (6 m) to the first (20.6 m; 0.92h) and second
(34 m; 1.5h) measurement heights. In this region,KH was
scaled by theR factor (Eq. 10 in Makar et al., 1999) using
a τ /TL ratio of 4 (Stroud et al., 2005; Wolfe and Thornton,
2011), whereτ is the transport lifetime and TL is the La-
grangian timescale. Above the canopy, modeled values ac-
cording to Forkel et al. (1990) were used up to approxi-
mately 4 km above ground and adjusted to remove the sharp
discontinuity between the measurement height and the adja-
cent model level. The verticalKH profile peaks at∼ 300 m
above ground (14:45 EST) with a maximum mixing height of
∼ 1 km (Fig. S1), following Gao et al. (1993).

2.2.3 BVOC reactions and oxidant measurements

Once emitted into the model atmosphere, individual BVOCs
reacted with OH, O3, and NO3. Rather than explicitly calcu-
lating oxidant concentrations, 0.5-h resolution average diur-
nal cycles of OH, O3, and NO3 were directly input to min-
imize uncertainties in O3 production (Wu et al., 2007) and
OH recycling under low NOx conditions (e.g., Sillman et
al., 2002; Hofzumahaus et al., 2009). Above-canopy (32 m
above ground) daytime (08:30–18:30) and nighttime [OH]
were measured by laser-induced fluorescence (Dusanter et

al., 2009) in July–August 2008 and July–August 2009, re-
spectively; these data were combined to provide a full diur-
nal OH cycle. Ozone was measured at 32 m above ground
using a Thermo Environmental Instruments model 49C UV
absorption ozone analyzer. The 0.5 h resolution average diur-
nal cycle of NO3 radical concentrations was calculated using
the model described by Hurst et al. (2001); details and mod-
ifications are provided in the supporting information. Aver-
age diurnal cycles of the concentrations of OH, O3, and NO3
are shown in Fig. S2. Oxidant concentrations were assumed
to be constant with altitude. However, previous modeling
scenarios for other locations suggest that [O3] and [NO3]
may increase slightly with increasing height above the for-
est canopy, while [OH] may increase with height above the
canopy in the daytime and decrease above the canopy at night
(Gao et al., 1993; Geyer and Stutz, 2004a, b). However, as
discussed below, much of the BVOC oxidation occurs in the
lowest∼ 100 m of the boundary layer.

The chemical reaction loss rate of each VOC within each
bin was calculated as:

Li = kOH, i · [OH] · [VOCi ] + kO3, i · [O3] · [VOCi ]

+ kNO3, i · [NO3] · [VOCi ] (7)

wherekOH,i , kO3,i , andkNO3,i are the respective OH, O3, and
NO3 rate constants for VOCi , as shown in Tables 1 and S1.
When rate constants were not available, they were calculated
using the United States Environmental Protection Agency
Estimation Program Interface Suite (USEPA, 2010) and the
structure activity relations described by Pfrang et al. (2006)
and Kerdouci et al. (2010).

Given the abundance of isoprene at UMBS, concen-
trations of major first-generation isoprene oxidation prod-
ucts MACR and MVK were calculated based on measured
yields (Ruppert and Becker, 2000) (Table S5). The iso-
prene first-generation C5-unsaturated hydroxyaldehyde iso-
mers, referred to as IP-HMY and IP-MHY, were calculated
based on Carter and Atkinson (1996) and Costa (2011) (see
Table S5).

2.2.4 Organic nitrates

Few laboratory studies have measured organic nitrate
(RONO2) yields from BVOC oxidation. In fact, of the 57
BVOCs considered here, RONO2 yields have only been mea-
sured for isoprene (Tuazon and Atkinson, 1990; Chen et al.,
1998; Chuong and Stevens, 2002; Sprengnether et al., 2002;
Patchen et al., 2007; Perring et al., 2009b; Rollins et al.,
2009; Lockwood et al., 2010; Costa, 2011),α-pinene (Hal-
lquist et al., 1999; Nozière et al., 1999; Spittler et al., 2006),
β-pinene (Hallquist et al., 1999; Davis et al., 2005; Fry et
al., 2009), and limonene (Hallquist et al., 1999; Leungsakul
et al., 2005; Spittler et al., 2006; Fry et al., 2011). There-
fore, for the remaining BVOCs and primary organic nitrate
species, organic nitrate yields (γ ) for reaction of BVOCs
with OH, and subsequently NO, were first estimated based

www.atmos-chem-phys.net/12/10125/2012/ Atmos. Chem. Phys., 12, 10125–10143, 2012
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Table 2. Individual primary isoprene nitrate relative yields and corresponding reaction rate constants (units of cm3 molec−1 s−1) are shown;
secondary isoprene nitrate yields for reaction with OH are shown with the specific species showed in Table 3 and with the abbreviation here
listed in parentheses. All primary isoprene nitrates are assumed to have secondary RONO2 yields of 0.5 for reaction with O3. For reaction of
all primary isoprene nitrates with NO3, yields are assumed to be 0.6 (containing one nitrate group) and 0.4 (dinitrate yield) based on Rollins
et al. (2009).

Relative
RONO2

Isoprene
Nitrate

Structure γ OH
γ NO3

kOH kO3 kNO3
(cm3 molec−1 s−1)

Secondary
RONO2 γ OH

RONO2-4,3 0.63a

0b
5.3× 10−11,c

3.7× 10−17,d

3.0× 10−13,d

0.40 (MVKN)e

RONO2-3,4 0.013a

0b
5.3× 10−11,c

3.7× 10−17,d

3.0× 10−13,d

0.15 (MVKN)e;
0.30 (ETHLN)e

RONO2-1,2 0.183a

0b
1.4× 10−11,c

1.4× 10−17,d

4.6× 10−14,d

0.40 (MACRN)e

RONO2-2,1 0.0747a

0b
2.8× 10−11,c

1.4× 10−17,d

4.6× 10−14,d

1.0 (PROPNN)e

RONO2-4,1 0.0795a

0.2b
4.5× 10−11,c

1.6× 10−16,d

4.8× 10−12,d

0.30 (PROPNN)e

RONO2-1,4 0.0195a

0b
4.5× 10−11,c

1.6× 10−16,d

4.8× 10−12,d

0.15 (MVKN)e;
0.30 (ETHLN)e

NO3-
NITROX

0a

0.8b
3.1× 10−11,c

3× 10−18,b

5.5× 10−12,d

0.30 (PROPNN)b

a Costa (2011) (Correction to Lockwood et al. (2010) yields),b Rollins et al. (2009),c Estimated using the
Environmental Protection Agency’s Estimation Program Interface Suite (USEPA, 2010),d Estimated based on Pfrang et
al. (2006),e Paulot et al. (2009).

on the number of carbon atoms (n) within each BVOC (Arey
et al., 2001):

γ = (0.0381± 0.0031)n − (0.073± 0.0178) (8)

To apply this parameterization to alkenes, the calculated
yield was multiplied by 0.58, according to O’Brien et
al. (1998). For compounds with oxygen-containing func-
tional groups present in positionsβ or further from the per-
oxy radical, the calculated yield was multiplied by 1.7 (Es-
pada and Shepson, 2005). The production rate of organic ni-
tratei was calculated as:

PONi
= kOH, i · [OH] · [VOCi ] · γOH,i · δ

+ kNO3, i · [NO3] · [VOCi ] · γNO3,i (9)

whereγ is the RONO2 yield from the reaction of VOCi with
either OH or NO3. Since NO was not explicitly calculated

within the model, NOx conditions were accounted for by the
termδ, which describes the fraction of time RO2 reacts with
NO versus HO2 and RO2, as previously described by Barket
et al. (2004):

δ =
kRO2,NO[RO2][NO]

kRO2,NO[RO2][NO] + kRO2,HO2[RO2][HO2]

+ kRO2,RO2[RO2][RO2] (10)

where NO was measured using a customized chemilumines-
cence instrument, described above, HO2 was measured us-
ing laser-induced fluorescence (Dusanter et al., 2009), and
[RO2] was assumed to equal [HO2] (Tan et al., 2001; Mi-
hele and Hastie, 2003). The associated rate constants, based
on isoprene reactions, are 9.0× 10−12, 3.9× 10−12, and
1.3× 10−11 cm3 molec−1 s−1 for kRO2,NO, kRO2,HO2, and
kRO2,RO2, respectively (Barket et al., 2004). For the average
diurnal cycle, measured [NO] reached a minimum of 0.3 ppt
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at 01:30 (EST) and a morning maximum of 326 ppt at 07:30
(EST). Correspondingly, the diurnal cycle ofδ, shown in
Fig. S3, was calculated to range from 0.03 at 01:30 to 0.92 at
07:30, further showing the significant impact of the morning
NOx maximum (Alaghmand et al., 2011). It should be noted
that recent studies have found that instruments that detect
HO2 radicals using chemical conversion to OH by reaction
with added NO may be sensitive to the detection of hydroxy-
alkyl peroxy radicals produced from the OH-initiated oxi-
dation of alkenes (Fuchs et al., 2011). As a result, the HO2
measurements in this study likely represent an upper limit to
the actual concentration of HO2 radicals; thus, the calculated
δ and corresponding nitrate production represent lower limits
(Fig. S3).

Speciated primary and secondary isoprene nitrates were
estimated based on the laboratory studies of Lockwood et
al. (2010); Rollins et al. (2009); Paulot et al. (2009); and
Costa (2011) (Tables 2 and 3). Structures of all other pri-
mary and secondary BVOC nitrates produced by reactions
with each oxidant (OH, O3, and NO3) were estimated (based
on known chemistry for proxy compounds) to allow esti-
mation of the corresponding rate constants using the US
EPA Estimation Program Interface Suite (USEPA, 2010), as
well the structure activity relations described by Pfrang et
al. (2006) and Kerdouci et al. (2010). Retention of the nitrate
group upon reaction of the primary organic nitrates with OH,
O3, or NO3 was defined to occur 98 % of the time for all
BVOCs except isoprene, which was explicitly described,α-
phellandrene (defined as 49 % based on structure estimation
for reaction with OH or O3), andβ-phellandrene (defined as
0 % (complete loss) based on structure estimation for reac-
tion with OH or O3). Secondary dinitrates were predicted to
form based on organic nitrate yields, described above, for all
BVOCs exceptα-phellandrene (0.5 dinitrate yield assumed)
andβ-phellandrene (no dinitrate formation assumed). Nitrate
structures were estimated based on trends in bond reactivity
and previous studies of organic nitrate formation (Shepson,
2007). A goal of this study was to highlight potentially im-
portant BVOC-oxidant chemistry that should be studied fur-
ther; therefore, the absolute concentrations of organic nitrates
reflect the simulation assumptions and should be evaluated
by further laboratory studies.

2.2.5 Advection and dry deposition

To examine the impact of local BVOC emissions and chem-
istry, the forest canopy was assumed to be the only source
of BVOCs. BVOCs and reaction products were removed via
horizontal advection (Hi) from the above canopy bins based
on horizontal loss rate constants (kwind) defined as:

kwind =
U(z)

30 km
(11)

U(z) is the wind speed at a given altitude (in km s−1).
While there is heterogeneity in the forest canopy within

Table 3. Secondary isoprene nitrates and corresponding rate con-
stants (units of cm3 molec−1 s−1).

Isoprene
Nitrate

Structure kOH kO3 kNO3
(cm3 molec−1 s−1)

MACRN 5.0× 10−11,a

(<)1× 10−20,b

9.6× 10−16,c

MVKN 5.6× 10−12,a

(<)1× 10−20,b

4.7× 10−15,c

ETHLN 1.0× 10−11,a

(<)1× 10−20,b

2.9× 10−16,c

PROPNN 4.9× 10−13,a

(<)1× 10−20,b

9.4× 10−16,c

a Paulot et al. (2009),b Atkinson et al. (1990),c Estimated based
on Kerdouci et al. (2010).

and near UMBS (Bergen and Dronova, 2007), a homoge-
neous forest path length of 30 km is assumed, based on
the approximate distance from UMBS to Lakes Huron and
Michigan. Measurements of wind speeds at 46 m at the
AmeriFlux tower using a Campbell Scientific CSAT3 sonic
anemometer were used to derive friction velocities (u∗); us-
ing Eq. (12), vertically-resolved wind speeds were calculated
and are shown in Fig. S4.

U(z) =
u∗

k
ln

(
z − d

z0

)
(12)

d is the zero-plane displacement, defined as 0.75*canopy
height (22.0 m),k is the von Karman constant (0.40),z is
the altitude of the bin mid-point, andz0 is the aerodynamic
surface roughness length (2.0 m), calculated based on the
Monin-Obukhov length during neutral atmospheric stability
conditions.

Reaction products were removed via dry deposition from
the two canopy bins (starting at 12.1 m and 20.9 m above
ground, respectively). Dry deposition loss(Di) was defined
by the species specific deposition velocity (vd):

Di =
vd,i · [VOCi]

z
(13)

Dry deposition velocities of organic nitrates are thought to
range between that of peroxyacetyl nitrate (PAN, 0.5 cm s−1)

and HNO3 (4–5 cm s−1) (Grossenbacher et al., 2001). For
a pine forest, Farmer and Cohen (2008) calculated a sum-
mer mid-day deposition velocity of 2.7 cm s−1 for total
RONO2. Daytime dry deposition velocities (vd) were as-
sumed as follows: first-generation isoprene oxidation prod-
ucts, including MVK, MACR, and C5-unsaturated hydroxy-
aldehyde isomers, (0.5 cm s−1) (Zhang et al., 2003), primary
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Fig. 1. Comparison of modeled and measured (Hurst et al., 2001)
vertical profiles of isoprene concentrations at UMBS. Error bars
represent sensitivity to the range of isoprene emission rates.

organic nitrates (1.5 cm s−1), and secondary organic nitrates
(2.5 cm s−1). Nighttime dry deposition velocities were as-
sumed to be 10 % of daytime values, following Ganzeveld
et al. (2008).

3 Results and discussion

3.1 BVOC emissions and concentrations

The predicted isoprene emission rate diurnal cycle
(Fig. S5, mid-day average canopy top flux of 3.5 [1.1–
6.2] mg C m−2 h−1) agrees well with previous eddy
covariance measurements at UMBS with average mid-day
fluxes of 2.8, 3.2, and 2.9 mg C m−2 h−1 for the summers
of 2000–2002 (Pressley et al., 2005). For the base pro-
duction scenario, simulated isoprene emissions (2.9× 1019

molecules m−2 h−1) comprised 95 % of all BVOCs emitted
on a molar basis from the UMBS forest at the time of
maximum total BVOC emissions (14:00) (Fig. S5). As
shown in Fig. 1, the modeled isoprene vertical profile at
17:00 is in agreement with previous measurements made at
UMBS at the same time of day (Hurst et al., 2001). In the
daytime, the isoprene concentrations at∼ 12 m above the
forest canopy agree with measured values (Fig. 2), similar
to previous modeling by Sillman et al. (2002). However, at
night (22:00–06:00) modeled isoprene concentrations were
lower than observed, with increasing biases through the
night. Previous studies using a 0-D model found that the
observed isoprene decay rate in the late evening at UMBS

Fig. 2. Diurnal cycles of modeled and measured [isoprene],
[total monoterpenes (MTs)], and [methyl vinyl ketone
(MVK) + methacrolein (MACR)] at ∼ 12 m above the forest
canopy. July–August 2008 measurements were completed using
a proton-transfer reaction linear ion trap mass spectrometer
(PTR-LIT) (Mielke et al., 2010). Sensitivity to uncertainties and
variability are indicated by error bars.

was over-predicted, and they hypothesized that this was
due to uncertainties in vertical mixing estimates and/or an
unknown dark isoprene emission source (Hurst et al., 2001).
Uncertainties associated with calculated NO3 radical con-
centrations cannot account for the isoprene concentrations
(Hurst et al., 2001). Here we included a simple estimate
of vertical mixing and found that isoprene concentrations
were still under-predicted at night. This further suggests the
presence of a nighttime isoprene emission source, estimated
previously by Faloona et al. (2001) to be∼ 2–30 µg m−2 h−1

in the summer at UMBS.
The discrepancy between measured and modeled isoprene

concentrations at night is unlikely to be caused by overes-
timating [OH] because modeled concentrations of methyl
vinyl ketone (MVK) and methacrolein (MACR) are also
under-predicted at night (00:00–08:00) (Fig. 2). Addition-
ally, the modeled ratios of [MVK+MACR]/[Isoprene] and
[MVK]/[MACR] agree with measurements (Fig. S6). The
observed underprediction of daytime MVK and MACR con-
centrations is expected because we included only the oxi-
dation of locally emitted BVOCs and did not advect BVOC
oxidation products to the site. Here, a sensitivity study was
performed to examine the impact of advection out of the
model column on MVK and MACR. While decreasing ad-
vection of all species by half increased [MVK+MACR] by
a factor of 2, these species were still under-predicted by the
model in the morning, when isoprene concentrations were
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also under-predicted. However, rather than adding an advec-
tive source of MVK+MACR, we focus here on local organic
nitrate formation from locally-emitted BVOCs. For this pur-
pose, the measured and modeled BVOC concentrations were
within the ranges of daytime variability overall. A detailed
study of isoprene emission and oxidation in the nocturnal
boundary layer should be completed to further our under-
standing of these processes, including the contributions from
upwind advection.

At night, simulated MT and SQT emissions (∼ 3–
4× 1017 molecules m−2 h−1 and ∼ 2–4× 1016 molecules
m−2 h−1, respectively) comprised∼ 79–82 % and∼ 7 %,
respectively, of total BVOC emissions; the remain-
ing minor fraction of emissions were due to other
BVOCs, including oxygenated species, shown in Ta-
ble S1. Modeled mid-day canopy-scale emission rates
of total MTs and SQTs (0.23 [0.04–0.61] mg m−2 h−1

and 0.03 [0.001–0.09] mg m−2 h−1, respectively) were
close to previous estimates (0.21± 0.06 mg m−2 h−1 and
0.10± 0.05 mg m−2 h−1, respectively) based on PTR-MS
measurements at UMBS (Kim et al., 2009). Considering un-
certainties and variability, modeledα- and β-pinene emis-
sion rates were also in agreement with measured fluxes
at UMBS using a disjunct eddy accumulation system (Ed-
wards et al., 2012); these new speciated MT flux measure-
ments by Edwards et al. (2012) will help constrain emis-
sions in future modeling efforts. Comparison between mea-
sured (PTR-LIT) and base modeled total MT concentrations
ranged from agreement to an under-prediction of up to a fac-
tor of ∼ 3; however, these values were still within the range
of measured variability (Fig. 2).

3.2 Biogenic organic nitrates and NOy budget

Here we define total biogenic organic nitrates as the sum of
primary and secondary biogenic organic nitrates, as well as
nitrates formed from reaction of first generation isoprene ox-
idation products (MVK, MACR, IP-HMY, and IP-MHY). At
∼ 12 m above the forest canopy, the simulated concentration
of total biogenic organic nitrates ranged from 12–74 ppt [4–
137 ppt, considering emissions uncertainties and variability]
through the day (Fig. 3). In the morning hours, enhanced
vertical mixing led to increased simulated [RONO2] aloft
(shown for∼ 560 m).

For comparison, the measured NO∗
y (∼NOy-HNO3) con-

centration at∼ 12 m above the forest canopy ranged from∼

1.4–4.5 ppb over the course of the average sunny day. Given
these measurements, the simulations suggest that locally-
produced biogenic RONO2 contributed∼ 1 % (night) to∼

4 % (day) of the measured NO∗y at ∼ 12 m above the for-
est canopy; considering the minimum and maximum emis-
sions model scenarios, this range corresponds to< 1 % to
∼ 8 % of NO∗

y. During summertime aircraft-based measure-
ments above the eastern United States, Perring et al. (2009a)
observed∼ 18 % of NOy to be attributed to organic ni-

trates when isoprene concentrations exceeded 500 ppt in the
boundary layer below 0.5 km. Formaldehyde was correlated
with the total organic nitrate concentrations, suggesting a
major contribution from isoprene (Perring et al., 2009a). For
UMBS, the contribution of isoprene-derived organic nitrates
to the total simulated biogenic organic nitrates at∼ 12 m
above the forest canopy was predicted to reach a maximum
of ∼ 89 % in the afternoon (12:00–17:30) with a minimum of
∼ 20 % in the early morning (05:00), when the contribution
from monoterpenes reached its daily maximum (∼ 70 %).
The calculated contribution of isoprene-derived organic ni-
trates to total biogenic organic nitrates was greater than 90 %
at all altitudes in the afternoon when vertical mixing and the
isoprene nitrate production rate were highest. In the early
morning, the fractional contribution of isoprene-derived or-
ganic nitrates was simulated to be< 40 % below∼ 150 m,
compared to> 90 % above∼ 1400 m. This is due to the rel-
atively greater emissions of monoterpenes at night compared
to isoprene, resulting in monoterpene nitrate production in
the near-canopy environment. These differences in the ver-
tical profiles of the isoprene and monoterpene nitrates are
clearly shown in Fig. 4. Simulated monoterpene nitrate con-
centrations below∼ 500 m were higher at night than during
the day due to nighttime monoterpene emissions and reaction
with NO3. Above∼ 500 m, the monoterpene nitrate concen-
trations were lower at night than during the daytime due to
decreased vertical mixing; however, we note uncertainties in
the low nighttime mixing as K-theory does not capture night-
time turbulence events that have been observed in stable noc-
turnal boundary layers (e.g., Mahrt et al., 1998; Salmond and
McKendry, 2005).

While simulated primary organic nitrate production at
∼ 12 m reached a maximum in the mid-day (17 times greater
than nighttime production), the specific BVOCs and oxidants
contributing to organic nitrate production changed with time
of day, as shown in Fig. 5. At∼ 12 m above the forest canopy
at night, monoterpene-NO3 reactions comprised up to 83 %
of primary organic nitrate production, with isoprene-OH re-
actions comprising up to 82 % during the daytime. At night,
the major contributors (> 5 %) to primary organic nitrate
production were predicted to be limonene,γ -terpinene,α-
pinene,cis-ocimene,β-pinene, sabinene,β-myrcene, andα-
farnesene.Trans-ocimene, a light-dependent monoterpene,
was estimated to be the greatest non-isoprene contributor
to primary organic nitrate production (up to∼ 10 %) dur-
ing the day through reaction with OH. It is quite notewor-
thy that during the day (11:00–17:30),∼ 8 % of the primary
organic nitrate production was predicted to be from isoprene-
NO3 reactions due to high isoprene concentrations (modeled
daytime average [isoprene] = 2.82 ppb; modeled daytime av-
erage [NO3] = 0.10 ppt). The NO3 lifetime versus photoly-
sis was estimated to be∼ 5 s, compared to that for reaction
with NO or isoprene of∼ 18 s and∼ 21 s, respectively. Thus,
while [NO3] was lower in the daytime (by∼ 4 times on av-
erage compared to nighttime), isoprene concentrations were
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Fig. 3. Diurnal cycles of modeled organic nitrate concentrations at∼ 560 m and∼ 12 m above the forest canopy. Low total concentrations
of sesquiterpene and other BVOC nitrates are shown for both heights, with concentrations ranging from 0.6 ppt in the mid-day (12:30) to a
maximum of 2.1 ppt at 23:30 for∼ 12 m above the forest canopy, compared to 0.1–0.4 ppt through the course of the day at∼ 560 m above
the forest canopy. Results for the base BVOC production rate scenario are shown.

Fig. 4. Vertical profiles of total (primary and secondary) isoprene
(left) and monoterpene (right) nitrate concentrations above the for-
est canopy at 02:00 and 14:00 EST. Total isoprene nitrates includes
nitrates formed from first generation isoprene oxidation products
(methacrolein, methyl vinyl ketone, and C5-unsaturated hydroxy-
aldehyde isomers). The base and maximum emission rate scenarios
are shown for the isoprene nitrates and monoterpene nitrates, re-
spectively.

much higher (by∼ 45 times (modeled)) in the daytime, so
these are compensating effects. This led to a greater pre-
dicted rate of primary isoprene nitrate production via NO3
in the daytime (Fig. 6). Therefore, this analysis suggests that
NO3-isoprene chemistry is an important daytime pathway
at UMBS. Due to under-predicted isoprene concentrations
at night (Sect. 3.1), isoprene nitrate production from NO3
chemistry at night was also likely under-predicted.

Fig. 5. Diurnal cycle of fractional modeled primary organic nitrate
production at∼ 12 m above the forest canopy. Results for the base
BVOC production rate scenario are shown.

The 24 h total column simulated local biogenic
RONO2 production rate was calculated to be 18 [8–
36] µmol m−2 d−1. In comparison, soil measurements
at UMBS showed an estimated source NOx flux of
4.3 µmol m−2 d−1 (Alaghmand et al., 2011), suggesting
significant contribution of local organic nitrate formation
from locally-emitted NOx. Overall, dry deposition, hor-
izontal advection, and chemical reaction accounted for
∼ 15 %,∼ 52 % and∼ 32 %, respectively, of organic nitrate
loss in the simulations (Fig. S7). The modeled organic
nitrate dry deposition rate of 2.8 [1.2–5.5] µmol m−2 d−1

is consistent with the previous estimate for organic nitro-
gen dry deposition (2.0 µmol m−2 d−1, ∼ 1 % of the total
calculated nitrogen dry deposition) at UMBS by Hill et
al. (2005). Given the significant uncertainty associated with
the assumed dry deposition velocities, two sensitivity model

Atmos. Chem. Phys., 12, 10125–10143, 2012 www.atmos-chem-phys.net/12/10125/2012/



K. A. Pratt et al.: Organic nitrates above a mixed forest 10135

Fig. 6. Modeled diurnal cycle of primary isoprene nitrate produc-
tion via reaction of NO3 with isoprene at∼ 12 m above the forest
canopy. Error bars represent sensitivity to emission rate uncertain-
ties and variability.

runs were performed using either 0.5 cm s−1 or 2.5 cm s−1

for the deposition velocities of all oxidation products. Using
a deposition velocity of 0.5 cm s−1, simulated [RONO2]
increased by 28 % from the assumptions of the base case (see
Sect. 2.2.5). In contrast, a deposition velocity of 2.5 cm s−1

resulted in decreased [MVK+MACR] and [RONO2] by
11 % and 32 %, respectively.

In this model, horizontal advection also removed organic
nitrates from the 1-D column; however, in the atmosphere,
more extensive processing of the organic nitrates occurs as
the air mass moves downwind of this BVOC source region.
To evaluate the impact of continued oxidation for longer
timescales in the downwind plume, a simulation was run with
horizontal advection turned off and BVOC emissions only
allowed during the first spin-up day in the model with eval-
uation of the second day. During the second simulation day,
the concentration of total simulated biogenic organic nitrates,
at ∼ 12 m above the forest canopy, declined by∼ 92 % with
an increasing fraction of secondary organic nitrates (59 % to
90 % of the total), showing the impact of reactions with OH,
O3, and NO3, as well as dry deposition. In particular, since
most secondary isoprene nitrates release NOx upon subse-
quent reaction (Paulot et al., 2009), the total simulated con-
centration of isoprene nitrates decreased significantly during
this time period, corresponding to a calculated increase in
NO2 of ∼ 138 ppt. This is equal to∼ 11 % of the daily aver-
age NO2 concentration at UMBS.

3.3 Individual isoprene nitrates

Recent laboratory studies by Paulot et al. (2009); Rollins et
al. (2009); Lockwood et al. (2010); and Costa (2011) al-
lowed the simulation of individual isoprene nitrate species,
shown in Tables 2 and 3, formed via reaction of isoprene with
OH or NO3. As shown in Fig. 7, total simulated isoprene
nitrate concentrations at∼ 12 m above the forest canopy
ranged from∼ 3 [2–5] ppt (at 06:00) to∼ 65 [37–115] ppt

(at 17:00). In the mid-day at∼ 12 m above the forest canopy,
∼ 91 % of the primary isoprene nitrates were formed via OH
oxidation, compared to∼ 42 % at night when NO3 oxida-
tion was prevalent. Previously, Giacopelli et al. (2005), us-
ing a zero-dimensional model for UMBS that did not in-
clude NO3 chemistry, predicted a maximum afternoon iso-
prene nitrate concentration of 79 ppt, in agreement with our
one-dimensional model simulations. The most abundant in-
dividual isoprene nitrate isomers, at∼ 12 m above the forest
canopy, in the daytime were predicted here to be RONO2-
4,3, estimated to be present at concentrations up to 28
[13–49] ppt, and RONO2-1,2 (up to 10 [5–18] ppt) (Fig. 7,
see Table 2 for structures); at their maximum concentra-
tions at this height, these compounds comprised∼ 60 % and
∼ 22 % of the primary isoprene nitrates produced via OH ox-
idation. These two primary isoprene nitrates are the most
abundantly produced nitrates via OH oxidation at relative
yields of 63.0 % and 18.3 %, respectively, as observed by
Costa (2011). The enrichment in RONO2-1,2 relative to its
yield was due to lower predicted reaction rates with OH and
O3 compared to RONO2-4,3 (Table 2). Through the night,
the relative concentrations of the primary OH-produced iso-
prene nitrates changed due to reaction with NO3. RONO2-
1,2, in particular, was significantly enriched at night com-
pared to its relative production yield due to a lower predicted
reaction (removal) rate with NO3, compared to the other ni-
trates (Table 2). During previous measurements at UMBS,
Grossenbacher et al. (2001) and Giacopelli et al. (2005) de-
tected two abundant gas chromatographic peaks associated
with nitrates produced from the OH-oxidation of isoprene,
with associated average diurnal concentrations ranging from
∼ 1–10 ppt and observations up to∼ 90 ppt. Figure 8 shows
a comparison between the modeled concentrations of the
two most abundant isoprene nitrate isomers (RONO2-4,3 and
RONO2-1,2) with the sum of the two most abundant iso-
prene nitrates measured by Giacopelli et al. (2005). Based
on recent studies (Costa, 2011), we believe the gas chromato-
graphic peaks correspond to the RONO2-1,2 and RONO2-4,3
species, eluting in that order; however, the ambient relative
abundance of these two peaks was opposite of that predicted
by the model, suggesting that future work needs to focus on
understanding the removal processes of these isoprene nitrate
species.

Reaction of primary isoprene nitrates with OH, O3, or NO3
can produce secondary isoprene nitrates, as described by Gi-
acopelli et al. (2005); Paulot et al. (2009); and Rollins et
al. (2009) (Table 3); in addition, nitrates can form from sub-
sequent oxidation of the first generation isoprene oxidation
products, including MVK, MACR, and the C5-unsaturated
hydroxyaldehyde isomers (Paulot et al., 2009; Costa, 2011).
In general, the contributions of secondary isoprene nitrates
and nitrates formed from first generation isoprene oxidation
products were simulated to increase with altitude and time of
day. Following initiation of isoprene emissions in the morn-
ing, primary isoprene nitrates contributed∼ 90 % of the total
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Fig. 7. Diurnal cycles of the modeled concentrations of isoprene nitrates at∼ 12 and∼ 560 m above the forest canopy for the base isoprene
production rate scenario. Structures of specific primary and secondary isoprene nitrates are shown in Tables 2 and 3.

Fig. 8.Comparison of the sum of the concentrations of the two most
abundant modeled (∼ 12 m above forest canopy) isoprene nitrate
isomers (RONO2-4,3 and RONO2-1,2) with the two most abundant
isoprene nitrate isomers measured (∼ 10 m above the forest canopy)
at UMBS (Ford, 2001; Giacopelli et al., 2005). Error bars for mod-
eled concentrations represent sensitivity to the range of isoprene
emission rates.

simulated concentration of isoprene nitrates (defined here as
primary, secondary, and first generation oxidation product
isoprene nitrates) at∼ 12 m above the forest canopy (Fig. 7).
Through the day and overnight, secondary isoprene nitrate
concentrations increased due to reactions of first generation
isoprene oxidation products and primary isoprene nitrates.
By early morning, secondary isoprene nitrates were predicted
to comprise∼ 55 % of the total simulated isoprene nitrate
concentration at∼ 12 m above the forest canopy. At the same
time, the contribution of nitrates formed from the reaction of
first generation isoprene oxidation products was estimated at
∼ 15 %; however, considering the under-prediction of MVK
and MACR by the model, particularly in the early morning

(Fig. 2), this represents a lower limit for the concentration
and contribution of these species.

3.4 Monoterpene nitrates

Monoterpenes accounted for∼ 6 % of the simulated BVOC
emissions (on a molar basis) at UMBS. At night, simu-
lated monoterpenes comprised∼ 80–82 % of the total BVOC
emissions at UMBS (Fig. S5). The individual monoterpenes
α-pinene, limonene,β-pinene,γ -terpinene,β-myrcene,cis-
ocimene, and sabinene each comprised> 5 % of the night-
time total BVOC emissions. Unlike isoprene concentrations,
which reached a maximum in the mid-day for∼ 12 m above
the forest canopy, the measured average total monoterpene
concentration only varied by a factor of∼ 2 through the
entire day (119–245 ppt) (Fig. 2). While significant uncer-
tainties exist with respect to the RONO2 yields of numerous
monoterpenes, as noted in Sect. 2.2.4, the trends in the simu-
lated monoterpene nitrates can be examined (Fig. 9). In con-
trast to the diurnal cycle of isoprene nitrates (Fig. 7), the max-
imum concentration of primary and secondary monoterpene
nitrates at∼ 12 m above the forest canopy occurred at night
due to the reaction of monoterpenes with NO3 (Fig. 9). While
the base model scenario predicted a maximum total monoter-
pene nitrate concentration of 14 ppt, this scenario also under-
predicted the total monoterpene concentration at night, com-
pared to the PTR-LIT measurements (Fig. 2). Thus, the max-
imum total monoterpene nitrate concentration could reason-
ably be∼ 40 ppt, as predicted by the maximum emissions
scenario, which showed improved agreement with the to-
tal monoterpene concentration at night. Compared to iso-
prene, most monoterpenes are characterized by higher rate
constants for reaction with NO3 and lower rate constants
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Fig. 9. Diurnal cycles of modeled monoterpene nitrate concentrations at∼ 560 m and∼ 12 m above the forest canopy. Both primary and
secondary nitrates are shown, where the oxidant refers to the initial reaction. Results for the maximum BVOC production rate scenario are
shown.

for reaction with OH; when coupled with higher RONO2
yields for reaction with NO3 compared to OH (Tables 1 and
S1), this results in the nighttime maximum for∼ 12 m above
the forest canopy. However, similar to isoprene, the concen-
tration of monoterpene nitrates aloft was governed by ver-
tical mixing with a maximum in the afternoon. As shown
in Fig. 9, significant precursors to monoterpene nitrates in-
cluded limonene (both OH and NO3 reactions),α-pinene
(both OH and NO3 reactions),γ -terpinene (NO3 reaction),
β-pinene (both OH and NO3 reactions), andtrans-ocimene
(OH reaction).

3.5 Impacts of forest succession on BVOC emissions
and organic nitrates

A major fraction of the upper Great Lakes region forest
consists of aspen trees (Populus grandidentata and Popu-
lus tremuloides), which grew following the harvest of ma-
ture forests in the late 19th and early 20th centuries (Fried-
man and Reich, 2005). Given the short lifetimes (< 100 yr)
of aspen trees, the forest in northern Michigan is undergoing
forest succession, where the aspen trees are currently being
replaced by northern hardwoods (Acer rubrum, Acer saccha-
rum, Fagus grandifola) and upland pine (Pinus strobus, Pi-
nus resinosa) (Bergen and Dronova, 2007). Here, we simu-
lated the effect of these future forest emissions on organic ni-
trate composition using current (summer 2008) temperatures.
Two future forest composition scenarios were simulated with
aspen being replaced by either northern hardwoods or upland
pine (see supporting information for more detail).

At UMBS, isoprene is emitted primarily by aspen and red
oak, such that loss of aspen trees decreased simulated iso-
prene emissions by 46–53 % to a mid-day average flux of
1.1–1.3 mg C m−2 h−1 (1.1–1.3× 1019 molecules m−2 h−1).
The replacement of the aspen by northern hardwoods and

upland pine changed total monoterpene, sesquiterpene, and
other BVOC emissions by factors of 0.7–1.5, 1.5–1.8, and
1.0–2.0, respectively. However, isoprene emissions were pre-
dicted to still comprise 83–89 % of the total BVOC emissions
at UMBS (compared to the current 93%). The speciated com-
position of the BVOC emissions was also predicted to change
(Fig. S8), where replacement of aspen with either north-
ern hardwoods or upland pines increased several sesquiter-
penes (α-cedrene,α-muurolene,γ -muurolene,γ -cadinene,
β-bisaboleneβ-farnesene, andα-humulene) by factors of
more than 10; replacement with northern hardwoods was also
predicted to increase emission rates of certain monoterpenes
(4-carene,p-cymenene, and cyclofenchone) and oxygenated
BVOCs (1,8-cineole, cis-linalool oxide,trans-linalool oxide,
camphene, and borneol) by factors of more than 10. Under
both northern hardwood and upland pine future forest scenar-
ios,α-pinene,β-pinene, limonene, andβ-myrcene were pre-
dicted to each contribute greater than 5 % to the total BVOC
emissions at night.

Isoprene was predicted to reach an afternoon maxi-
mum concentration of∼ 2 ppb at ∼ 12 m above the for-
est canopy, compared to current predicted maximum of
∼ 3.6 ppb (base emission scenarios). Average daily total
monoterpene, sesquiterpene, and other BVOC concentra-
tions, at∼ 12 m above the forest canopy, ranged from ap-
proximately 89–153, 8–9, and 23–40 ppt, respectively (com-
pared to∼ 92, 5, and 19 ppt, respectively, for the current
simulations). Due to the reduced isoprene concentrations,
and therefore reduced total BVOC concentrations, the total
biogenic organic nitrate concentration was predicted to de-
crease in the afternoon by 35–40 % at∼ 12 m above the for-
est canopy (Fig. S9). While isoprene nitrate concentrations
were predicted to decrease by∼ 46 %, the concentrations of
organic nitrate derived from monoterpenes, sesquiterpenes,
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and other BVOCs increased in the late afternoon by factors of
∼ 4–5, 2–3, 6–11, respectively. These are likely lower limit
changes for the monoterpenes and their oxidation products,
as it does not take into account other climate changes, such as
increasing ambient temperatures and elevated CO2 (Pẽnuelas
and Staudt, 2010).

4 Conclusions

The fate of the 57 individual BVOCs locally emitted from
the mixed forest in northern Michigan and their role in or-
ganic nitrate formation in the lower troposphere was investi-
gated. In order to obtain a first estimate of detailed organic ni-
trate formation from speciated compounds, atmospheric pro-
cesses were simplified. BVOC emission rates are difficult to
determine due to tree-to-tree variability and sampling chal-
lenges during branch enclosure BVOC emission measure-
ments (e.g., Ortega et al., 2008), leading to large ranges in
estimated production rates, shown here to result in a range
of oxidation product concentrations. In the future, improved
canopy-level flux measurements of speciated monoterpenes,
such as those recently completed by Edwards et al. (2012) at
UMBS, will improve modeling of individual monoterpenes
at the canopy level.

During the daytime at∼ 12 m above the forest canopy,
simulated isoprene-OH reactions comprised up to 82 % of
simulated primary organic nitrate production. In the after-
noon, when vertical mixing and isoprene nitrate production
were highest, the simulated contribution of isoprene-derived
organic nitrates was greater than 90 % at all altitudes, with
the concentration of secondary isoprene nitrates increasing
with altitude. In addition, NO3 reactions led to a high sim-
ulated fractions of primary isoprene nitrates, ranging from
∼ 9 % during mid-day at∼ 12 m above the forest canopy to
∼ 58 % at night; thus, the individual products and fates of
isoprene-NO3 reactions need to be studied in detail to ex-
pand upon the work of Perring et al. (2009b) and Rollins et
al. (2009) and improve our understanding of this pathway.
In general, the contributions of secondary isoprene nitrates
and nitrates formed from first generation isoprene oxidation
products increased with altitude and time of day; however,
the formation and removal of these species are poorly under-
stood due to few studies and should be the focus of future
laboratory investigations.

At ∼ 12 m above the forest canopy, simulated
monoterpene-NO3 reactions comprised up to∼ 83 %
of primary organic nitrate production at night, resulting in
major contributions to the total simulated biogenic RONO2
in the early morning. In particular, the formation of organic
nitrates from reactions ofγ -terpinene, limonene,α-pinene,
cis-ocimene, sabinene,β-pinene, and isoprene with NO3
each contributed greater than 5 % to the total simulated
biogenic organic nitrate production at night. However, the
organic nitrate yields for reactions of NO3 with many sig-

nificant BVOC precursors, includingγ -terpinene, sabinene,
cis-ocimene, α-thujene, andβ-myrcene, have not been
measured, lending uncertainty to the simulations. Also, the
rate constants corresponding to the reactions ofα-thujene
and α-farnesene with NO3 have not been measured, and
these reactions are estimated to contribute up to∼ 3 % and
∼ 5 %, respectively, of primary organic nitrate production
each at night at∼ 12 m above the forest canopy. Likewise,
the NO3 reaction rate constants have not been measured
for most sesquiterpenes and oxygenated BVOCs emitted at
UMBS. The contribution of NO3 reactions to the formation
of isoprene nitrates and terpene nitrates is expected to
be even greater in the southeastern United States, which
is impacted by higher BVOC emissions and higher NOx
concentrations, similar to the observations for OH-produced
isoprene nitrates (Grossenbacher et al., 2004). In addition,
laboratory experiments should focus on detailed studies
of organic nitrates formed via reactions of limonene with
NO3, γ -terpinene with NO3, and trans-ocimene with
OH given their predicted significant contribution to total
organic nitrates. Further, forest succession was predicted to
lead to significantly increased afternoon concentrations of
monoterpene-derived organic nitrates, underscoring the need
to better understand the formation and fate of these species,
which can lead to secondary organic aerosol formation (e.g.,
Fry et al., 2009, 2011; Rollins et al., 2009).

Organic nitrates serve as reservoirs of NOx, impacting
ozone production (both locally and downwind), the oxida-
tive capacity of the atmosphere (impacting trace gas re-
moval and secondary organic aerosol formation and process-
ing), and nitrogen availability to ecosystems. Since horizon-
tal advection accounted for∼ 52 % of nitrate loss in the
simulations, the local formation of biogenic RONO2 is ex-
pected to impact downwind atmospheric chemistry and de-
position processes; estimates suggested significant NO2 re-
lease downwind, due to decreases in isoprene nitrate con-
centrations alone over the course of one day of transport.
The relative concentrations of OH-produced primary iso-
prene nitrates changed significantly at night depending on
their removal rates via reaction with NO3, the rate con-
stants for which were calculated to span a large range, from
4.56× 10−14 to 4.81× 10−12 cm3 molec−1 s−1 (Pfrang et
al., 2006). These rate constants need to be measured to ver-
ify and improve the prediction of this nighttime removal.
Since the speciated isoprene nitrates have been measured in
the laboratory, and in some cases in the field, it should be
possible to achieve closure on the total RONO2 budget at
this isoprene-dominated site, given the major contributions
of isoprene nitrates to the total simulated biogenic [RONO2]
at UMBS. Given the relatively low measured NOx conditions
at UMBS (average [NO] = 67 ppt; average [NO2] = 1.2 ppb),
and therefore low propensity toward organic nitrate forma-
tion, the formation and downwind transport of biogenic or-
ganic nitrates formed in areas of higher NOx emissions (e.g.,
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southeastern United States (Fiore et al., 2005)) are expected
to significantly impact downwind atmospheric composition.

Supplementary material related to this article is
available online at:http://www.atmos-chem-phys.net/12/
10125/2012/acp-12-10125-2012-supplement.pdf.
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