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Abstract. The scheme to propagate correlations between on-
line and off-line state variables in atmospheric inversions us-
ing the fixed-lag Kalman smoother proposed inBruhwiler
et al. (2005) is explained as a process to impose a balanced
constraint on the on-line state variables. It is then extended
to the fixed-lag ensemble square root Kalman smoother and
fixed-lag square root sigma-point Kalman smoother, allow-
ing us to treat nonlinear observation operators easily. Further,
to constrain the posterior fluxes within their feasible ranges,
the constrained fixed-lag Kalman smoother is presented and
the variable transform technique is proposed for the other two
smoothers. Comparisons between various methods and ob-
servational data are conducted using a synthetic inversion of
atmospheric CH4 fluxes. The results indicate that our devel-
oped methods are good alternatives to existing methods for
conducting sequential inversion of atmospheric trace gases.
It is also shown that the benefit to include the correlations be-
tween on-line and off-line state variables is case dependent.

1 Introduction

Closing the budget of various greenhouse gases, such as
CO2, CH4 and N2O, has been an important task in our un-
derstanding of the human-induced climate change. A good
knowledge of the different sources and sinks of these green-
house gases is invaluable to mitigate or avoid the environ-
mental risk due to the increasing atmospheric content of
those trace gases. Atmospheric inversion modeling plays an
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important role in quantifying the sources and sinks of various
trace gases (Enting, 2002). It involves the comparison of for-
ward model simulations from atmospheric transport models
using prior sources and sinks with the spatiotemporally dis-
crete observations. The prior sources and sinks are optimized
by minimizing a cost function defined by the distances be-
tween the forward model simulation and observations (e.g.,
Gurney et al., 2002).

The inversion problem is usually formulated in the form
of Bayesian inference (Tarantola, 2005). In the Bayesian
theorem, the fluxes and their associated error characteristics
that are known as the prior (Pr(s)) and the observations and
their error characteristics that define the likelihood function
(Pr(o | s)) are used to obtain the posterior fluxes (Pr(s | o)) as

Pr(s | o) = C−1Pr(s)Pr(o | s) (1)

whereC is some constant to normalize the posterior dis-
tributions. The Eq. (1) can be solved in the “batch” mode
(Gelb, 1974) that treats all observations simultaneously and
infer all the sources and sinks at the same time. This works
efficiently when the number of observations and the num-
ber of fluxes involved are small. However, as it is often the
case, the “batch” mode is cumbersome to implement when
more observations become available and higher spatiotempo-
ral resolution fluxes are to be inverted. Other methods, e.g.
the fixed-lag Kalman smoother (KS), adjoint-based nonlin-
ear optimization method, and the fixed-lag ensemble Kalman
smoother, have been used to overcome the difficulties found
in the “batch” inversion technique (e.g.,Hartley and Prinn,
1993; Houweling et al., 1999; Bruhwiler et al., 2005; Peters
et al., 2005). These various methods have proven to be effi-
cient in solving the well-configured problems in their studies.
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Among these methods, the fixed-lag KS has been used
in a number of studies (e.g.,Hartley and Prinn, 1993;
HaasLaursen et al., 1996; Bruhwiler et al., 2005; Michalak,
2008), because of its easiness to implement and its efficiency
to assimilate observations sequentially. The fixed-lag KS was
developed based on the fact that the signal of a certain flux
at a given time period in a given region will be fully blended
into the background field, such that no useful information
will be extracted from the observations after a sufficient time
of transport of the flux (Hartley and Prinn, 1993; Bruhwiler
et al., 2005).

Bruhwiler et al.(2005) noted that the conventional imple-
mentation of fixed-lag KS treats the fluxes that are no longer
estimated as if they are exact, even with known uncertainties.
They recommended to use correlations between the on-line
state variables (fluxes that are still under optimization) and
the off-line state variables (fluxes that are no longer updated)
to improve the posterior fluxes. They showed by propagat-
ing such correlations with the fixed-lag KS, superior results
to those from inversions without considering such correla-
tions can be obtained in their CO2 inversion experiments.
Bruhwiler et al.(2005) derived the correlation propagating
scheme as a correction to the prior covariance of the on-line
state variables before assimilating the atmospheric observa-
tions.

In this note, we put their derivation of the correlation prop-
agating scheme into a more general context, by showing that
the correlations between the on-line and off-line state vari-
ables effectively act as a special type of observational con-
straint without measurement error. This makes it possible to
extend the correlation propagation scheme to the ensemble
methods directly. We then extend the fixed-lag KS inBruh-
wiler et al.(2005) to two ensemble-based methods, the fixed-
lag ensemble square root Kalman smoother (ESRKS) and
the fixed-lag square root central difference Kalman smoother
(SRCDKS). We apply the new developments to an atmo-
spheric inversion problem of CH4 fluxes, and show the new
developments are good alternatives to the fixed-lag KS in
solving the atmospheric inversion problem. In addition, in
our use of these three methods, we find that some of the in-
verted fluxes could have non-realistic values, i.e., either too
large or even negative because of the ill-posedness of the in-
version problem or insufficient constraints on the fluxes to be
inverted compared to that in the linear batch inversion. Solu-
tions to avoid such spurious inversions are provided with the
three methods.

In Sect. 2.1, we introduce the inversion problem and its
lagged-form. In Sect. 2.2, we show that the correlation prop-
agation scheme between the off-line and online state vari-
ables is an effective way to impose a balanced constraint on
the on-line state variables. We extend the development to the
fixed-lag ESRKS in Sect. 2.3 and to the fixed-lag SRCDKS
in Sect. 2.4. Techniques to impose interval constraint are pre-
sented in Sect. 2.5. The designation of the synthetic inversion
experiment is described in Sects. 2.6 and 2.7. Results and

discussions are made in Sect. 3, followed by a conclusion of
findings in Sect. 4.

2 Methods

2.1 The inversion problem and its lagged-form

z = Hs +v (2)

wherez is the vector of observations,s is the vector of sinks
and sources,H is the sensitivity matrix that maps the fluxes
into the measurement space, andv is the uncertainty of the
approximated observationsHs with respect to the real obser-
vationz.

The aim of Bayesian inversion is to solve fors in Eq. (2)
using the Bayes theorem Eq. (1), by assuming variablesz, s

andv as random variables with certain probability distribu-
tions.

In the lagged form, the forward equation Eq. (2) is

zJ =
[
HJ,J HJ,J−1 ··· HJ,1

][
sT
J sT

J−1 ··· sT
1

]T

+v (3)

= [Hu Hv]
[
sT
u sT

v

]T

+v (4)

wheresu is the vector of on-line state variables defined by
fluxes that are still in estimation, from timeJ back to time
J −L+1, andsv is the vector of off-line state variables de-
fined by fluxes that are no longer updated, from timeJ−L

back to time 1. The observation operatorsHu and Hv are
defined accordingly forsu andsv.

2.2 A revisit of the Kalman smoother

The posterior distribution of the fluxess+
u is

p(s+
u |s+

v ,z) =
p(z|s−

u ,s+
v )p(s−

u |s+
v )p(s+

v )∫
p(z)dz

(5)

where superscript− means the prior forecast, and superscript
+ indicates the posterior inference.

Sinces+
v is no longer estimated, it holds thatp(s+

v ) is con-
stant, which leads to

p(s+
u |s+

v ,z) =
p(z|s−

u ,s+
v )p(s−

u |s+
v )∫

p(z)dz
(6)

For the special case when normal distributions are as-
sumed for the state variables and observations, the posterior
distribution ofsu is

p(s+
u |s+

v ,z) = CN
(
z−Hus

−
u −Hvs

+
v ,R

)
N

([
s+T
u −s−T

u ,s+T
v −s+T

v

]T

,Q
)

= CN
(
z−Hus

−
u −Hvs

+
v ,R

)
×N(s+

u −s−
u ,Qaa) (7)
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where

Q =

[
Q−

uu Quv

Qvu Qvv

]−1

=

[
Q−1

aa Q−1
ab

Q−1
ba Q−1

bb

]
(8)

Qaa = Q−
uu −QuvQ−1

vv QT
uv (9)

andN(a,B) means a multi-dimensional normal distribution
with meana and covarianceB. C is a normalization constant.
Quu is the covariance of the on-line state variables,Qvv is
the covariance of the off-line state variables, andQuv is the
correlation matrix between the on-line and off-line state vari-
ables.Qbb, andQab are defined exactly as the Eqs. (22–23)
in Bruhwiler et al.(2005).

The Kalman update ofs+
u is then

s+
u = s−

u +Ku

(
z−Hs−

u −Hs+
v

)
(10)

where the Kalman gain is

Ku = PuzQ−1
zz

= QaaHu
T
(
R+HuQaaHu

T
)−1

(11)

wherePuz is the correlation matrix between the state vari-
ables su and the measurementz defined as the product
QaaHT

u , andQzz is the total error covariance of the measure-
ment with respect to the forecast defined as

(
R+HuQaaHT

u

)
.

For the posterior covarianceQ+
uu of s+

u , we require it as
close as possible to that derived when bothsu andsv are up-
dated withz. Therefore, using the Kalman smoother update
of the posterior covariance of the full state variables,

Qa = Q−KHQ

=

[
Q−

uu Quv

Qvu Qvv

]
−KH

[
Q−

uu Quv

Qvu Qvv

]
(12)

we obtain

Q+
uu = Q−

uu −K1H
[

Q−
uu

Qvu

]
= Q−

uu −K1
(
Ps

uz

)T (13)

where

K1 =
[
Q−

uu,Quv

]
HT

(
R+HQHT

)−1
(14)

H≡[Hu, Hv], and Ps
uz is the correlation between the full

state variables
[
sT
u ,sT

v

]T
and the measurementz.

It can be proved the above formula forQ+
uu is equivalent

to the formula given inBruhwiler et al.(2005) (their Eq. 25).
An alternative derivation for the above formulae is avail-

able when viewingsv as a special type of measurement. De-
fine a measurement operatorHvu, such that

sv = Hvusu +ε (15)

Qvv = HvuQuuHT
vu (16)

Quv = QuuHT
vu (17)

whereε is a random variable with distributionN
(
o,

√
γ I

)
,

with γ ≈ 0 (a small positive number). Therefore, using the
Kalman update we have

Therefore, using the Kalman update we have

s−
u

′
= s−

u +Quv (Qvv +γ I)−1(
sv −Hvus

−
u

)
(18)

Thence, in the limitγ ≈ 0, E
(
s−
u

′
)

= E
(
s−
u

)
. Further invok-

ing the Kalman update of covariance, it can be shown that the
covariance ofs−

u
′ is defined by Eq. (9). Now, it is clear that

the correlation between on-line and off-line state variables
effectively acts as a balanced constraint on the on-line state
variables. It indeed helps to reduce the background covari-
ance before the measurement data are used to constrain the
on-line state variables, but makes no update of the prior mean
E

(
s−
u

)
. The assimilation equation is still Eq. (10), and the fi-

nal update of covariance matrix is Eq. (13). This alternative
derivation more clearly shows that the covariance correction
Eq. (9) is necessary in order to sufficiently constrain the on-
line state variables. In addition, the new derivation provides a
way to assimilate the unusual correlation information (which
corrects the covariance of the on-line state variables) to im-
prove the inversion.

2.3 Further development of the ensemble square root
Kalman smoother

A detailed description of the ensemble square root Kalman
filter can be found inTippett et al.(2003). We here give only
the steps needed in our study. According to Eq. (18), before
assimilating the observations, an adjustment to the scaled
ensemble perturbations from the evolution of the forecast
model should first be carried out to assure that the correla-
tion is properly accounted for. One possible implementation
of such adjustment is

S−

u,1 = S−
u −QuvQ−1

vv Sv (19)

Then the ensemble mean is updated with Eq. (10), while
the Kalman gain is computed as

Ku = S−

u,1V1

(
R+VT

1 V1

)−1
(20)

whereV1≡

(
HuS−

u,1

)T

.

The scaled ensemble perturbations for next evolution cycle
are

S+
u = S−

u X2U2 (21)

where

X2XT
2 =

[
I −V2

(
VT

2 V2+R
)−1

VT
2

]
(22)

whereV2≡
(
HS−

)T , with H = [Hu,Hv], S−
=

[
S−T

u , S+T
v

]T
and U2 is an arbitrarym×m orthogonal matrix.X2 is the
square root matrix of the above equation. The posterior co-
variance is

Q+
uu = S+

u S+T
u (23)
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2.4 Further development of the sigma-point square root
central difference Kalman smoother

The fixed-lag sigma-point Kalman smoother deterministi-
cally samples a group of points in the state variable space
for the ensemble simulations (Ambadan and Tang, 2009;
Van der Merwe, 2004). It is derivative free in assimilat-
ing the measurements (Nørgaard et al., 1998). The sigma-
point Kalman smoother is accurate up to second order in es-
timating mean and covariance (Julier and Uhlmann, 2004;
Nørgaard et al., 1998). Among the several different choices,
we use the square root form of the central difference Kalman
smoother for this study. Also, we assume the measurement
and model errors are additive, which greatly reduces the
computation requirements, while resulting in little loss of ac-
curacy compared to the complete forms presented elsewhere
(e.g., Nørgaard et al., 1998). The SRCDKS uses a set of
sigma points of size 2L1 + 1 derived from the distribution
defined by Eq. (7) to approximate the dynamic system,

S−
u =

 s−
u , i = 0

s−
u +h2a,i, i = 1,···,L1

s−
u −h2a,i, i = L1+1,···,2L1

(24)

whereh is a scaling parameter of value
√

3 to make the ap-
proximation with second order accuracy, and

2a =

[√
Qaaq(L1)

,
√

Qaaq(L1)

]
(25)

whereq(L1) means takingL1 columns of
√

Qaa with some
specific criterion, which is detailed in the end of this section.

The predicted mean of the measurement is then

z =

i=0∑
i=2L1

w
(m)
i zu,i (26)

w
(m)
0 =

h2
−L1

h2
, w

(m)
i =

1

2h2
, i = 1,···,2L1 (27)

wherezu,i means the measurement variable calculated with
sigma points−

u,i .
The correlation matrix between state variables and mea-

surement is

Pu
uz =

√
Qaaq(L1)

CT
1,1:n (28)

and the Kalman gain is

Ku = Pu
uzQ

−1
zz (29)

with

Qzz = C1CT
1 +C2CT

2 +R (30)

and

C1,i = w
(c)
1 (zu,i −zu,L1+i), i = 1,···,L1 (31)

C2,i = w
(c)
2 (zu,i +zu,L1+i −2zu,0), i = 1,···,L1 (32)

w
(c)
1 =

1

2h
,w

(c)
2 =

√
2h2−1

2h2
(33)

The mean state is updated as

s+
u = s−

u +Ku(z−z) (34)

The posterior covariance is updated by making use of the
full state variables, whose sigma points are represented as

Su,v =


s−
u,v, i = 0

s−
u,v +h2i, i = 1,···,L2

s−
u,v −h2i, i = L2+1,···,2L2

(35)

wheres−
u,v=

[
s−T
u ,s−T

v

]T
, and

2 =

[√
Q−

ssq(L2)
,

√
Q−

ssq(L2)

]
(36)

whereq(L2) means takingL2 columns of
√

Q−
ss with some

specific criterion (see the last paragraph of this section).

Q−
ss =

[
Q−

uu Quv

Qvu Qvv

]
(37)

The correlation matrix between the full state variables and
observations, and the Kalman gain are computed in a similar
way as for the mean update step, except that only theu com-
ponents that are related to the on-line state variables are up-
dated. The posterior covariance is computed using Eq. (13).

We now give the method to specifyq(L1) andq(L2). In
the original formulation of the sigma-point Kalman filter (see
e.g.,Van der Merwe, 2004), the total number of sigma points
is chosen equal to 2L+1, whereL is the total dimension of
the problem, including the dimension of the state variables,
the dimension of measurements and the dimension of process
noise of the forecast model. For high dimensional systems,
as often found in inversion, such formulation would require
tremendous computation. For instance, for a lag length of 6
and a total number of 62 measurement site in this study, the
total dimensionL would be 195(= 19×6+19+62), with-
out model noise being accounted for. Even by assuming ad-
ditive error between the model and measurement,L is 133,
which means 267 sigma-points are needed to propagate the
state variables. So to reduce the computation burden, only
a subset of the total sigma points is chosen to propagate the
system. Those sigma points are chosen such that they are
closest to the error sub-space that is spanned by the dominant
eigen vectors of the error space. In implementation, the error
sub-space is formed using the principal component analysis
(Smith, 2002).

2.5 Dealing with interval constraint

When implementing our developed methods in inversion, we
find some of the inverted fluxes is negative or of extremely
large values. The following techniques are used to impose
the interval constraint to overcome this problem. Since the
KS can only deal with linear operators, we use the projec-
tion operator method (Simon and Chia, 2002) to impose the
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constraint. After inversion using the unconstrained formula
in Sect. 2.2, the following minimization problem is solved

J2 =
(
s++
u −s+

u

)T (
Q+

uu

)−1(
s++
u −s+

u

)
lbu ≤ s++

u ≤ ubu (38)

We use the method associated with the concept of active
set (Murty, 1988) to solve the above optimization problem it-
eratively. Specifically, before each iteration, we first identify
the set of variables (sayw(s)) that violate the interval con-
straint. This would give equality constraint of those variables

c
(
s++
u

)
= o (39)

wherec is a linear operator to impose the proper constraints.
Then the problem of Eqs. (38) and (39) is solved using the

Kalman update

s++
u = s+

u −Q+
uucT (cQ+

uucT )−1(c(s+
u )) (40)

Q++
uu = Q+

uu −Q+
uucT (cQ+

uucT )−1cQ+
uu (41)

After one iteration, if there are still (usually fewer) vari-
ables violating the constraint, the above iteration is repeated
until all constraints are satisfied.

For the ESRKS and the SRCDKS, the following variable
transform is used to impose the constraint

y = lb+

(
0.5+

atan(x)

π

)
(ub− lb) (42)

The above transform ensures the variabley will always fall
within the range(lb, ub). In the inversion, the state variable
is defined as a vector containing the scaling factors of the
flux adjustments defined with respect to the prior fluxes. The
posterior fluxes are thus the sum of prior fluxes and their ad-
justments. The constraints are imposed by letting the scaling
factors fall in the range [−0.95, 2.0] for all the flux adjust-
ments, except for that of the stratospheric destruction, which
is set to [−0.2, 0.2].

2.6 GEOS-Chem model and sensitivity matrix

To test our developed methods, we use the CH4 forward
transport simulations from an atmospheric transport model
GEOS-Chem (Bey et al., 2001; Wang et al., 2004) to de-
rive the elements of the sensitivity matrixH. GEOS-Chem
is a global 3-D offline transport model developed in the at-
mospheric chemistry group at Harvard University. The ver-
sion used in this study is based on v8-01-03 (http://www.
as.harvard.edu/chemistry/trop/geos), with proper modifica-
tions to transport CH4. The model is driven by meteorolog-
ical data assimilated by the Goddard Earth Observing Sys-
tem (GEOS) at the NASA Global Modeling and Assimila-
tion Office (GMAO) (Bey et al., 2001). An evolution of dif-
ferent versions of GEOS assimilated meteorology data from
GEOS-1 to most recent GEOS-5 are used in GEOS-Chem
simulations. In this study, we use the GEOS-5 meteorology

Fig. 1. Map of measurement sites involved in the inversion exper-
iments. The blue shaded region is used to compare the inverted
wetland CH4 flux by the different methods.

data. The horizontal resolution of the simulation is 4◦ longi-
tude by 5◦ latitude, with 47 hybrid eta levels in the vertical
direction that extends from 1000 hPa at surface to 0.01 hPa at
top.

The surface fluxes are organized into two categories. The
seasonal fluxes, i.e. the first category fluxes, vary month
by month and the aseasonal fluxes, i.e. the second category
fluxes, keep constant throughout the inversion period. For
seasonal fluxes, 1 Tg CH4 is emitted in one month and is then
shut down and allowed to decay until the end of forward sim-
ulation. For aseasonal fluxes, 1 Tg CH4 month−1 is emitted
in a year and is then shut down and allowed to decay until the
end of forward simulation. We sample the responses to the
emissions at the site-locations involved in the globalview-
CH4-2009 product (GLOBALVIEW-CH4, 2009). The for-
ward simulation is done from 1 January 2004 to 1 January
2010, totally 6 yr. We choose a subset of 62 measurement
sites (Fig.1) to form the observational network. Therefore,
for every month, the sensitivity matrix is of maximum size
38×62 in our study. The maximum overall size ofH for a
“batch” inversion is thence (19× 72 + 19)×(62× 72), which
is much larger than that involved in the fixed-lag inversions.

2.7 Implementation and comparison experiments

The different methods are coded with Fortran 95. The linear
algebra is done with publicly available packages of BLAS
and LAPACK from the Intel Math Kernel Library version
10.3.

Comparisons are made for an ideal inversion problem with
known true values of the fluxes. The synthetic observations
are sampled at 62 sites (GLOBALVIEW-CH4, 2009) (Fig.1).
To quantify the uncertainty in model simulations when com-
pared to globalview measurements, the relative residual error
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Fig. 2. Inversion results from the interval unconstrained inversion
using different methods. A lag length of 7 and a correlation length
of 0 are used for all Kalman update smoothers. The ensemble size
for ESRKS is 500, and that for SRCDKS is 101. The red lines are
the linear regressions of the inversions against the true fluxes.

(RRE) are derived for time series at each sample location
by comparing a reference run with the globalview CH4 data.
The RREs are different from January to December and are
assumed of no interannual variability. These RREs are then
used to derive the uncertainty (one-σ error) at different sam-
pling locations for the given temporal domain. The obser-
vations are finally obtained by perturbing the sampled time
series with the deduced one-σ error. The prior fluxes for the
inversion are perturbed randomly from the true fluxes, and
are used to run a prior simulation to sample the prior CH4
concentrations at the measurement sites.

3 Results and discussions

Inversions using different lag lengths for the different
Kalman update smoothers are shown in Table1 and Fig.2.
It is found a lag length 6 is enough to obtain stable inver-
sions, and inversions with a lag length 7 are conducted for the
comparisons. Results from a linear batch inversion and those
from the KS, ESRKS and SRCDKS with a lag length 7 are
compared in Fig.2. Due to the ill-posedness of the inversion
problem, we find that all the inversions are not able to fully
reveal the true fluxes. Some unreasonable negative fluxes are
found in all inversions, due to the insufficient observational
constraint. This justifies the necessity of using some method
to impose the interval constraint on the posterior fluxes.

Posterior fluxes and their uncertainties obtained from the
interval unconstrained inversions using different months of
correlations are compared at the selected region for a two-
year period in Fig.3. For the KS, differing from the re-
sults inBruhwiler et al.(2005) andMichalak(2008), we find

Table 1. Inversion results using different lag lengths without tak-
ing correlations into account. All statistics are tested for statisti-
cal significance withp < 0.001. The first value in the brackets is
the root mean square error of the inversion; the second value is the
R2 value of the linear regression. The regressions are the posterior
fluxes against the true fluxes. The SRCDKS is implemented with
the reduced set of sigma points chosen using the PCA method. No
interval constraint is imposed for the inversions.

Methods Lag=6 Lag=8

KS 0.88x+0.20 (0.80, 0.83) 0.89x+0.20 (0.80, 0.83)
ESRKS-500 0.88x+0.21 (0.79, 0.84) 0.88x+0.22 (0.80, 0.83)
SRCDKS 0.87x+0.22 (0.83, 0.82) 0.87x+0.22 (0.82, 0.82)
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Fig. 3. Two-year comparison of the posterior fluxes and posterior
uncertainties between inversions using the different Kalman update
smoothers and those from the linear batch inversion. Results from
the linear batch inversion have been subtracted from the time series
for a better illustration. The ensemble size for ESRKS is 500, and
that for SRCDKS is 101. None of the Kalman type smoothers uses
interval constraints.

that the incorporation of correlations between on-line and
off-line state variables does not improve the inverted fluxes
and their posterior uncertainties appeared even smaller when
compared to the batch inversion. Including more months of
correlations further reduce the posterior uncertainty. Such
results are explained by the ill-posedness of the problem. In
the linear batch inversion, we find the inversion failed when
the state variable is updated using Eq. (11), and the covari-
ance is updated using Eq. (13). So their equivalent forms
(e.g. Eqs. (12–13) inBruhwiler et al., 2005) derived using
the Sherman-Morrison-Woodbury identity are used in the
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Fig. 4. Inversion results from the interval constrained inversion us-
ing different methods. A lag length of 7 and a correlation length of
0 are used for all Kalman update smoothers. The ensemble size for
ESRKS is 500, and that for SRCDKS is 101. The red lines are the
linear regressions of the inversions against the true fluxes.
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Fig. 5. Two-year comparison of the posterior fluxes and posterior
uncertainties between inversions using the different Kalman update
smoothers. The true fluxes have been subtracted from the time se-
ries for a better illustration. The ensemble size for ESRKS is 500,
and that for SRCDKS is 101. Interval constraints are applied for all
Kalman update smoothers using the different algorithms described
in the text.

computation to ensure the numerical stability. For ESRKS,
the inclusion of one month of correlations slightly degrades
the inversion. Including more months of correlations does
improve the inversion when compared to the true fluxes and
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Fig. 6. Two-year comparison of the posterior fluxes and poste-
rior uncertainties between inversions using the different ensemble
Kalman update smoothers. The true fluxes have been subtracted
from the time series for a better illustration. The ESRKS in panels
(a) and(b) uses an ensemble size 400, and uses an ensemble size
600 in(c) and(d). The SRCDKS in panels(e)and(f) uses a ensem-
ble size 305. Interval constraints are applied for all inversions using
the variable transform algorithm described in the text.

reduces the posterior uncertainty. The results from includ-
ing six months of correlations are even better than that from
the linear batch inversion. The inclusion of correlations does
not affect the inversion result much when the SRCDKS is
used. This is explained by the fact that better approximations
of the covariance matrices are obtained by the SRCDKS be-
cause of its second order accuracy when the Gaussian error
is assumed. Also the information that can be extracted from
the approximated correlation matrix provides much less con-
straint on the on-line state variables than the observations.
Therefore, we conclude that the benefit from including cor-
relations between the on-line and off-line state variables de-
pend on the property of the problem to be solved. While in
the carefully designed problems inBruhwiler et al.(2005)
and Michalak (2008), the correlation propagation is useful
to further constrain the inversion. For the problems in this
study, little or no benefit is obtained from the inclusion of the
correlations between the on-line and off-line state variables.

Since the interval unconstrained inversions could produce
some unphysical results, the interval constrained inversions
are conducted using the three Kalman update smoothers. The
results are compared with the true fluxes in Fig.4, Fig.5 and
Table2. After applying the interval constraint, we find all
negative fluxes are corrected into the reasonable range. The
impact of inclusion of the correlations between the on-line
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Table 2. Inversion results using different correlation lengths (CL) with the lag length equals to 7. All statistics are tested for statistical
significance withp < 0.001. The first value in the brackets is the root mean square error of the inversion; the second value is theR2 value
of the linear regression. The regressions are the posterior fluxes against the true fluxes. Interval constraints are applied using the methods
described in the text. The SRCDKS is implemented with the reduced set of sigma points chosen using the PCA method.

Methods CL=0 CL=1 CL=3

KS 0.89x+0.16 (0.79, 0.83) 0.89x+0.16 (0.80, 0.83) 0.88x+0.17 (0.82, 0.83)
ESRKS-500 0.85x+0.15 (0.82, 0.83) 0.85x+0.17 (0.80, 0.84) 0.85x+0.17 (0.81, 0.84)
SRCDKS 0.85x+0.12 (0.85, 0.83) 0.84x+0.13 (0.86, 0.82) 0.84x+0.13 (0.85, 0.83)

Table 3. Inversion results using different correlation lengths (CL) with the lag length equals to 7. All statistics are tested for statistical
significance withp < 0.001. The first value in the brackets is the root mean square error of the inversion; the second value is theR2 value
of the linear regression. The regressions are the posterior fluxes against the true fluxes. Interval constraints are applied using the variable
transform method described in the text. The SRCDKS is implemented with the full set of sigma points determined by the error covariance
matrix of the state variables.

Methods CL=0 CL=1 CL=3

ESRKS-400 0.86x+0.14 (0.79, 0.84) 0.85x+0.17 (0.81, 0.84) 0.85x+0.17 (0.80, 0.84)
ESRKS-600 0.86x+0.15 (0.80, 0.84) 0.85x+0.17 (0.80, 0.84) 0.85x+0.17 (0.81, 0.84)
SRCDKS-full 0.86x+0.17 (0.78, 0.85) 0.87x+0.16 (0.77, 0.85) 0.87x+0.15 (0.77, 0.85)

and off-line state variables again differs among the inver-
sions using different methods. For the interval constrained
KS, the inclusion of correlations degrades the inverted pos-
terior fluxes. However, for ESRKS and SRCDKS, the in-
clusion of correlations does not affect the posterior fluxes
significantly (Table2). Including more months of correla-
tions in KS does not change the posterior uncertainty of the
fluxes significantly because of the numerical noise in the im-
plementation. With the ESRKS, more months of correlations
reduces the posterior uncertainty for the selected fluxes at the
specific time period. In contrast, with the SRCDKS, the in-
clusion of correlations increases the posterior uncertainty and
the inversion is not significantly dependent on the number of
months that are used to propagate the correlations (Fig.5).

For the ensemble filters ESRKS and SRCDKS, we test the
impact of ensemble size on the inversions (Fig.6 and Ta-
ble 3). When the ESRKS is implemented with an ensemble
size 400, the inverted posterior fluxes have a slightly worse
linear fitting against the true fluxes when compared to that
from the inversion using an ensemble size 500 (Table2).
Increasing the ensemble size to 600, the inversion changes
slightly. Therefore 500 is a proper ensemble size to obtain
a good inversion with ESRKS. The inclusion of correlations
between on-line and off-line state variables impacts the re-
sults more when the ensemble size is smaller. This is because
of the insufficient approximation of the correlations for the
inversion using a smaller ensemble size and it tends to de-
grade the inverted fluxes. The posterior uncertainties appear
smaller as the correlation length increases for the inversion.
The uncertainty reduction is most significant by the inclu-

sion of the first month of correlations. For the SRCDKS with
the full set of sigma points determined by the covariance ma-
trix, the inversion provides superior results to that uses sigma
points chosen with the PCA method. In addition, we notice
that the inclusion of correlations in such case increases the
posterior uncertainty for the specific fluxes used in compar-
ison. The inclusion of the first month of correlations again
improves the inversion most (Table3), similar to the finding
in Bruhwiler et al.(2005).

We also repeat the above comparisons using observations
from 151 globalview sites. The results (not shown) are sim-
ilar to the inversions using 62 globalview sites. The linear
batch inversion still results in some negative fluxes and the
inclusion of correlations between on-line and off-line state
variables only affects the posterior fluxes from the Kalman
update smoothers slightly. We conclude that our developed
methods are robust in atmospheric CH4 inversions, irrespec-
tive of the number of sites being used.

4 Conclusions

Propagating correlations between on-line and off-line state
variables is necessary to improve the sequential atmospheric
inversion with the KS proposed in (Bruhwiler et al., 2005).
We show that such correlations act as a balanced constraint
on the on-line state variables. We then extend the correlation
propagating scheme to two different ensemble smoothers.
The extensions are able to account for nonlinearity in the
inversions and impose interval constraints on the inverted
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fluxes easily. The comparison studies indicate the new meth-
ods are good alternatives to existing methods in inverting
fluxes of trace gases (e.g., CO2 and CH4) using atmospheric
measurements. The methods are potentially useful to solve
very high dimensional inversion problems.
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