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Abstract. An analysis of cloud overlap based on high tempo-
ral and vertical resolution retrievals of cloud condensate from
a suite of ground instruments is performed at a mid-latitude
atmospheric observation facility. Two facets of overlap are
investigated: cloud fraction overlap, expressed in terms of a
parameter “α” indicating the relative contributions of max-
imum and random overlap, and overlap of horizontal distri-
butions of condensate, expressed in terms of the correlation
coefficient of condensate ranks. The degree of proximity to
the random and maximum overlap assumptions is also ex-
pressed in terms of a decorrelation length, a convenient scalar
parameter for overlap parameters assumed to decay exponen-
tially with separation distance. Both cloud fraction overlap
and condensate overlap show significant seasonal variations
with a clear tendency for more maximum overlap in the sum-
mer months. More maximum overlap is also generally ob-
served when the domain size used to define cloud fractions
increases. These tendencies also exist for rank correlations,
but are significantly weaker. Hitherto unexplored overlap
parameter dependencies are investigated by analyzing mean
parameter differences at fixed separation distance within dif-
ferent layers of the atmospheric column, and by searching
for possible systematic relationships between alpha and rank
correlation. We find that for the same separation distance the
overlap parameters are significantly distinct in different at-
mospheric layers, and that random cloud fraction overlap is
usually associated with more randomly overlapped conden-
sate ranks.

Correspondence to:L. Oreopoulos
(lazaros.oreopoulos@nasa.gov)

1 Introduction

While conspicuous, full 3-D cloud heterogeneity is gener-
ally ignored in atmospheric research applications. The un-
derlying reasons for doing so include computational expedi-
ency, inability to diagnose or predict the heterogeneity, and
insufficient understanding of how to meaningfully convey its
impact on various atmospheric processes. In particular, al-
though radiative transfer can in principle be accurately per-
formed on a completely described 3-D cloud field, this ca-
pability cannot be trivially extended to Global Climate Mod-
els (GCMs). Thus far no clear pathway has been suggested
to overcome challenges such as the unavailability of infor-
mation on the nature and location of cloud edges, the lack
of knowledge on how to make the resulting 3-D radiation
fields relevant for other model processes, and the associated
computational costs. Still, whereas specification of the hori-
zontal spatial coherence necessary to describe true 3-D cloud
fields appears to be beyond the capabilities of current GCMs,
a goal that seems tenable with present modeling and obser-
vational capabilities is to describe the horizontal and vertical
condensate variability of otherwise plane-parallel clouds us-
ing solely layer probability distributions and vertical correla-
tions. Such an approach will probably be adequate for most
radiative applications.

Recently, the coupling of cloud generators producing hor-
izontal and vertical cloud variability with standard GCM ra-
diative transfer algorithms operating stochastically has been
suggested as a way to bypass direct incorporation of complex
cloud structure in radiation schemes (Pincus et al., 2003).
These cloud generators can also be used for pairing GCM
cloud fields with simulators of instruments with much higher
spatial resolution than the model grid size. To produce re-
alistic one-point statistics of cloud condensate, and therefore
radiation fields, both the horizontal variability and vertical
correlations of cloud fraction and condensate distributions
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need to be realistically described by the generators. This pa-
per addresses the vertical correlations by providing a detailed
examination of their characteristics in a dataset of 2-D distri-
butions of condensate derived from a suite of ground-based
instruments.

Our goal is to understand the features, dependencies, and
intrinsic connections between two aspects of cloud vertical
variability, overlap of cloud fraction and overlap of the hor-
izontal distributions of cloud condensate. Ultimately, when
studies such as this are completed for a more extensive range
of cloud regimes, it may be possible to determine a simple
but robust set of global rules that can be used to generate
modeled clouds that resemble (save for horizontal spatial co-
herence) the original cloud fields and produce similar radia-
tive fluxes and heating rates. While coarser resolution mea-
surements similar to those used here have been previously
analyzed in studies of cloud fraction overlap (from ground or
space), condensate distribution overlap and its relationship
with cloud fraction overlap has not been studied before with
an observationally-based dataset.

2 Dataset, definitions, and overlap metrics

Our overlap analysis relies exclusively on the continuous
baseline microphysical retrieval MICROBASE evaluation
product (Miller et al., 2003) of the Atmospheric Radiation
Measurement (ARM) Climate Research Facility (ACRF),
now part of the US Department of Energy Atmospheric Sys-
tem Research (ASR) Program. The MICROBASE retrieval
algorithm uses a combination of observations from a mil-
limeter cloud radar (MMCR), a ceilometer, a micropulse li-
dar (MPL), a microwave radiometer (MWR), and balloon-
borne sounding profiles to estimate the profiles of liquid/ice
water content (LWC/IWC), liquid/ice cloud particle effective
radius, and cloud fraction. For liquid cloud layers (atmo-
spheric temperatures greater than 273 K) MICROBASE uses
the radar reflectivity-LWC relationship derived by Liao and
Sassen (1994). The LWC profile is vertically integrated to
provide a liquid water path (LWP) which is then linearly
scaled to match the LWP observed by the MWR. For at-
mospheric temperatures below 257 K all water is assumed
to be in the ice phase, and its content is determined using
the radar reflectivity-IWC relationship of Liu and Illingworth
(2000). Between 257 and 273 K water is assumed to exist
in both phases and a linear temperature-dependent partition
of ice/liquid is applied. The radar reflectivities used in the
above relationships come from the Active Remote Sensing
of Clouds (ARSCL) product (Clothiaux et al., 2000). While
particle size retrievals are also performed as part of the MI-
CROBASE algorithm, they are not used in the present study.
Cells that are flagged to have no reflectivity data are identi-
fied in MICROBASE and are discarded from the analysis.

The MICROBASE data of this study are for the South-
ern Great Plains (SGP) ACRF site in Oklahoma, USA

(http://www.arm.gov/sites/sgp). The dataset spans seven
years (2000–2006) and data availability, although not uni-
form, covers all 84 months. The 2-D condensate distribution
is available at a 10 s resolution along the advection path of
the clouds over the instruments, and 45 m vertical resolution
(constrained by the MMCR range gate). For the purposes of
this study, the condensate profiles for each day are divided
into segments that roughly correspond to scales of typical
GCMs. For example, when six segments are used per day,
each segment consists in general of 1440 condensate pro-
files, which correspond to scales of∼150 km assuming typ-
ical wind speeds of 10 m s−1. These 1440-profile segments
are our default choice for the overlap analysis, with 720- and
2880-profile segments used only when we want to highlight
the sensitivity of an overlap metric to the pseudo-spatial ref-
erence scale. Implicitly assuming a one-to-one correspon-
dence between temporal and spatial domains while common
(see for example Hogan and Illingwoth, 2000), is obviously
an approximation. It does not account for changes in wind
speed with time and height, factors that can be more easily
ignored in radar observations from space where the instru-
ment moves at a high speed and in a direction not generally
aligned with that of cloud advection. Our adoption of the
so-called “frozen turbulence” assumption and of a constant
wind speed, while not optimal or fully realistic, is designed
to provide an easier interpretation of our results for GCM
parameterizations.

Our analysis does not distinguish between the liquid and
ice phases, but rather operates on the total water content,
i.e., the sum of LWC and IWC. For our cloud fraction over-
lap analysis we calculate the true combined segment cloud
fractionCt (z1, z2) of a pair of layers separated by distance
1z = z2 − z1 – wherez2 andz1 are the heights of the layer
centers as determined by the vertical resolution of the dataset,
so that1z is always a multiple of 45 m – by counting among
the pairs with cells flagged as having valid (zero or non-zero)
retrievals at both heights those that have non-zero total wa-
ter content at one or both two height levels of interest and
dividing by the total number of such pairs. Individual layer
cloud fractionsC(z1) andC(z2) are calculated by dividing
the number of cloudy (total water content greater than zero)
cells in each layer by the same number of valid profiles as
in the calculation ofCt (z1,z2). From the individual layer
cloud fractions, combined cloud fractions corresponding to
the maximum and random overlap assumption can be calcu-
lated as follows:

Cmax(z1,z2) = max(C(z1),C(z2)) (1a)

Cran(z1,z2) = 1−(1−C(z1))(1−C(z2)) (1b)

Hogan and Illingworth (2000) proposed that the combined
cloud fraction of two layers can be approximated as a
weighted average ofCmax(z1,z2) andCran(z1,z2) according
to:

C(z1,z2) = α(z1,z2)Cmax(z1,z2)+(1−α(z1,z2))Cran(z1,z2) (2)
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WhenCt (z1,z2) is known, as in our case, it can be substi-
tuted in the left hand side of the above equation to obtain
the weighting parameterα(z1,z2), a measure of the prox-
imity of overlap to maximum (exact whenα(z1,z2) = 1) or
random (exact whenα(z1,z2) = 0). Negative values suggest
some degree of minimum overlap (a combined cloud fraction
greater than that of random overlap). Without distinguish-
ing between contiguous and non-contiguous cloud layers, we
calculateα(z1,z2) for our entire dataset for each possible
cloud fraction pair for separation distances ranging from 45
to 12 015 m (1 to 267 layer separations) as long as neither of
the cloud fractions is zero or one. This procedure yields a
very large dataset ofα(z1,z2) values which we then segre-
gate by month. The number of validα(z1,z2) values within
a month over 7 years can exceed 7 million for 150 km seg-
ments. In the following we frequently refer to this parameter
simply as “alpha”.

In a similar fashion, we calculate rank correlations of total
water content as a function of separation distance (see also
Pincus et al., 2005). For layers at heightsz1 andz2, the over-
lapping cloudy cells are identified (i.e., non-zero total water
contents in both layers), and their water contents are ranked
at each height. A linear correlation coefficientr(z1,z2) is
then calculated from the ranksRi(z1) andRi(z2) according
to:

r(z1,z2) =

Ncld∑
i=1

(
Ri(z1)− R̄(z1)

)(
Ri(z2)− R̄(z2)

)
√

Ncld∑
i=1

(
Ri(z1)− R̄(z1)

)2

√
Ncld∑
i=1

(
Ri(z2)− R̄(z2)

)2

(3)

whereNcld is the number of overlapping cells and̄R(z1),
R̄(z2) are the mean ranks of thoseNcld water contents in
the two layers. The rank correlation coefficient expresses
the likelihood water contents of the same relative strength
within their respective layers are aligned in the vertical,
with r(z1,z2) = 1 corresponding to perfect alignment and
r(z1,z2) = 0 corresponding to completely random alignment.

Unlike α(z1,z2) calculations, overcast layers are not ex-
cluded for the rank correlations. It should also be pointed out
that since the overlapping portion changes continuously with
the pairing partner, the part of a specific layer being ranked
is in general different for each rank correlation calculation.
In other words, ranks are calculated anew as dictated by the
common portion of the two layers. The manner in which
water contents align in the vertical can be important for pro-
cesses like radiation. For example, the domain-averaged ra-
diative fluxes differ between a case where all high or low
condensate values are aligned to create pockets of vertically
integrated high or low water paths and a case where a more
random alignment homogenizes the horizontal distribution
of water path (e.g., see Norris et al., 2008). The full dataset
of all possibler(z1,z2) values is derived from MICROBASE
condensate for the period 2000–2006 in a manner similar to
alpha, as described above, including segregation by month.

It has been suggested (e.g., Hogan and Illingworth, 2000;
Pincus et al., 2005; Shonk et al., 2010) that profiles of alpha
and rank correlation can be modeled as inverse exponential
functions

α(h̄,1z) = exp

(
−

1z

Lα(h̄)

)
(4a)

r(h̄,1z) = exp

(
−

1z

Lr(h̄)

)
(4b)

whereLα andLr are decorrelation length scales which can
be viewed as alternate measures of the degree of overlap.
Specifically, large values ofLα indicate proximity to max-
imum overlap, while small values proximity to random over-
lap. Likewise, large values ofLr indicate condensate val-
ues that are highly correlated in terms of relative strength
while small values indicate condensate values whose rela-
tive strength exhibits weak correlation between layers. In
Eq. (4) an explicit dependence of the overlap parameters
and decorrelation lengths on the mean heighth̄ of the atmo-
spheric layer in which they are calculated is assumed. This
is intended to convey the notion that identical separation dis-
tances may give rise to systematically different overlap be-
havior in various vertical locations of the atmosphere where
different cloud formation processes and dynamical charac-
teristics are encountered. One of the drawbacks of inverse
exponential modeling is that negative values of the overlap
parameters cannot be captured (Norris et al., 2008). This
turns out to be a poorer approximation for the condensate
rank correlation, for which negative values are encountered
much more frequently, than alpha. In the analysis that fol-
lows, overlap is discussed both in terms of the overlap param-
eter alpha and the rank correlation as well as in terms of their
respective decorrelation lengths. Decorrelation lengths offer
the convenience of a simple scalar representation of overlap,
while alpha and rank correlation arrays contain more details
on the potentially complex full dependence on layer height
pairs (z1,z2).

3 Overlap characteristics at the SGP ACRF site

3.1 Seasonal cycle of overlap parameters and
their decorrelation lengths

To derive the monthly profiles ofα(1z) andr(1z) we cal-
culate the ensemble average for each month all values of
α(z1,z2) andr(z1,z2) that have the same separation distance
1z. The number of values that enter this calculation de-
creases monotonically with separation distance. For now, we
do not distinguish between1z’s at different levels of the at-
mosphere, although we will examine this dependence later.
The monthly values can be further averaged to seasonal aver-
ages for winter (DJF), spring (MAM), summer (JJA) and fall
(SON). Figure 1 shows seasonal averages of alpha and Fig. 2
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Fig. 1. Profiles of seasonal ensemble means (left panels) and stan-
dard deviations (right panels) of the overlap parameter alpha as a
function of layer separation distance calculated from the 7-year MI-
CROBASE dataset. Top panels are for the 150 km segment size
and all four seasons: December-January-February (DJF, winter),
March-April-May (MAM, spring), June-July-August (JJA, sum-
mer), September-October-November (SON, fall). Bottom panels
are for different segment sizes for JJA.

shows seasonal averages of rank correlation; the profiles of
standard deviation for both quantities are also provided in
separate plots. The figures show both the seasonal depen-
dence for a given segment size (150 km) and the dependence
on segment size for a given season (JJA was chosen–the de-
pendence is similar for other seasons). As clarified earlier,
the three segments sizes, 75, 150, 300 km, should not be con-
sidered as actual segment spatial scales, but as being roughly
equivalent to a fixed number of 720, 1440, and 2880 conden-
sate profiles.

In the analysis that follows, we will focus mainly on the
description of the characteristics of overlap as extracted from
the dataset and will not consistently attempt to provide an in-
terpretation of the underlying reasons behind the overlap fea-
tures that emerge. Such interpretations are often not obvious
and would require extensive additional meteorological data
not provided in the MICROBASE dataset. A comparison of
Figs. 1 and 2 indicates that alpha profiles vary more with sea-
son and domain size than rank correlation profiles. They also
drop much more slowly with separation distance compared
to rank correlations. The decrease of alpha with separation
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Fig. 2. As in Fig. 1, but for rank correlations.

distance is faster for winter, followed by fall, spring and sum-
mer. In other words, cloud fraction overlap is most random
in the winter and least random (most maximum) during the
summer. Since convective activity is greatest during the sum-
mer while winter cloudiness is dominated by frontal systems,
the conclusion is that convective clouds are more maximally
overlapped than frontal clouds. This was also found by Mace
and Benson-Troth (2002) and Naud et al. (2008). The first
of these papers showed the seasonal cycle of alpha at select
separation distances over the same observation site, but from
a data set of coarser temporal and vertical resolution derived
independently from the same suite of instruments used in MI-
CROBASE.

Our results also indicate that the variability (standard devi-
ation) of alpha profiles follows in general the order of degree
of random overlap: the alpha profile with the smallest val-
ues (DJF) is also the most variable; during summer the alpha
values are larger (more maximally overlapped) and the dis-
tribution of alpha values is more narrow. This seems reason-
able – if random overlap is produced by independent clouds
layers at various heights, then we expect to get many cases
of chance alignments between layers on a per segment basis,
thereby injecting a random element of “maximum overlap”
and increasing the variance of alpha. In contrast, maximum
overlap cases produced by convective systems with strong
vertical coherence are not expected to produce random over-
lap by chance, unless there is a strong vertical wind shear.
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The choice of domain size affects the alpha profiles notice-
ably. Cloud fraction overlap is more maximum for the largest
domain size (300 km). This has been previously noted by
Hogan and Illingworth (2000) and Oreopoulos and Khairout-
dinov (2003) and is the natural outcome of the dominant
scales of cloud formation as determined by underlying dy-
namical and thermodynamical processes. Indeed, for iso-
lated cloud systems the chance of finding large total cloud
fractions decreases as the domain size increases, and since
random overlap means larger total cloud fractions than max-
imum overlap for the same cloud fraction profile, the overlap
will tend to be more random within a smaller domain. An-
other thought experiment that leads to the same conclusion
– that the degree of overlap is smaller (more random) for a
smaller domain size – is to consider a particular cloud frac-
tion profile within a certain domain. By enlarging the do-
main without changing the cloud (whose spatial extent is de-
termined by the dominant scales of the underlying dynamics
and thermodynamics) both the layer cloud fraction and the
total cloud fraction decrease (layer clear fractions and total
clear fraction increase). The cloud system occupies a rela-
tively smaller portion of the bigger domain and cloud layers
appear more aligned (more maximally overlapped) in the ver-
tical since the combined clear fraction of any two layers has
increased.

This type of argument does not carry over trivially to rank
correlations which seem to also show the same dependence,
albeit significantly weaker, on domain size. At larger domain
sizes the probability density function of condensate must in
general become wider and the relative ordering of condensate
values must change so that the values of particular portions
of the domain with more similar clouds are closer in relative
strength compared to the case where the domain is smaller
and the inter-layer variability in those same portions appears
larger. In other words, by extending the domain and widen-
ing the distribution with the additional variability of extra
clouds, the values of condensate at close horizontal positions
appear more similar in a relative sense than in the initial nar-
rower distributions.

The seasonal ordering in terms of the magnitude of rank
correlation profiles is the same as for alpha profiles for sep-
aration distances up to∼4 km where positive values occur.
Rank correlations are generally smaller for DJF and progres-
sively increase for MAM and JJA before dropping again for
SON. This is consistent with stronger vertical motions during
the summer producing more aligned columns of cloud con-
densate. However, the picture reverses for the negative rank
correlations of larger separation distances which are greater
in absolute value for JJA and smaller (closer to zero) for
DJF. Apparently the low and high clouds of summer multi-
layer cloud systems are more anticorrelated than in the win-
ter. Since the negative values of alpha do not exhibit such
reversal, i.e., DJF cloud fractions are more minimally over-
lapped than JJA, the conclusion is that for the smaller over-
lapped portion of DJF clouds the anticorrelations of relative

condensate strengths are somewhat weaker. As we will see
in the next section, however, when all separation distances
and seasons are ensemble-averaged there is a clear tendency
for smaller alphas to be correlated with smaller rank corre-
lations. This is not surprising since this is exactly the ten-
dency that Figs. 1 and 2 imply at smaller separations, which
are derived from a much larger number of data points. It
should also be kept in mind that the condensate dataset used
for Figs. 1 and 2 is not exactly identical since overcast lay-
ers are excluded from the calculation of alpha but not of rank
correlation.

Another difference in the behavior of rank correlations is
that the variability of rank correlations is least in DJF and
greatest in JJA, i.e., the opposite of what takes place for al-
phas. This is somewhat expected given that the mean profile
of rank correlation, itself coming from a wide distribution
of segment-length rank correlations, is more extreme in an
absolute sense for JJA (more positive at smaller separations,
more negative at larger separations) than DJF. The variability
stabilizes to near-constant values at or above smaller sepa-
ration distances,∼2 km or below depending on the season,
compared to alpha variability which becomes more stable
(apart from the superimposed noise of the smaller sample
size) only at separation distances above∼3 km. In conclu-
sion, for both alpha and rank correlations, the variability in-
creases rapidly up to a certain separation distance and then
changes more slowly. Also, the variability that the parame-
ters settle to is much larger (0.8–1) for alpha, compared with
the rank correlation (0.35–4). It must be pointed out how-
ever that precise descriptions of the behaviour of alpha or
rank correlation at large distances may not in practice be cru-
cial. For example, in radiative calculations, distant layers
are at most times radiatively uncoupled because of the high
likelihood of substantial amounts of intervening cloud. In
this case radiative transfer would be largely insensitive to the
cloud fraction and condensate rank overlap. Moreover, for
clouds separated by large distances, radiation that has inter-
acted with one cloud layer has diffused much by the time it
reaches the other layer, further reducing the importance of
the details of cloud fraction and rank overlaps.

The ensemble-averaged alpha and rank correlation profiles
of individual months (not shown) can be fit to inverse ex-
ponentials via least squares, following chapter 15.2 of Press
et al. (1992), in order to infer the decorrelation lengths of
Eq. (4). The calculations assumes no dependence on the ver-
tical location h̄ within the atmosphere (i.e., no distinction
is made between equal1z’s in different parts of the atmo-
sphere). The fitting gives greater weight to smaller separa-
tion distances which are more numerous. The results for the
different segment lengths are given in Fig. 3, as a function of
the month of the year. The figure reflects some of the sea-
sonal and spatial scale dependencies discussed previously,
for example decorrelation lengths that peak during the sum-
mer months when vertical stability is expected to be weaker
and stronger vertical motions promote the formation of cloud
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systems with cloud fractions and condensates that align bet-
ter. Alpha decorrelation lengths are larger than their rank
correlation counterparts, with a stronger seasonal cycle and
more pronounced dependence on domain size, echoing the
contrasts we highlighted in our discussion of Figs. 1 and 2.

We also calculated, but do not show here, the median val-
ues of the decorrelation lengths derived for each segment and
each month, as in Barker (2008b). The profiles of the overlap
parameters for each individual segment are much more noisy
and the fits much less reliable. Decorrelation lengths of al-
pha for individual segments can be very large, as also noted
by Barker (2008a) (they exceed 10 km 36.5 % of the time),
making the mean values of limited use, and skewing the me-
dians to values much higher (about double) than those cal-
culated from ensemble-averaged overlap parameter profiles.
For the rank correlation decorrelation lengths of individual
segments, however, large magnitudes are much rarer (only
for ∼1 % of the cases exceed 10 km) and the range of values
is much narrower. The histograms of the two decorrelation
length distributions for all 150 km segments of all months,
but without the values greater than 10 km, are compared in
Fig. 4. TheLα istogram is much wider, has no well-defined
peak, and looks quite different from theLr histogram which
peaks at the 0.2–0.4 km bin. Despite the fact that the mode of
the latter histogram is very small, the mean derived from the
histogram, 1.74 km, is larger than any of the values shown in
Fig. 3, and serves as a reminder that the mean of decorrela-
tion lengths derived from individual segments is a fundamen-
tally distinct quantity from the decorrelation length derived
from a mean profile of rank correlations. This is even more
true for alpha decorrelation length, which has an even wider
distribution in Fig. 4.

3.2 Dependence of overlap parameters on
vertical location

In our earlier discussion of Eq. (4) we suggested that identi-
cal separation distances may give rise to systematically dif-
ferent overlap parameter values in different vertical segments
of the atmosphere due to distinct cloud formation processes
and associated dynamical circulations. In this subsection we
examine whether this can indeed be discerned from the avail-
able dataset. Figure 5 shows ensemble-averaged alphas and
rank correlations at separation distances of 1 and 2 km aggre-
gated separately for four different atmospheric layers. The
error in the mean is too small to be distinguishable in these
plots and is therefore not shown, ensuring that any differ-
ences among the means are statistically significant. For al-
pha, there is a general trend towards more random overlap
for the same separation distance the higher the atmospheric
layer in which the calculation performed. This is always true
for the 2 km separation distance, but not so for the 1 km sep-
aration distance as one moves from the 0–3 km layer to the
3–6 km layer. The rank correlation behavior, on the other
hand, is somewhat more complex. The 0–3 km layer has the
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largest values at both separation distances, while the smallest
are encountered in the 3–6 km layer for the 2 km separation
distance and the 9–12 km layer for the 1 km separation dis-
tance. The large decrease of the rank correlation from the
0–3 km to the 3–6 km layer can probably be attributed to
the cloud phase change that likely occurs within the latter
layer and to the transition from the planetary boundary layer,
which tends to be more well-mixed, to the free troposphere,
which tends to be more stratified. The probability of both of
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these transitions occurring is greater for 2 km separation dis-
tances, which may be the reason for the observed minimum
in rank correlation. Hogan and Illingworth (2003) examined
the linear correlations of ice water content for overcast clouds
above and below 6.9 km. They found greater correlations in
the upper layer, a result they attributed to the reduced wind
shear of the upper layer and which is qualitatively similar
to the increase of rank correlation from the 3–6 km layer to
the 6–9 km layer in our results. The datasets and methodol-
ogy are different enough to prevent us from affirming con-
sistency between the two findings, but the qualitative agree-
ment is nonetheless worth mentioning. Naud et al. (2008)
also studied the role of wind shear on cloud overlap but for
cloud fraction only, i.e., the effect on alphas, not rank cor-
relations. They found higher wind shear correlating with

smaller alphas above∼2 km separation distances. If shear
was the sole dynamical factor regulating cloud overlap then
our results would seem to imply that shear must increase with
height since according to Fig. 5 cloud fraction overlap tends
to be generally more random in the upper troposphere com-
pared to the lower troposphere. In our case, such an inter-
pretation can not be provided with confidence based on the
available information.

3.3 Relationship between overlap parameters

If the alpha and rank correlation overlap parameters are to
be used to generate columns of condensate that follow the
overlap behavior seen in observations, it may not be wise to
choose their values independently of each other. In a mod-
eling application, the most convenient approach would be to
deal with scalar quantities such as the decorrelation lengths
of exponentially decaying alphas and rank correlations and
accepting the (hopefully minor) shortcoming of being con-
fined to positive-only values. A plot like Fig. 3 can be em-
ployed to selectLα andLr values that can then be used at all
times for each month at the appropriate latitudes and domain
sizes. This plot implies that the ratio ofLα to Lr changes
substantially from month to month (from a minimum of∼2
in February to a maximum of∼2.8 in July and September).
The appropriateness of picking a single value ofLα and (in-
dependently or not) ofLr and applying it universally for a
particular month will presumably depend on the application
and should be a matter for further investigation, as will be
discussed in the next section.

If one wants to discuss relationships between the two types
of overlap, it may not however be appropriate to compare
only quantities derived after a large amount of ensemble av-
eraging, which is the approach yielding meaningful values
of decorrelation lengths. We will therefore revisit segment-
level alphas and rank correlations for our investigation of the
relationship between cloud fraction and condensate distribu-
tion overlap. We will also investigate whether rank correla-
tions depend on the combined cloud fraction of two layers.
This fraction should not be independent of alpha since for a
given pair of cloud fractions, a smaller alpha implies a larger
combined cloud fraction. So, while we may get a somewhat
different perspective by looking at how ranks change with
different combined cloud fractions, that perspective cannot
be inconsistent with that obtained by looking at rank correla-
tion vs. alpha relationships.

In order to examine these relationships both overlap pa-
rameters need to be derived from the same data set. Since an
alpha value is not meaningful when one of the two layers is
overcast while a rank correlation is, for the purposes of this
subsection we infer both overlap parameters only when nei-
ther of the two layers has a cloud fraction greater than 0.99
while also imposing the condition that the overlapped por-
tion of the two layers has a cloud fraction of at least 0.01 (to
have enough data points for an acceptable rank correlation
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calculation). We create two types of plots: one showing the
frequency distribution of rank correlations for different bins
of combined true cloud fraction or alpha, and one showing
the ensemble mean ranks and fraction of negative mean ranks
for those bins. The second type of plot essentially summa-
rizes two features, the mean and the cumulative frequency up
to zero rank correlation, found in plots of the first type, but
for more bins than were practical to display in those plots.

The plots discussed above are shown in Figs. 6 and 7. Fig-
ure 6 suggests that when the combined cloud fraction of the
layers is 1 the probability distribution of rank correlations is
almost perfectly symmetric around zero and yields a near-
zero mean rank. This is an interesting result that defies an
obvious explanation. Combined cloud fractions of exactly 1
can occur only for overlap smaller than random, i.e., for some
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Fig. 7. As in Fig. 6, but for bins of overlap parameter alpha.

degree of minimum overlap. So it would be tempting to in-
fer that so-called minimal overlap, which implies a smaller
overlapped fraction, tends to be associated with zero mean
rank correlation, but with a large amount of noise from ranks
of either sign due to the small overlapped sample size.

However, there are significant and hitherto undiscussed in-
terpretation issues that may be appropriate to raise here. Up
until this point we have been treating alpha and rank corre-
lation on a somewhat equal footing. In fact, however, they
are quite different – rank correlation is a fairly robust sta-
tistical property based on a typically large number of rank
pairs in the overlapped portion of the two layers. Alpha, by
contrast, for a particular layer pair is based on only the two
layer cloud fractions, and is not a statistically robust quan-
tity unless averaged over an ensemble of many segments or
unless the single segment in which it is evaluated is large
compared to the horizontal length scalelh over which indi-
vidual clouds in each layer become statistically uncorrelated.
In other words, while single segmentα(z1,z2) values of 1, 0
and<0 do have specific meanings for the segment in terms of
cloud overlap (maximum, random and some degree of min-
imum overlap) they imply little about the respective large-
scale statistical overlap of the two cloud layers over a large
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number of segments, unless the segment is large enough to
contain many dynamically independent cloud samples. This
is presumably why the standard deviations of alpha in Fig. 1
are so much larger and more variable than the respective rank
correlation values of Fig. 2.

Now, let us apply this thinking to the example of 100 %
combined cloud fraction discussed above. Such a case im-
plies α(z1,z2) < 0 (some degree of minimal overlap), how-
ever, two completely uncorrelated cloud layers (in the large-
scale sense) can frequently produce cases of 100 % com-
bined cloud cover in segments that are not large compared
to lh. In fact, the greater the individual layer cloud fractions,
the greater the likelihood of this. Thus the 100 % combined
cloud fraction bin will be a “degenerate bin” that mixes many
segments of large-scale uncorrelated layers with perhaps oc-
casional segments of large-scale minimally overlapped lay-
ers. If these uncorrelated cases dominate, as they appear to,
then it is not surprising that the condensate rank correlations
within the bin are near zero in the mean. In this case, “min-
imal overlap” is likely to be a false designation, since the
alphas are all single segment values.

Returning to Fig. 6, a progressive shift to fewer negative
and greater mean rank correlations occurs when the com-
bined cloud fractions become smaller, i.e., when the overlap
becomes closer to maximum and the individual cloud frac-
tions are also small. One possible explanation is a transition
from large scale cloudiness (with large cloud fractions in ei-
ther or both layers, yielding a large combined fraction, but
from layers that can be quite unrelated) to convective clouds
(typically of small cloud fractions, but of large vertical ex-
tent). Note that the 0.9–0.99 combined cloud fraction bin is
quite distinct from the overcast bin in terms of its rank cor-
relations. Within this bin, random cloud fraction overlap is
possible, and positive ranks occur about 62 % of the time. By
the time the combined cloud fraction is between 0.01 and 0.1
about 80 % of the rank correlations are positive.

Figure 7 is consistent with the above picture, since as it
was explained earlier, the combined cloud fraction and alpha
are not independent. For negative alpha the distribution of
rank correlations is again almost perfectly symmetric around
zero, and results in an almost exact zero mean rank correla-
tion. As cloud fraction overlap shifts from random to maxi-
mum the distributions become progressively more negatively
skewed and produce higher mean ranks until exact maximum
overlap (α = 1) is reached. For that bin the number of nega-
tive rank correlations goes up again and the value of the mean
goes down, making it very distinct from the 0.9–0.99 alpha
bin (near-maximum overlap) which contains the largest mean
rank, larger than any mean rank in Fig. 6. Bear in mind that
the α = 1 bin does not necessarily contain only small com-
bined cloud fractions, so it should not be associated with any
particular true combined cloud fraction bin in Fig. 6. A large
value of alpha simply suggests that the probability of a small
combined cloud fraction is statistically higher.

4 Discussion of modeling implications

We have presented an analysis of cloud overlap characteris-
tics at a mid-latitude observational facility based on retrievals
of cloud condensate from a millimeter cloud radar assisted
by a suite of other ground instruments. The temporal (hor-
izontal in an Eulerian sense) and vertical resolution of the
data, at 10 s and 45 m, respectively, are the highest ever used
to study this problem. The two facets of overlap investigated
were cloud fraction overlap (previously examined at the same
site with coarser resolution datasets by Mace and Benson-
Troth, 2002; Naud et al., 2008) and the overlap of horizon-
tal distributions of condendsate, which has never been pre-
viously examined with a dataset of this type. Besides the
cloud fraction overlap parameter alpha and the rank correla-
tion coefficient, the degree of proximity to random and max-
imum overlap was also expressed in terms of decorrelation
lengths, a convenient scalar parameter equal to the e-folding
length when the overlap parameter is assumed to decay ex-
ponentially with separation distance. Our findings regarding
cloud fraction overlap, whether expressed in terms of alpha
or its decorrelation length, reaffirm previous results with re-
spect to seasonal variations and dependence on domain size,
namely that overlap tends to be more maximum for summer
months and larger domains. The same dependence is found
for rank correlation, albeit significantly weaker, a behaviour
not previously known. We sought to gain further insight into
overlap parameter dependencies by examining differences in
mean values for fixed separation distances within different
layers of the atmospheric column, and by searching for pos-
sible systematic relationships between alpha and rank corre-
lation. These efforts revealed that for the same separation
distance the overlap parameters are significantly different at
the various atmospheric layers, and that random cloud frac-
tion overlap is generally associated with more random corre-
lations of relative condensate strength.

The question that naturally arises is whether any of the
above has practical implications. If one wants to create 2-D
X-Z distributions of condensate (a second horizontal dimen-
sion is irrelevant for fields with no predefined horizontal spa-
tial coherence) starting from profiles of cloud fraction and the
mean and variance of cloud condensate, overlap rules must
be established. Our paper contains information about these
overlap rules. Obviously, an extension to a global dataset
is desirable, and the combined CloudSat/CALIPSO dataset
may be of significant help in this regard (e.g., Mace et al.,
2010). Also, a measure of whether overlap has been realisti-
cally and successfully implemented is necessary. A straight-
forward avenue of future research is to adopt the inverse ex-
ponential model and express overlap in terms of decorrela-
tion lengths. Our dataset has shown that negative values for
the overlap parameters are too frequent for the exponential
framework to be consistently credible, but it may work ade-
quately if the impact of replacing negative values with zero is
small. Then there is the question what value of decorrelation
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length to use. Should the median of individual decorrelation
lengths (derived from individual data segments) be used as
in Barker (2008b)? Would a modified definition that yields
an “effective” decorrelation length where the additional con-
straint of matching segment-level total cloud fractions is im-
posed (Barker, 2008a) be better? Or should the decorrelation
length as derived in this work be used, namely from fits to
ensemble-averaged profiles of alpha and rank correlation?

A research path may be available to help address these
questions (e.g., see Barker 2008a, b). It essentially entails
using the profiles of cloud fraction and the first two moments
of condensate for each data segment, assuming a probabil-
ity distribution function for the condensate, and reconstruct-
ing the cloud fields using either a single decorrelation length
from average overlap parameter profiles or individual decor-
relation lengths derived at the segment level, with a cloud
generator of the type introduced by Räis̈anen et al. (2004).
The appropriateness of the inverse-exponential model and of
the proper decorrelation lengths can be tested by comparing:
(a) cloud statistics (total cloud fraction or cumulative pro-
files of cloud fraction exposed to space and moments of wa-
ter path) between the original and reconstructed cloud fields
and (b) radiation flux and heating rates corresponding to the
original and reconstructed cloud fields. Radiative compar-
isons of the latter type will be facilitated in the near future by
the availability of the Radiatively Important Properties Best
Estimate (RIPBE) evaluation product a final version of which
is set to be released soon for the SGP ACRF site (S. McFar-
lane, personal communication, 2011). RIPBE relies for its
cloud specification on the same MICROBASE dataset we use
for our overlap analysis (albeit at a lower 1 minute temporal
resolution), while also including all other atmospheric (tem-
perature and water vapor profiles, aerosol loading, etc.) and
surface (spectral albedo) variables that are required for full
broadband radiative transfer calculations. Such a validation
from both the cloud and radiation statistics perspectives is in
our future plans.
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