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Abstract. In the present study, the impact of aerosols on the
photochemistry in Mexico City is evaluated using the WRF-
CHEM model for the period from 24 to 29 March during the
MCMA-2006/MILAGRO campaign. An aerosol radiative
module has been developed with detailed consideration of
aerosol size, composition, and mixing. The module has been
coupled into the WRF-CHEM model to calculate the aerosol
optical properties, including optical depth, single scattering
albedo, and asymmetry factor. Calculated aerosol optical
properties are in good agreement with the surface observa-
tions and aircraft and satellite measurements during daytime.
In general, the photolysis rates are reduced due to the ab-
sorption by carbonaceous aerosols, particularly in the early
morning and late afternoon hours with a long aerosol optical
path. However, with the growth of aerosol particles and the
decrease of the solar zenith angle around noontime, aerosols
can slightly enhance photolysis rates when ultraviolet (UV)
radiation scattering dominates UV absorption by aerosols at
the lower-most model layer. The changes in photolysis rates
due to aerosols lead to about 2–17 % surface ozone reduc-
tion during daytime in the urban area in Mexico City with
generally larger reductions during early morning hours near
the city center, resulting in a decrease of OH level by about
9 %, as well as a decrease in the daytime concentrations of ni-
trate and secondary organic aerosols by 5–6 % on average. In
addition, the rapid aging of black carbon aerosols and the en-
hanced absorption of UV radiation by organic aerosols con-
tribute substantially to the reduction of photolysis rates.
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1 Introduction

Atmospheric particulate matter or aerosols, formed from nat-
ural and anthropogenic sources, are a chemical mixture of
solid and liquid particles suspended in the atmosphere, with
diameters ranging from a few nanometers to several microm-
eters or more. Aerosols influence climate directly by scat-
tering or absorbing a fraction of the incoming solar radia-
tion to cool or warm the atmosphere, and indirectly via their
roles as cloud condensation nuclei (CCN) and ice nuclei (IN),
by modifying optical properties and lifetime of clouds (e.g.,
Penner et al., 2001; Zhang et al., 2007). Additionally, scat-
tering or absorbing a fraction of solar radiation by aerosols
also increase or decrease photolysis rates in the atmosphere,
affecting ozone (O3) formation and atmospheric oxidation
capacity (Tie et al., 2003, 2005; Li et al., 2005).

Numerous studies have evaluated the aerosol effects on
photolysis rates and O3 formation in the atmosphere. Dicker-
son et al. (1997) considered the effect of absorbing aerosols
in the planetary boundary layer (PBL) in model simulations
and found that UV-absorbing aerosols reduce the calculated
O3 mixing ratios by up to 24 ppbv. Jacobson (1998) showed
that aerosol particles containing a black (elemental) carbon
core coated by organic material and/or other material might
reduce O3 by 5–8 % in Los Angeles. Castro et al. (2001)
found an even larger reduction in the photolysis coefficients
in Mexico City due to absorbing aerosols compared to the
Los Angeles study. The photolysis rate of NO2 was de-
creased by 10–30 % and surface O3 was reduced by 30–
40 ppb in their simulations using a simple zero-dimensional
photochemical model. Jonson et al. (2000) found small
effects on monthly averaged ozone with the inclusion of
aerosols in the simulations of a regional-scale photochem-
istry model. Zanis et al. (2002) concluded that increasing ab-
sorbing aerosol (Sahara dust) content could reduce net ozone
production rate in box model calculations constrained by the
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measurements. Balis et al. (2002) reported the reduction of
the photolysis rates during a Sahara dust event by radiative
transfer model calculations and aircraft measurements. An-
other study by Stockwell and Goliff (2004) suggested that the
impact of photolysis on relative O3 concentrations varied de-
pending on the ratio of volatile organic compounds (VOCs)
to NOx (NO + NO2). Additionally, Martin et al. (2003) used
global three-dimensional chemical transport models (CTM)
to study the photochemical effects of aerosols on tropo-
spheric chemistry and they found important aerosol effects
from reduction in photolysis frequencies. Aerosols decrease
the O3 → O(1D) photolysis frequency at the surface by 5–
15 % throughout most of the Northern Hemisphere. Using a
global tropospheric CTM, Bian et al. (2003) found that, glob-
ally averaged, the impacts of aerosols on photolysis alone
is to increase tropospheric O3 by 0.63 Dobson units and in-
crease tropospheric CH4 by 130 ppb. Bian and Zender (2003)
also evaluated the impact of mineral dust on photolysis rates
in the troposphere using a CTM. They showed that the pho-
tolysis perturbation due to dust dominates limited regions in
the low to middle troposphere and O3 change due to photol-
ysis depends not only on the dust vertical structure but also
on the availability of O3 precursors.

During the MCMA-2006 (Mexico City Metropolitan
Area) field campaign as part of the MILAGRO (Megacity
Initiative: Local and Global Research Observations) project
in March 2006, an extensive data set was obtained, includ-
ing high time resolution of ambient aerosol optical proper-
ties (Molina et al., 2010), which provides an opportunity
to investigate the impact of aerosols on the photochemistry
in a polluted urban area. Marley et al. (2009) measured
the aerosol absorption and scattering in the MCMA during
MILAGRO; they reported that the single scattering albedo
(SSA) at 550 nm for the fine mode aerosols ranged from 0.47
to 0.92 at the T0 supersite (located in the northern part of
Mexico City), suggesting that Mexico City environment has
high levels of fine mode absorbing aerosols. Using direct
measurements of the optical and microphysical characteris-
tics of atmospheric soot particles, Moffet and Prather (2009)
found that, within 3 h after sunrise, photochemical activ-
ity leads to the rapid conversion of fresh non-spherical soot
to aged spherical coated soot particles, which become the
dominant contributor to aerosol absorption during mid-day.
Barnard et al. (2008) used the data measured during MCMA-
2003 (Molina et al., 2007) and MILAGRO-2006 to investi-
gate the absorption of solar radiation by the organic compo-
nent of aerosols. They reported that the organic aerosol en-
hances the absorption in the near-UV spectral range (250 to
400 nm) and the mass absorption cross section for the organic
aerosol decreases from 10.5 m2 g−1 at 300 nm to around zero
at about 500 nm.

The objective of the present study is to examine the aerosol
impact on the photochemistry in Mexico City using the
WRF-CHEM model based on the measurements taken dur-
ing MCMA-2006. We have developed a new module to ac-

count for the aerosol radiative properties, including the op-
tical depth, SSA, and asymmetry factor. The impacts from
black carbon (BC) rapid aging and enhanced absorption of
UV radiation by organic aerosols (OA) are included in the
model. The model configuration is described in Sect. 2; re-
sults of the modeling studies and comparisons are presented
in Sect. 3; the discussion and summary are given in Sect. 4.

2 Model and method

2.1 WRF-CHEM model

The WRF-CHEM model used in the present study is devel-
oped by Li et al. (2010, 2011) at the Molina Center, with a
new flexible gas phase chemical module which can be uti-
lized under different chemical mechanisms, including CBIV,
RADM2, and SAPRC. The gas-phase chemistry is solved
by an Eulerian backward Gauss-Seidel iterative technique
with a number of iterations. The short-lived species, such
as OH and O(1D), are assumed to be in the steady state.
The solution is iterated until all species are within 0.1 %
of their previous iterative values. For the aerosol simula-
tions, the CMAQ (version 4.6) aerosol module developed
by EPA, which was designed to be an efficient and eco-
nomical depiction of aerosol dynamics in the atmosphere,
is used in the WRF-CHEM model (Binkowski and Roselle,
2003). In this aerosol component, the particle size distribu-
tion is represented as the superposition of three lognormal
sub-distributions, called modes. The processes of coagula-
tion, particle growth by the addition of mass, and new parti-
cle formation are included. The wet deposition also follows
the method used in the CMAQ. Surface deposition of chem-
ical species is parameterized following Wesely (1989). The
photolysis rates are calculated using the FTUV (Tie et al.,
2003; Li et al., 2005).

The inorganic aerosols are predicted in the WRF-
CHEM model using ISORROPIA version 1.7 (http://nenes.
eas.gatech.edu/ISORROPIA/), which calculates the com-
position and phase state of an ammonium-sulfate-nitrate-
chloride-sodium-calcium-potassium-magnesium-water inor-
ganic aerosol in thermodynamic equilibrium with gas phase
precursors. This kind of thermodynamic equilibrium is del-
icately dependent on the humidity and temperature. In
this study, ISORROPIA is mainly applied to predict the
thermodynamic equilibrium between the ammonium-sulfate-
nitrate-water aerosols and their gas phase precursors H2SO4-
HNO3-NH3-water vapor.

The secondary organic aerosol (SOA) formation is sim-
ulated using a non-traditional SOA model including the
volatility basis-set modeling method in which primary or-
ganic components are assumed to be semi-volatile and pho-
tochemically reactive and are distributed in logarithmically
spaced volatility bins as described previously (Li et al.,
2011). The partitioning of semi-volatile organic species
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is calculated using the algorithm suggested by Koo et
al. (2003), in which the bulk gas and particle phases are
in equilibrium and all condensable organics form a pseudo-
ideal solution (Odum et al., 1996). Nine surrogate species
with saturation concentrations from 10−2 to 106 µg m−3 at
room temperature are used for the primary organic aerosol
(POA) components following the approach of Shrivastava et
al. (2008). The SOA contribution from glyoxal and methyl-
glyoxal is also included (Li et al., 2011).

In order to consider the effects of aerosols on the pho-
tochemistry and meteorology, an aerosol radiative module
has been developed and incorporated into the WRF-CHEM
model described in the following sections.

2.2 Aerosol and cloud radiative module

In the aerosol module, aerosols are represented by a three-
moment approach with a lognormal size distribution:

n(lnD) =
N

√
2π lnσg

exp

[
−

1

2

(
lnD− lnDg

lnσg

)2
]

(1)

whereD is the particle diameter,N is the number distribution
of all particles in the distribution,Dg is the geometric mean
diameter, andσg is the geometric standard deviation.

To calculate the aerosol optical properties, the aerosol
spectrum is first divided into 48 bins from 0.002 µm to
2.5 µm, with radiusri . When the bin’s radius is less than
0.1 µm, the interval of bins ranges from 0.001 to 0.005 µm.
When the bin’s radius is greater than 0.1 µm, the interval is
increased to 0.025 to 0.25 µm. The aerosols are classified
into four types: (1) internally mixed sulfate, nitrate, ammo-
nium, hydrophilic organics, hydrophilic black carbon, and
water; (2) hydrophobic organics; (3) hydrophobic black car-
bon; and (4) other unidentified aerosols (such as dust in this
study). These four kinds of aerosols are assumed to be mixed
externally. For the internally mixed aerosols, the complex re-
fractive index at a given wavelength (λ) is calculated based
on the volume-weighted average of the individual refractive
index. Given the particle size and complex refractive index,
the extinction efficiency (Qe), the SSA (ωa), and the asym-
metry factor (ga) are calculated using the Mie theory at a
given wavelength. To avoid repeating Mie scattering calcu-
lation, the look-up tables ofQe, ωa, andga are constructed
using particle sizes and refractive indices. The aerosol op-
tical parameters are interpolated linearly from the look-up
tables with the calculated refractive index and particle size in
the module.

The aerosol optical thickness (AOT orτa) at a given wave-
lengthλ in a given atmospheric layerk is determined by the
summation over all types of aerosols and all bins:

τa(λ,k) =

48∑
i=1

4∑
j=1

Qe(λ,ri,j,k)πr2
i n(ri,j,k)1zk (2)

wheren(ri,j,k) is the number concentration ofj -th kind of
aerosols ini-th bin. 1zk is the depth of an atmospheric layer.
The weighted-mean values ofσ andg are then calculated by
(d’Almeida et al., 1991):

ωa(λ,k) = (3)
48∑
i=1

4∑
j=1

Qe(λ,ri,j,k)πr2
i n(ri,j,k)ωa(λ,ri,j,k)1zk

/
τa(λ,k)

ga(λ,k)= (4)
48∑
i=1

4∑
j=1

Qe(λ,ri,j,k)πr2
i n(ri,j,k)ωa(λ,ri,j,k)ga(λ,ri,j,k)1zk

48∑
i=1

4∑
j=1

Qe(λ,ri,j,k)πr2
i n(ri,j,k)ωa(λ,ri,j,k)1zk

When the wavelength-dependent aerosol radiative properties
τa, ωa, andga are obtained, they can be used in the short
wave radiative transfer modules in the WRF-CHEM model.
The aerosol refractive indices used for Mie scattering cal-
culation are listed in Table 1. In the base case simulations,
the BC aging from the hydrophobic to the hydrophilic state
occurs at a pseudo first order rate of 9.26× 10−5 s−1 (Mof-
fet and Prather, 2009) during daytime and 7.10× 10−6 s−1

(Cooke and Wilson, 1996) during nighttime. As suggested
by Moffet and Prather (2009), the effective density is 0.7 g
cm−3 for fresh BC and 1.8 g cm−3 for aged BC. In order to
implement the enhanced absorption by OA in Mexico City
observed by Barnard et al. (2008), the imaginary refractive
index of POA measured by Kirchstetter et al. (2004) is em-
ployed in the present study (Table 1).

Clouds in the troposphere influence photolysis rates by
scattering incoming solar radiation. In order to consider the
effect of clouds on solar radiation and photolysis rates, we
calculate the cloud optical depth (τ c) in an atmospheric layer
with the thickness1zk (m) using the approach suggested by
Klein and Jacob (1999):

τc = 0.15893Wc1zk (5)

whereWc is the total liquid plus ice water content (g m−3).
The cloud single scattering albedo (ωc) is assumed to be 0.99
and the asymmetry factor (gc) is assumed to be 0.85 (Matthi-
jsen et al., 1998). For the photochemical impact of aerosols
and clouds, the FTUV developed by Tie et al. (2005) is used
to calculate the photolysis frequencies.

2.3 Model configuration

Two three-day episodes are selected in the present study:
(1) 24–26 March, 2006, and (2) 27–29 March 2006, repre-
senting typical “O3-Convection South” and “O3-Convection
North” meteorological conditions in Mexico City, respec-
tively (de Foy et al., 2008), with minor impacts of biomass
burning. O3-Convection South takes place when there is a
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Table 1. Aerosol optical constants used in the calculation of aerosol
optical properties.

Aerosols Refractive Index Refractive Index
(λ = 400 nm) (λ = 550 nm)

Black carbon 1.75–0.73i 1.75–0.72i
Primary organic aerosol 1.42–0.11i 1.42–0.03i
Secondary organic aerosol 1.42–2.0× 10−3i 1.42–2.0× 10−3i

Sulfate 1.44–1.0× 10−8i 1.43–1.0× 10−8i

Nitrate 1.44–1.0× 10−8i 1.43–1.0× 10−8i

Ammonium 1.44–1.0× 10−8i 1.43–1.0× 10−8i

Water 1.34–2.1× 10−10i 1.34–2.5× 10−9i

Dust 1.53–8.5× 10−3i 1.53–5.5× 10−3i

weak northerly wind component aloft with rain in the south-
ern part of the Mexico City basin. O3-Convection North
takes place when there is a weak southerly wind compo-
nent aloft with a gap flow and rain in the northern part of
the basin. The WRF-CHEM model is configured with one
grid with spacing of 3 km (99× 99 grid points) centered
at 19.538◦ N and 99◦ E (Fig. 1). Thirty-five vertical levels
are used in a stretched vertical grid with spacing ranging
from 50 m near the surface, to 500 m at 2.5 km and 1 km
above 14 km. The model employs the Lin microphysics
scheme (Lin et al., 1983), the Yonsei University (YSU) PBL
scheme (Noh et al., 2001), the Noah land-surface model
(Chen and Dudhia, 2001), the longwave radiation parame-
terization (Mlawer et al., 1997), and the shortwave radiation
parameterization (Dudhia, 1989). The meteorological initial
and boundary conditions are from NCEP 1◦

× 1◦ reanaly-
sis data. The chemical initial and boundary conditions are
interpolated from MOZART 3-hour output (Horowitz et al.,
2003). The emission inventory (EI) used in the present study
is the 2006 EI developed at Molina Center with the primary
PM emissions (Song et al., 2010). The POA emissions are
redistributed following the study of Tsimpidi et al. (2010).

We first perform the WRF-CHEM simulations with the
impact of aerosols on photolysis frequencies as the base case
to evaluate the model performance. Several sensitivity stud-
ies are conducted to evaluate the aerosol effects on the photo-
chemistry and the contribution of the BC rapid aging and the
enhanced absorption of UV radiation by POA to the aerosol
absorption in Mexico City. The case without the aerosol im-
pact on photolysis frequencies is used as the reference to
compare with other cases to assess the changes caused by
each individual scenario.

 
 
Figure 1 
 

 34

Fig. 1. WRF-CHEM simulation domain. Black filled squares rep-
resent the RAMA (Mexico City Ambient Air Monitoring Network)
sites. The red filled circle represents the T0 supersite and the red
filled squares denote the area with MODIS measurements.

3 Results

3.1 Aerosol simulations

The impact of aerosols on the photolysis rates depends on the
aerosol loading in the atmosphere. Thus, in order to evaluate
the impact of aerosols on the photolysis rates in the chemical
transport model, the simulations of aerosol concentrations
need to be carefully evaluated. Figure 2 shows the tempo-
ral variations of simulated and observed aerosols at T0 site.
The WRF-CHEM model performs reasonably well in simu-
lating the aerosol variations compared with measurements at
T0 except for sulfate aerosols. In terms of statistical com-
parisons of simulated and measured aerosol concentrations,
the IOA (index of agreement) of BC, POA, SOA and nitrate
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Figure 2 
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Fig. 2. Diurnal variations of measured (blue dots) and simulated
(black line) aerosol concentrations at T0 during the period from 24
to 29 March, 2006. The x-axis labels (named date and time) repre-
sent day and hour (DDHH). For example, 2400 represents 00 local
time on 24 March.

exceeds 0.80, indicating good agreement of simulations of
these aerosol components with measurements (Table 2). For
the primary components, BC and POA that are directly emit-
ted into the atmosphere in particulate form, the WRF-CHEM
model reproduces the measured variation of BC and POA
during the second episode (27–29 March), but it frequently
overestimates during the first episode (24–26 March), partic-
ularly at night when the pollutants are transported from the
Tula industrial complex located 70 km northwest of the city
(de Foy et al., 2009). The secondary aerosols, such as nitrate
and SOA, are mainly formed from the atmospheric process-
ing of gaseous precursors. As shown in Fig. 2, the observed
nitrate and SOA exhibit clearly two peaks around 10:00 and
14:00 LT (local time) from 25 to 29 March. The model re-
produces well the two peaks, although the timing of the sec-
ond peak is somewhat delayed due to the slow movement of
the simulated plumes in the afternoon (Li et al 2010, 2011).
However, the model has some difficulties in simulating the
sulfate aerosols with the IOA of 0.42 (Table 2), which are
influenced by multiple sources in Mexico City. In addition
to the inefficient formation through the gas phase reaction of
SO2 with OH, other sources, such as the oxidation of SO2 in
cloud droplets as well as the transport of direct emissions of
sulfate from the Tula industrial complex and the Popocate-
petl volcano (located 70 km in the southeast of the city) may

play a key role in the formation of sulfate particles in Mex-
ico City (de Foy et al., 2009). The uncertainties of sulfate
emissions from the Tula industrial complex and the volcano
have significant impacts on the sulfate aerosol simulations in
Mexico City.

Vertical distributions of aerosols also play an important
role in the evaluation of aerosol impacts on solar radiation.
Measurements from research aircrafts deployed during MI-
LAGRO provide detailed spatial and temporal variation of
aerosols that are not available from the surface sites. In this
study, the measured nitrate, ammonium and sulfate aerosols
using the PILS-IC techniques on the G-1 research aircraft
are compared with the WRF-CHEM model simulations on
26 and 27 March (see Fig. 3). The model is able to cap-
ture the plumes observed by the aircraft on 26 and 27 March.
The model reproduces the variation of nitrate and ammo-
nium aerosols, but shows some differences of the aerosol
concentrations in some plumes. For sulfate aerosols, the cal-
culation of the model is consistent with the measurement
on March 27, but overestimates several spikes occurred on
26 March when the plumes are influenced by the Tula in-
dustrial complex. The IOA for aloft nitrate, ammonium and
sulfate aerosols are 0.82, 0.82, and 0.58 on 26 March, and
0.85, 0.84 and 0.88 on 27 March, respectively. Furthermore,
we have compared the model results with the BC measured
by the SP2 (Single Particle Soot Photometer) and the nitrate,
ammonium, sulfate, and total organics components measured
by the Aerodyne Time-of-Flight Mass Spectrometer (ToF-
AMS) onboard C-130 on 29 March (see Fig. 4) (Molina et
al., 2010). The results demonstrate that the simulated vari-
ability of BC captures several measured spikes, which are
resulted from the transport of city plumes. Since BC can
be considered as a passive tracer during the dry season, the
BC simulation suggests that the model is able to simulate the
transport of city plumes during this field campaign. Although
the calculated variability is similar to the observations for ni-
trate, ammonium, and total organic aerosols, the calculated
concentrations are generally underestimated compared to the
measurements. In addition, on 29 March, the plumes formed
in Mexico City move northwest in the afternoon, derived by
the well organized south and northeast winds from outside of
the basin (Li et al., 2011). The sulfate aerosols emitted di-
rectly by the volcano occasionally influence the plumes over
the city (de Foy et al., 2009). The observed spikes of sulfate
aerosols from the volcano are generally well reproduced by
the model.

3.2 Aerosol optical properties

The calculated aerosol optical properties, including AOT and
SSA, are evaluated using the available measurements from
the surface site, aircraft and satellite. The simulated AOT at
440 nm is first verified using the sun photometer measure-
ments from a ground based station of Aerosol Robotic Net-
work (AERONET) located at T0 (de Almeida Castanho et
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Table 2. Statistical comparisons of simulated and measured aerosol concentrations at T0 and along the flight tracks of research aircrafts (G1
and C-130).

T0 Supersite G1 on 26 March G1 on 27 March C-130 on 29 March
(24 to 29 March)

Aerosols NMB RMSE IOA NMB RMSE IOA NMB RMSE IOA NMB RMSE IOA
(%) (µg m−3) (%) (µg m−3) (%) (µg m−3) (%) (µg m−3)

BC 3.5 2.2 0.85 51 0.21 0.75
POA 19 3.5 0.86
SOA −5.0 3.6 0.88
Nitrate 41 4.5 0.80 −49 1.5 0.82 −0.34 2.7 0.85 −61 3.8 0.78
Ammonium 46 2.3 0.67 −42 0.65 0.82 −28 1.0 0.84 −57 1.6 0.64
Sulfate 36 3.4 0.42 23 0.96 0.58 −3.1 0.21 0.88 −10 2.3 0.46

The normalized mean bias (NMB), the root mean square error (RMSE), and the index of agreement (IOA) are defined as:NMB =

N∑
i=1

(
Pi−Oi

)
N∑

i=1
Oi

, RMSE=

[
1
N

N∑
i=1

(
Pi −Oi

)2
] 1

2
,

and IOA = 1−

N∑
i=1

(
Pi−Oi

)2
N∑

i=1

(∣∣Pi−O
∣∣+∣∣Oi−O

∣∣)2 . WherePi andOi are the predicted and observed pollutant concentration, respectively.N is the total number of the predictions used for

comparisons, andO denotes the average of the observation. The IOA ranges from 0 to 1, with 1 indicating perfect agreement between model and observation.

 
 
Figure 3 
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Fig. 3. Comparison of G-1 aircraft measured (dots with different
colors) and simulated (black line) nitrate, ammonium, and sulfate
aerosols along the flight tracks on 26 and 27 March . See Fig. 2 for
the x-axis labels.

al., 2007). The WRF-CHEM is capable of reproducing the
increase in the AOT from morning to afternoon, resulting
from the accumulation of pollutants and the enhancement

 
 
Figure 4 
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Fig. 4. Comparison of C-130 aircraft measured (dots with different
colors) and simulated (black line) BC, nitrate, ammonium, sulfate,
and organic aerosols along the flight track on 29 March. See Fig. 2
for the x-axis labels.

of secondary aerosols in the boundary layer (Fig. 5a). The
calculated AOT is also comparable to the measured value at
T0. The AOT at 550 nm from MODIS (Moderate Resolution
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Figure 5 
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Fig. 5. (a)Diurnal variations of measured (blue dots) and simulated
(black line) aerosol optical thickness at T0 and(b) daily and domain
averaged MODIS measured (blue) and calculated (black) aerosol
optical thickness during the period from 24 to 29 March 2006. See
Fig. 2 for the x-axis labels in(a). The x-axis labels (named date) in
(b) represent month and day (MM-DD). For example, 03–24 repre-
sents 24 March.

Imaging Spectroradiometer) aerosol level-3 product (with
a spatial resolution of 1◦ × 1◦) is also compared with the
model results. Considering the absence of some AOT mea-
surements from satellites due to cloudiness, the comparison
is made only on the grid points with the measurements in
the domain. Figure 5b shows the observed and simulated
daily variation of AOT averaged over the model domain.
In general, the simulated AOT is in good agreement with
the MODIS measurements. Considering the uncertainties
from measurements and aerosol simulations, the model re-
produce reasonably well the measured AOT values, based on
the above mentioned aerosol radiative module.

The aerosol SSA is defined as the ratio of aerosol scatter-
ing to total extinction (absorption + scattering):

SSA=
κs

κs+κa
(6)

where κs is aerosol scattering coefficient andκa is
aerosol absorption coefficient. The SSA is dependent
on aerosol chemical composition and morphology, ranging
from about 0.2 for freshly emitted diesel soot up to 1.0
for highly scattering aerosols, such as sulfate and nitrate
(Ramanathan et al., 2001).

Figure 6 shows the comparison of simulated aerosol SSA
with measurements at T0 and from G-1 and C-130 research
aircraft. The observed values of SSA (550 nm) at T0 range
from 0.47 to 0.92 with an average of 0.71 during the simu-

 
 
Figure 6 
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Fig. 6. SSA comparison at T0 and along the aircraft tracks. For
(a), the black line represents model simulations and blue dots are
measurements at T0. For(b), (c), and(d), dots with different colors
are aircraft measurements and the black line represents the model
results. See Fig. 2 for the x-axis labels.

lation period. The low values of SSA during the nighttime
and rush hours suggest that there are high levels of absorb-
ing aerosols during these periods (Fig. 2). The WRF-CHEM
model generally reproduces the diurnal variation of SSA at
T0 compared to the measurements, with high levels of SSA
during the noontime and low levels during the nighttime and
rush hours. However, the model considerably overestimates
the observation at T0 during the nighttime and rush hours.
For the first episode, the overestimation of nighttime SSA is
mainly caused by the sulfate aerosols, which are transported
from the Tula industrial complex to the measurement site.
Underestimation of absorbing aerosols (BC and POA) is the
main reason for the overestimation of SSA during the night-
time and rush hours in the second episode. Nevertheless, the
daytime simulations of SSA are generally consistent with the
measurements at T0, which is mainly used to study the im-
pact of aerosols on solar radiation.

On 26 March, the simulated variability of SSA (450 nm)
along the flight tracks is generally consistent with the mea-
surement from G-1, except when the plumes are influenced
by the events when sulfate aerosols are heavily affected by
the Tula industrial complex. The observed values of SSA
vary from 0.80 to 0.99, with an average of 0.92, indicating
that the formation of secondary aerosols enhances the SSA
aloft considerably. The simulated SSA is close to 0.92 av-
eraged along the G-1 aircraft track, in spite of the overesti-
mation caused by the sulfate transported from the Tula in-
dustrial complex, which can be explained by the occasional
underestimation of SSAs by the model. On 27 March, the
WRF-CHEM model reasonably follows the observed SSAs
before 12:30 LT. However, after 12:30 LT, the variation of
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Fig. 7. Diurnal variations of photolysis frequencies ofJ [O3(1D)]
andJ [NO2] at T0 during the period from 24 to 29 March 2006.
Blue dots: measurements; black line: with the aerosol effect on
photolysis frequencies; brown line: without the aerosol effect on
photolysis frequencies. See Fig. 2 for the x-axis labels.

simulated SSAs is delayed by about 10 min compared to the
measurements. On 29 March, the underestimation of scat-
tering aerosols of nitrate, ammonium, and organic carbon
results in the lower SSAs compared with the C-130 obser-
vation, while the simulated BC, the main absorbing aerosol,
is comparable to the measurements.

3.3 Aerosol impacts on photolysis rates

The impacts of aerosols on photolysis rates are calculated
and analyzed using the radiation model (FTUV) and the
above mentioned aerosol radiation module. There are two
key photolysis rates affecting tropospheric ozone photo-
chemistry, the NO2 photolysis (J [NO2]) to form the ground
state oxygen atom O(3P) and the O3 photolysis (J [O3(

1D)])
to form the electronically excited O(1D) atom, which are
considered in the study:

O3+hv → O2+O(1D) (290 nm< λ< 329 nm) (7)

NO2+hv → NO+O(3P) (290 nm< λ< 420 nm) (8)

Figure 7 shows the diurnal variation ofJ [O3(
1D)] and

J [NO2] at T0, where photolysis frequencies forJ [O3(
1D)]

andJ [NO2] are directly measured using a spectroradiome-
ter as described by Sheehy et al. (2010) and Dusanter et
al. (2009), with uncertainties of about 25 % forJ [O3(

1D)]
and 15 % for J [NO2]. The calculatedJ [O3(

1D)] and
J [NO2] diurnal variations are consistent with the measure-
ments at T0 under clear sky conditions. However, the WRF-
CHEM model cannot resolve reasonably well the impact of

 
 
Figure 8 
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Fig. 8. Comparison of C-130 aircraft measured and calculated pho-
tolysis frequencies ofJ [O3(1D)] andJ [NO2] along the flight track
on 29 March. Dots with different colors: measurements; black line:
with the aerosol effect on photolysis frequencies; brown line: with-
out the aerosol effect on photolysis frequencies. See Fig. 2 for the
x-axis labels.

clouds on the photolysis frequencies. For example, the mea-
sured photolysis frequencies often exhibit large fluctuations
in the afternoon due to cumulus clouds, which are only well
reproduced on 25 March by the model.

When the effects of aerosols on photolysis frequencies
are included in the WRF-CHEM model, the calculated
J [O3(

1D)] and J [NO2] are generally more consistent with
the observations at T0. The model calculation also suggests
that the impacts of aerosols onJ [O3(

1D)] and J [NO2] are
different. For example, aerosols decreaseJ [O3(

1D)] consis-
tently during the entire episodes at T0, but the reduction is
more pronounced on 24, 25, and 28 March than on the other
days. Aerosols also appreciably decreaseJ [NO2] on 24, 25,
and 28 March, but the reduction is not as substantial as that
for J [O3(

1D)]; during the noontime on 26 and 27 March,
aerosols even enhanceJ [NO2] slightly. In the present study,
the calculated SSA in the UV band in the boundary layer is
around 0.72 to 0.76, indicating an efficient absorption of UV
radiation by aerosols during daytime in Mexico City. There-
fore, aerosols generally reduce the photolysis coefficients in
the urban area in Mexico City, which is consistent with the
previous study (Castro et al., 2001). However, during noon-
time, the simulated aerosol average effective radius in the
boundary layer ranges from 0.26 to 0.40 µm, which is com-
parable to the wavelength of the incoming UV radiation. Ac-
cording to the Mie scattering theory, when the size of the
particles is similar to the UV wavelength, the incoming ra-
diation is favored to be scattered in the forward directions.
As a result, the calculated asymmetry factor in the boundary
layer during the noontime is about 0.7, causing the scattering
intensity of aerosols to be peaked at 45◦ toward the forward
direction. The high diffusely scattered UV radiation possibly
exceeds the UV absorption by aerosols, thus enhancing the
photolysis coefficients in the boundary layer.

The calculatedJ [O3(
1D)] andJ [NO2] are also compared

with the observation from the C-130 aircraft on 29 March
(see Fig. 8). The calculations are generally comparable to the
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Fig. 9. Daily cycle of the percentage change ofJ [O3(1D)] and
J [NO2] averaged over RAMA sites and during the period from
24 to 29 March 2006 when the aerosol effect on the photolysis
frequencies is considered.

aircraft measurement, but the impacts of small-scale clouds
on the photolysis coefficients cannot be well simulated by
the WRF-CHEM model. For example, at the beginning,
the C-130 observed high photolysis coefficients at around
3.5 to 4.0 km compared to those at the same altitude in the
other time, even above 5 km, indicating that the aircraft flew
over clouds that significantly enhance the photolysis coef-
ficients above them (Liao et al., 1999). Along the aircraft
flight track, aerosols increase or decreaseJ [O3(

1D)] and
J [NO2], depending on the domination of UV scattering or
UV absorption by aerosols. During the Photochemical Ac-
tivity and Ultraviolet Radiation campaign, radiative transfer
model calculations and airborne measurements have shown
that the absorbing dust aerosols reduce actinic flux (280–
420 nm) and photolysis rates (Balis et al., 2002; Hofzuma-
haus et al., 2002).

Figure 9 shows the diurnal variation of the percentage
change ofJ [O3(

1D)] and J [NO2] averaged over RAMA
(Mexico City Ambient Air Monitoring Network) sites. The
reduction ofJ [O3(

1D)] and J [NO2] due to aerosols is sig-
nificant in the early morning and late afternoon when the so-
lar zenith angle (SZA) is large, indicating the effect of long
aerosol optical path for incoming radiation. With the de-
crease of SZA around noontime, the impact of aerosols on
photolysis frequencies decreases, particularly for the effect
of J [NO2], with the change approaching zero.

In this study, we evaluate the effects of aerosols on photol-
ysis frequencies with detailed consideration of aerosol size,
composition and mixing. The impacts of aerosols on pho-
tolysis frequencies are similar to those previously reported
by Jacobson (1998). Using a three-dimensional model with
a size- and composition-resolved aerosol module, Jacobson
(1998) studied the effects of aerosols on vertical photolysis
rate coefficients within and over an urban airshed in Los An-
geles. He found that in the boundary layer when UV scatter-
ing dominates UV absorption by aerosols, aerosols increase
photolysis coefficients of UV-absorbing gases and vice versa.
Our results are also comparable to that obtained by Liao et
al. (1999), in which non-absorbing aerosols, such as sulfate,
generally enhance photolysis rates above and in the upper

part of the aerosol layer while soot aerosols decrease photol-
ysis rates in the atmosphere; aerosol mixtures could decrease
or increase photolysis rates, depending on SSA, SZA and al-
titude (Liao et al., 1999). It is worthy to note that Castro et
al. (2001) found that in Mexico City, the reductions in sur-
faceJ [NO2] by 10–30 % could be attributed to the presence
of aerosols. However, in the present study, during noontime,
the reduction ofJ [NO2] due to aerosols is less than 10 %.
Moreover, we find that in some cases, aerosols produce an
enhancement ofJ [NO2]. One of the possible explanations
is that since the 1990s, significant improvements of air qual-
ity in the MCMA have been achieved (Molina and Molina,
2002). The study performed by Castro et al. (2001) was
based on the observation in 1994, but the present study fo-
cuses on the MILAGRO-2006 field campaign. During the
time period from 1994 to 2006, substantial reductions in
the concentrations of gas phase pollutants and particles have
been achieved in Mexico City (Molina et al, 2010). In ad-
dition, in the study of Castro et al. (2001), the aerosol size,
composition, and mixing are not considered in detail, which
also likely contribute to the difference with the present study.

3.4 Aerosol impacts on photochemistry

The photolysis frequencies ofJ [O3(
1D)] andJ [NO2] play a

key role in the formation of O3 and OH in the troposphere.
In the polluted atmosphere, the O3 formation mechanism can
be expressed as follows:

NO2+hv → NO+O(3P) (290 nm< λ< 420 nm) (9)

O(3P)+O2+M → O3+M (10)

O3+hv → O2+O(1D) (290 nm< λ< 329 nm) (11)

O(1D)+H2O→ 2OH (12)

OH+VOCs+O2 → RO2+others (13)

RO2+NO→ RO+NO2 (14)

Variation of J [O3(
1D)] and J [NO2] strongly influence the

O3 formation and OH concentrations.
Figure 10 shows the percentage change in surface O3 con-

centrations at 10:00 and 14:00 LT from 24 to 29 March 2006
when the effects of aerosols on the photolysis frequencies
are considered. At 10:00 LT, the impact of aerosols on O3
in the urban area is highest on 24 March (about 5–20 % re-
duction in O3 concentration) and minimal on 26 March (less
than 10 % reduction in O3 level); while on the other days,
the O3 level is decreased by about 2–15 %. At 14:00 LT, the
impact of aerosols on O3 concentrations is less than 10 %.
In addition, the O3 reduction due to aerosols is mainly lo-
cated within the pollutant plumes; in contrast, outside of the
plumes, aerosols even slightly enhance surface O3 concentra-
tions due to the domination of scattering. Figure 11a and b
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Fig. 10. Percentage change in surface O3 concentrations at 10:00
and 14:00 LT from 24 to 29 March 2006 when the aerosol effect on
the photolysis frequencies is taken into account.

display the diurnal cycle of the percentage change of O3 and
OH averaged over twenty-one RAMA sites, respectively. On
average, in the urban area, the impact of aerosols on O3 for-
mation is most significant in the morning, with the reduction
of O3 by 5–20 %. In the afternoon, the reduction of O3 due to
aerosols is less than 5 %. This study shows that the impacts
of aerosols on ozone concentrations in Mexico City are com-
parable to that reported by Jacobson (1998), in which pho-
tolysis coefficients changes due to aerosols decrease near-
surface O3 mixing ratio in Los Angeles by 5–8 %. How-
ever, the impact of aerosols on O3 in the present study is
not as large as those reported by Castro et al. (2001). Based
on the calculation of a simple zero-dimensional photochem-
ical model, they have found that surface O3 concentrations
in Mexico City could be higher by several tens of ppb if the
incident solar UV radiation were not attenuated by aerosols.
In this study, even on 25 March when the aerosol impacts on
O3 are highest, the average O3 reduction in the urban area is
less than 10 ppb, which is substantially lower than the value
reported by Castro et al. (2001). The percentage change of

 
 
Figure 10 (continue) 
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Fig. 10. Continued.

OH due to aerosols exhibit two nadirs in the early morning
and late afternoon, corresponding to the longest aerosol op-
tical path for incoming UV radiation (Fig. 11b). On average,
the daytime OH level in the urban area is decreased by about
9 % by aerosols.

The OH level in the atmosphere directly determines the
oxidation rate of the precursors of secondary aerosols. For
the nitrate aerosol, its precursor (HNO3) is mainly from the
reaction of NO2 with OH. Oxidation products of VOCs and
semi-VOCs by OH are the most important precursors of
SOA. Therefore, the decrease of OH level due to aerosols
will influence the formation of secondary aerosol by reduc-
ing their precursor concentrations. Figure 11c and d show the
percentage change of nitrate and SOA averaged over RAMA
sites, respectively; their concentrations are reduced in the
early morning by more than 10 %. However, in the afternoon,
the reduction of nitrate aerosols due to aerosols is only about
2 % on average, which is attributed to the increase of NO2
caused by the reduction ofJ [NO2], which partially compen-
sates the decrease of the OH level for the HNO3 formation.
The nitrate and SOA concentrations are decreased by around
5 % and 6 % in the urban area during daytime on average,
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Fig. 11.Same as Fig. 10, but for the surface(a) O3, (b) OH, (c) Ni-
trate, and(d) SOA concentrations.

respectively. For sulfate aerosols, because of the inefficient
conversion of H2SO4 from SO2 reaction with OH, the impact
of aerosols to its concentrations is negligible, less than 1 %
during daytime on average in the urban area.

3.5 Sensitivity studies

In the base case simulations, several recent findings of
aerosols, such as the rapid aging of BC and enhanced absorp-
tion of UV radiation by POA observed in Mexico City are
considered in this study (Moffet and Prather, 2009; Barnard
et al., 2008). Furthermore, three sensitivity studies are per-
formed to evaluate the contributions of these findings to the
aerosol absorption. In the first sensitivity study, the BC aging
timescale is set to 1.5 day (Cooke and Wilson, 1996); in the
second study, the refractive index of POA is set to those of
SOA; the third study includes the changes in both first and
second cases. For the convenience of the analysis, we define
the aerosol absorption factor as:

α = 1−SSA=
κa

κs+κa
(15)

Figure 12a and b present the diurnal cycle of the aerosol ab-
sorption factor averaged over RAMA sites and during the
simulation period. The rapid aging of BC and the enhanced
UV radiation absorption by POA significantly influence the
aerosol absorption, contributing 21 % at 550 nm and 38 % at
400 nm toα, respectively. The rapid aging of BC plays a
more important role in the aerosol absorption during daytime
than at nighttime, but the other way around for the enhanced
UV radiation absorption by POA because of the evaporation
of POA to form SOA. In addition, during daytime, at 550 nm,
the contribution of the rapid aging of BC to the aerosol ab-
sorption is about twice that from the enhanced UV radiation
absorption by POA, but at 400 nm, their contributions are al-
most the same. When the rapid aging of BC and the en-
hanced UV radiation absorption by POA are not considered

 
 
Figure 12 
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Fig. 12.Daily cycle of the percentage change of aerosol absorbance
at (a) 550 nm and(b) 400 nm averaged over RAMA sites and dur-
ing the period from 24 to 29 March 2006 when the aerosol ef-
fect on the photolysis frequencies is considered;(c) Percentage
change ofJ [O3(1D)], J [NO2], O3, OH, SOA, and nitrate due to
aerosols averaged over RAMA sites and during the period from 24
to 29 March 2006. Black: without the rapid aging of BC and en-
hanced UV-radiation absorption by POA; red, without the rapid ag-
ing of BC; green: without the enhanced UV-radiation absorption by
POA; blue: the base case.

in the third sensitivity study, compared with the results in
the base case, theJ [O3(

1D)] andJ [NO2] reductions due to
aerosols in the urban area are decreased by 41 % and 44 %
on average during daytime, respectively (Fig. 12c). Corre-
spondingly, the impacts of aerosols on O3 and OH concentra-
tions in the urban area are significantly reduced by more than
40 % without consideration of the rapid aging of BC and the
enhanced UV radiation absorption by POA. In addition, the
contribution of these two processes to the aerosol absorption
and photochemistry is comparable in this study (Fig. 12c).

4 Conclusions

We have developed an aerosol radiative module with de-
tailed consideration of aerosol size, composition and mixing,
and coupled it into the WRF-CHEM model to evaluate the
aerosol impacts on the photochemistry in Mexico City. Six-
day simulations from 24 to 29 March during the MCMA-
2006/MILAGRO have been performed with and without the
aerosol impacts on photolysis frequencies and concentrations
of atmospheric oxidants and aerosols; the model results have
been compared with the available surface, aircraft and satel-
lite observations.

www.atmos-chem-phys.net/11/5169/2011/ Atmos. Chem. Phys., 11, 5169–5182, 2011



5180 G. Li et al.: Aerosol effects on the photochemistry in Mexico City

The WRF-CHEM model performs reasonably well in sim-
ulating aerosols in the urban area compared with the mea-
surements at T0, although it has difficulties in simulating sul-
fate aerosols, which are influenced by multiple sources with
substantial emission uncertainties in Mexico City. Compared
with the aircraft measurements, the model generally captures
the plumes formed over the city and the simulated aerosol
concentrations are also comparable to the observations. Rea-
sonable simulations of aerosol temporal variations and spa-
tial distributions provide a necessary bolster for the evalua-
tion of the effects of aerosols on the photochemistry.

The calculated aerosol optical properties are verified us-
ing the available measurements from the surface site, aircraft
and satellite. The simulated AOT is generally consistent with
the measurements from an AERONET site and MODIS. The
WRF-CHEM model overestimates the SSA in the urban area
compared with measurements at T0 during nighttime, but it
reasonably reproduces the variations of the SSA during day-
time. Compared with the research aircraft observations, the
model is capable of reproducing the temporal and geographi-
cal variations of SSA, but there is large discrepancy between
simulated and observed values of SSA when the model con-
siderably overestimate or underestimate the secondary inor-
ganic and organic aerosols along the aircraft flight tracks.

The calculated photolysis frequencies ofJ [O3(1D)] and
J [NO2] are compared with ground-based and aircraft mea-
surements, showing a good agreement between the calcu-
lated and measured values. Inclusion of aerosol effects yields
better agreement between the calculated and measured val-
ues. The impact of aerosols on photolysis frequencies is sig-
nificant during the early morning and late afternoon hours,
and the reduction ofJ [O3(

1D)] andJ [NO2] due to aerosols
is about 10–30 %. Around noontime, with the growth of
aerosol particles and the decrease of the SZA, aerosols re-
duceJ [NO2] by 1–5 % andJ [O3(

1D)] by 7–10 % in the ur-
ban area on average due to the larger scattering of UV ra-
diation. The decrease in photolysis frequencies leads to a
reduction in the surface O3 concentrations in the urban area
in Mexico City. On average, the impact of aerosols on O3
formation is most pronounced in the morning with the O3
reduction of 5–20 %; but the O3 reduction is less than 5 %
in the afternoon. The daytime OH level is also decreased
by about 9 % due to the presence of aerosols; in addition,
the impacts of aerosols on photolysis frequencies apprecia-
bly decrease the daytime concentrations of nitrate and SOA
by 5–6 % in the urban area on average.

Our sensitivity studies indicate that the rapid aging of
BC and the enhanced UV radiation absorption by POA play
an important role in the aerosol absorption in Mexico City,
which lead to about 40 % of O3 reduction due to the aerosol
impact on photolysis frequencies. This demonstrates the im-
portance of accounting for the contribution of the rapid aging
of BC and the enhanced UV radiation absorption by POA
when evaluating the impact of aerosols on the photochem-
istry in the atmosphere.

There are several implications to the present study. In
Mexico City, a large amount of BC and POA are emitted to
the atmosphere (Zavala et al., 2009), causing strong absorp-
tion of UV radiation during daytime. However, high levels
of non-absorbing aerosols, such as SOA, sulfate, nitrate and
ammonium, efficiently scatter UV radiation. Aerosols can
enhance photolysis frequencies when UV scattering dom-
inates UV absorption by aerosols or vice versa. In most
of the megacities and large urban complexes in the United
States, the observed BC concentrations are lower (Murphy
et al., 2011), so the change in photolysis frequencies due to
aerosols is likely to be positive. In contrast, very high POA
and BC emissions in the megacities in China have caused
the reduction of photolysis frequencies and ozone concen-
trations (Bian et al., 2007). In addition, the aerosol radiative
module developed in the present study is based on the aerosol
modal approach in CMAQ, which is now widely used in air
pollution simulations. Considering its efficiency and accu-
racy demonstrated in the present study, the module provides
a powerful tool for evaluating the aerosol impact on the pho-
tochemistry in megacities.

It should be noted that when calculating the photolysis
rates in the FTUV, the two-stream approximation is used to
solve the radiative transfer equation to obtain the actinic flux.
The two-stream method divides the multiple scattering con-
tributions into two components, representing by the asym-
metry factor (g), and upward and downward fluxes are cal-
culated by solving two coupled differential equations. Gen-
erally, in radiative transfer calculations, the more streams that
are adopted in the radiation scheme, the more accurate is
the calculated radiation field. Therefore, in the two-stream
method, errors are caused by using just the asymmetry factor
rather than the full scattering function or very low angular
resolution. Kay et al. (2001) found that the two-stream ap-
proximation had considerable errors at the cloud base and
top, whereas theδ-four stream approximation had negligible
errors. More accurate methods to calculate actinic flux need
to be considered in the future study, but are beyond the scope
of the present study.
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