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Abstract. Weibull distributions were fitted to wind speed deviation to detect outliers) rather than on dynamics (e.g. by
data from radiosonde stations in the global tropics. A sta-examining properties emergent from statistical mechanics).
tistical theory of independent wind contributions was pro- This may be because it is hard to generalize a single global
posed to partially explain the shape paramétesbtained  statistical dynamics that is applicable to widely different cli-
over Malay Peninsula and the wider Equatorial Monsoonmatic zones. Adopting the former “statistical mathematical”
Zone. This statistical dynamical underpinning provides someapproach results in smaller regions with denser station net-
justification for using empirical Weibull fits to derive wind work exerting greater influence in the formulation of QC cri-
speed thresholds for monitoring data quality. The region-teria and thresholds than larger regions with more sparse net-
ally adapted thresholds retain more useful data than convenwork. The tropical landmasses in South America, Africa and
tional ones defined from taking the regional mean plus threéSoutheast Asia are good examples of the latter regions and
standard deviations. The new approach is shown to elimthe quality of radiosonde data from these regions requires
inate reports of atypically strong wind over Malay Penin- some scrutiny even after QC.

sula which may have escaped detection in quality control of In weather forecasting, modern data assimilation tech-
global datasets as the latter has assumed a larger spread @itjues incorporate additional QC based on the model first-
wind speed. New scientific questions are raised in the purguess fields and in-built error metrics. So data values that are
suit of statistical dynamical understanding of meteorologicaltoo different from first guesses may be rooted out before as-
variables in the tropics. similation. However, in the tropics, the quality of first-guess
fields may sometimes be suspect because model performance
is known to be poorer and less data is assimilated prior to
making the first guess. Therefore, a QC methodology de-
pendent only on the collected data itself and underpinned by

Radiosonde observations provide arguably the most reliabltatistical dynamical understanding may be useful, at least as
long-term meteorological data, especially before the advend" mdependent_ check of data quality before data assimilation
of satellites. They are used for routine weather analyses an@d their associated QC checks.

forecasts, as well as validation of satellite retrievals (e.g. Di- In the recent decades, there has been emerging interest
vakarla et al., 2006; Stoffelen et al., 2005). Unprocessed raln Southeast Asia by the international community studying
diosonde data contain many types of error (Gandin, 1988fhe global atmosphere. Neale and Slingo (2003) pointed
and must pass through qua“ty control (QC) before use. Be.OUt that the diurnal CyCIe in the maritime continent is not
cause radiosonde data are collected all over the world unwell-captured by general circulation models (GCM) de-
der the auspices of World Meteorological Organization, QCSPite its importance to global circulation (Ramage, 1968).
methods are usually global in perspective and statistical inZhu and Wang (1993) showed that strong interactions ex-
nature (e.g. Durre et al., 2006). The statistical methods ardSt over Southeast Asia between the Asian-Australian mon-

usually based on mathematics (e.g. by the use of standargoon and the intra-seasonal oscillations spanning the global
tropics (Madden and Julian, 1971, 1994). There has been

more research focused on this region’s climate and weather,
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(1997), Chang et al. (2005); on tropical cyclones: Chang2 Data overview
et al. (2003); on sea-breeze circulation: Hadi et al. (2002);
Joseph et al. (2008). For the benefit of global and regionaifwice daily radiosonde observations were taken from the De-
atmospheric research, besides gathering more data usirRggrtment of Atmospheric Science, University of Wyoming
non-conventional platforms in Southeast Asia (Koh and Teo (http://weather.uwyo.edu/upperair/sounding.html Seven
2009), it is timely to re-examine the nature and quality of stations situated on the Malay Peninsula (MP) in Southeast
conventional radiosonde data from this region. This paperAsia (Fig. 1) were used for the first part of this study. The
reports our investigations into the statistical dynamics of ra-Peninsula spans a region of about 1200 km by 400 km ori-
diosonde wind data while on-going work on temperature andented in the NW-SE direction. It is roughly the size of Great
humidity data will be reported in future publications. Britain or California, USA. It represents a conveniently sized
One may reasonably pose a general question: could théegion for which statistical homogeneity might be expected
statistics of a set of wind data be understood from underlyingio underlie the prevailing mesoscale convective weather. The
regional atmospheric dynamics and thereby providing a basi§€ven stations span the peninsula uniformly and together pro-
for better quality monitoring? Unlike the global problem, a Vide 35 years of data from 1973 to 2007 with some gaps in-
statistical dynamical approach is sound in principle here beierspersed in-between. Another 235 stations betweeiN25
cause the statistical properties of regional atmospheres ar@\d 25 S were used to test the extension of the findings from
well determined by a few controlling factors from the re- MP to the global tropics.
gion's climate (e.g. ambient stratification, humidity profile =~ Wind speed at 00:00UTC and 12:00UTC on eleven
and prevailing wind pattern) and for the planetary bound-mandatory pressure levels (1000, 925, 850, 700, 500, 400,
ary layer (PBL), from the surface characteristics (e.g. eleva-300, 250, 200, 150 and 100 mb) were used for all stations.
tion, roughness, temperature, wetness). But there is a cavedtor MP (Table 1), data was available for less than half the
the underlying statistical dynamics must be revealed througfiime at 12:00 UTC for Phuket and Songkhla, while data from
data before QC; otherwise, data that could possibly reflec§epang and Phuket cover less than 20 years. Overall, the av-
new physical understanding may have already been categofrage number of stations on the peninsula reporting per day,
ically rejected by existing QC methods based on statisticalout of seven total, lies in the range of 3.8 to 4.4 at 00:00 UTC
mathematics. and 2.6 to 3.1 at 12:00 UTC for all pressure levels excluding
Literature on the statistical characterization of wind speed925 mb (which has less data because it was only adopted as
has mainly focused on the surface layer (e.g. Takle et al.@ mandatory level in the 1990s).
1978; Labraga, 1994; Lun, 2000) and to a lesser extent, the Wind data were given to the nearest 1 knot and so where
PBL (e.g. Frank etal., 1997). Most of the literature employedrelevant, bin size in statistical analyses was specified in units
the Weibull distribution (Wilks, 1995) to model wind speed. Of knots to avoid artificial clustering of data if otherwise
Justus et al. (1978) demonstrated that Weibull distributionspecified in units like ms'. A bin size ofsv =2 knots was
fits surface wind better than the square-root-normal distribu-tised for the frequency histograms (e.g. Fig. 2) throughout
tion used by Widger (1977). The Rayleigh distribution is this work because this was the finest resolution practically
another commonly used empirical fit for surface wind (Man- achievable. A large difference in the data frequency was
well et al., 2002) but this distribution is only a special case hoted between odd- and even-valueth knots, which may
of the Weibull distribution with shape parametes 2. The  indicate that some stations actually measure in integral num-
authors are unaware of any published characterization of trober of ms* but record in knots after applying the conversion
pospheric wind using Weibull distribution, but found Roney 1 ms !~ 1.944knots.
(2007) who fitted the Weibull distribution to lower strato-
spheric wind soundings. In all the reviewed literature, no
guantitative explanation was attempted for why the Weibull
distribution is a good fit to the wind data. _ The frequency histogram for non-zero wind speed at 850 mb
The objectives of this work are two-fold: (1) to elucidate from gl 7 stations on MP without quality control is shown
the statistical dynamics of tropical wind by analyzing long- j, Fig. 2. Measurements of zero wind speed were ignored as
term records of raw radiosonde data from selected stations ighey may actually denote calm condition or light wind speed
Southeast Asia and extending the results to the wider ropyhich radiosonde records do not resolve. Equation (1) below
ics; (2) to assess the feasibility of using that statistical dy-ghows the probability density function (PDF) of the Weibull

namical understanding for monitoring the quality of regional gistribution that was empirically fitted to the wind speed data
wind data. It is hoped that the results presented would MOyt each pressure level:

tivate similar statistical dynamical studies in other tropical X 1 L
regions with sparse data coverage. Pk, c)dv= - (3) exp[— (3) } dv 1)
C \C C

3 Methodology

wherev is the wind speedg is the scale parameter aid
is the shape parameter. Maximum Likelihood Estimation
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Table 1. Table shows the period for which radiosonde wind data were available at 00:00 UTC and at 12:00 UTC with the precise start and
end dates in the column Date Range. (Note that data from Kuantan came in two periods.) Within each period, the proportion of days for
which data were actually available lies within the shown percentage range for all pressure levels used in this study, except 925 mb which was
instituted as a mandatory level only in the 1990s and so the lower percentage at this level is shown in parentheses. The total period spanne
and the number of station reports per level are given in the last line. Data periods less than twenty years or data availability less than 50 %
(excluding 925 mb) are highlighted in bold italics.

00:00UTC 12:00UTC
Station Date Range Percentage of Data Date Range Percentage of Data
Available Available
Phuket 20 Sep 1988-31 Dec 2007 51 %—64 % (43 %) 31 Jul 19904 Oct 1994 24 %—46(%%)
Penang 1 Jan 1973-31 Dec 2007 77 %—-83 % (38 %) 1 Jan 1973-31 Dec 2007 74 %—80 % (36 %)
Sepang 16 Jul 1999-31 Dec 2007 90 %—93 % (93 %) 17 Jul 1999-31 Dec 2007 86 %—92 % (92 %)
Changi 24 Aug 1980-31 Dec 2007 84 %—88 % (54 %) 19 Jul 1983-31 Dec 2007 51 %-55% (28 %)
Kuantan 2 Jan 1973-9 Jan 2000 65 %—77 % (26 %) 25 Oct 1973-30 Nov 2000 59 %—71% (24 %)
5 Feb 2005-30 Dec 2007 4 Feb 2005-30 Dec 2007
Kota Bharu 1 Jan 1973-30 Dec 2007 60 %—-80 % (36 %) 1 Aug 1975-30 Dec 2007 52 %—75 % (36 %)
Songkhla 1 Jan 1973-31 Dec 2007 67 %-80% (21 %) 1 Jan 1973-24 Jun 1933 %—49 %(1 %)
Date Range Number of Date Range Number of
Station Reports Station Reports

All stations 1 Jan 1973-31 Dec 2007 48520-55719 (26369) 1 Jan 1973-31 Dec 2007 33153-39944 (16 960)
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Fig. 2. Frequency histogram of the scaled wind speed at 850 mb for
all 7 stations on MP from 1973 to 2007 using a bin size of 2 knots.
The frequency is normalized over the total number of measure-
ments. The thick curve is the empirically fitted Weibull distribution
with shape parametér=1.67 and scale parameter= 12.9 knots
(or6.62m s1). The bold vertical line denotes the threshofghx=

Fig. 1. Location of radiosonde stations on the Malay Peninsula52.1 knots, beyond which wind speed data is flagged as erroneous.
(MP) used in this study.

There was a very weak dependencé ahdc on the range
(MLE) was used to determine andc¢ (Wilks, 1995). The  of raw data [Opsit] to which MLE was applied for sufficiently
exponent will be shown to be indicative of the underlying largevsit. This dependence is inherently weak because log-
statistical dynamics. likelihood for a set oot data points is defined as:

www.atmos-chem-phys.net/11/4177/2011/ Atmos. Chem. Phys., 11, 41892011



4180 T.-Y. Koh et al.: Statistical dynamics of tropical wind in radiosonde data

|ngd=efmzm|np(vi) 4  Empirical results
i=1
D> NP @1) < iz q Maximum-likelihood estimates of the scale and shape pa-
Log<v; <vge MP @) = n(vo<vi<v) = rameters as well as thresholds for wind speed at each level

in MP are shown in Fig. 3. All Weibull fits are good ac-
cording to they?-test at 90% confidence level. Within
the PBL (which for this paper is taken to be 850 mb and
below), ¢ increases with height but above the PBL, it is
nearly invariant up to 500 mb with a value around 13 knots.

for sufficiently largevsi;

where vg is such thatP(v) decreases monotonically for
v > vg andn refers to the number of data points. The con-

tribution of extreme values to the log-likelihood is evidently In the ubper troposphere. increases sharply with heiaht
negligible and s@ andc estimated by MLE are not sensitive from 15&1 0.1 kﬁotsp at 4’00 mb to reach paymaximurr? of
to erroneously large values of the data. Nonetheless, in orde£2 210 '2 kno.ts at 150 mb

to proceed in practice, the value af; used for the Weibull % has the smallest value of 1.540.01 at 1000 mb. The

fit was selected by minimizing the mean absolute difference :
between the fitted distribution and the frequency histogramValue of kincreases upward from 1.670.01 at 925mb to

over all available data. (Other criteria for choosing were values somewhat blgger_ than 2 in the upper troposphere
. - : . (300 mb to 150 mb). Similar values of around 5/3 are noted
tested with no significant difference in the results.)

The goodness of fit of the Weibull distributions to the atthe tropopause level (100 mb) and in the PBL (925mb and

: ) o : 850 mb).
- 0,
rl\slt?gran s was tested with?-statistics at 90 % confidence Tt led threshold/c shows th ite vertical

trend fromk, which is expected from the threshold being

5 ot A (Pobsb — Piit.b)> pegged touisit = 1: a largetk implies a stronger decay in the
=7 Z it PDF at largev/cand hence a smaller scaled threshelgax/c

b=1 ’ has the largest value of 4.6 at 1000 mb and is around 4 in the
wherepopsb and prit p are the observed and fitted probability PBL and at the tropopause. It decreases upward from 3.9 at
of wind speed lying in bin by, is the number of bins in the 700 mb to values around 3 in the upper troposphere.
histogram andu is the total number of data pointg. is
a scale factor that compensates for the lack of independence ) )
among nearby data points in time and is taken as the criti> 1 heoretical basis
ca! ”“”.‘ber of day_s beyof‘d \.N.h'Ch the lag auto-c_:orrelatlon 0fThe literature mentioned in Sect. 1 rarely justified the use
daily wind speed is not significant at 90 % confidence level.

2 defined above is probably an upper bound on the e of Weibull distribution beyond the fact that it does yield re-

o . . alistic fits to the observations. Moreover, most work dealt
because each station’s measurement is not independent of the

others. Thus, thig 2-test is rather stringent, but it suffices for with surfacc_e wind for which the underlying assumptions may
our purpose not be applicable to the troposphere or even the PBL. There-

The root-mean-square (rms) velocityis given by fo_re,_ the_z statistical dynamicgl unplerpinning of the Weibull
distribution for near-equatorial wind must be sought anew
odef [ 5 Y 2/k from our understanding of statistical dynamics. The ver-
o _/0 v Pw)dv=c fo t exp(—t)dt () tical profile of ¢ is largely dictated by the climatology of
planetary-scale Hadley and Walker circulation and the Asian-
Australian monsoon. The vertical profile bfs the object of
whereT is the gamma function (Arfken, 2000). This im- study in this section.
plies thatc is constrained by the climatological wind speed . o
measured by for a givenk. In this work, it was found that -1 ApPProach to Gaussian statistics
k € [1.3,2.6] which implies[I"(2/ k +1)] %/ € [0.86,1.04].
Thus in practice¢ ~ o andc is a good indication of the cli-
matological wind speed.

From the PDF, the expected numiagy(v) of wind speed
reports in the bind, v+ §v] of the frequency histogram was  — Zv" (3)
computed for the size of the dataset. The wind speed thresh-
old vmax was defined such thati;(v) <1 for v > vmax. By
the fitted Weibull distribution, wind speed records larger than
vmax are unlikely to be reliable for the given dataset size. It
was checked thatyax Was smaller thamsi; at all levels, con-
firming the validity of the Weibull fit including values around
Umax-

T

=cT(2+1)

Suppose the horizontal wind vectoermay be decomposed
into numerous contributions associated with different tropi-
cal meteorological phenomena:

For instance,v; can arise from diurnally excited gravity
waves (Rotunno, 1983}y, from equatorial waves (Wheeler
and Kiladis, 1999)y3 from intra-seasonal oscillations (Mad-
den and Julian, 1971, 1994; Waliser, 2006&) from Asian-
Australian monsoon (Wang, 200&)s from Walker circu-
lation (Katz, 2002) under inter-annual variations etc. One
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@ pendix A shows that the Central Limit Theorem is still ap-
E plicable even in the case where the setwpfthas members
with non-zero covariance.)
Thus, in the limit of largeV, wind velocity v follows the
Gaussian distribution,

100
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wherec? is the variance ob and is twice the variance af.

or v, because the wind velocity anomaly is assumed to be
isotropic. The isotropic assumption is supported by the vir-
tual absence, or at best, weakness of anisotropy from obser-
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k vations (e.g. Mori, 1986; Ibarra, 1995; Koh and Ng, 2009).
© For zero mean wind, integrating over all directiaghghe
100 P PDF for wind speed is the Rayleigh distribution:
g 400 %%% 27
* P(v)dv = / P(v)vdvd ~ 2—‘2’exp[— (E)Z}dv (5)
£ 700 * 0 ¢ ¢

which is also Weibull distribution with shape parameter
5 2. It must be emphasized that the derivation of Eq. (5) does
not depend on the statistical dynamics of each contribution

Fig. 3. Plots of empirically fitted attributes of the Weibull distri- Un .(or wy) except for the e_mplrlcallyjustlflable_ assumptions
bution for wind speed at different pressure levels in N#:scale of |§otropy. The assumptlo_n pf zero me.an wind WI”. be ex-
parameter: (b) shape parametét (c) scaled thresholdmay/c for amined Iatgr. Thus, the stanspcal dynamics c_)f many indepen-
wind speed. Error bars farandk are estimated by MLE at 95% dent contributions from tropical meteorological phenomena
confidence level. Vertical dashed lines corresponk405/3, 2 in may explain why ~ 2 is observed generally in the upper tro-
(b) andvmax/c = 3, 4 in(c). Crosses irfb) denote theoretical lower ~ posphere in Fig. 3b. In fact, Rayleigh distribution cannot be
bound fork for wind anomaly magnitude. Asterisks (o) denote  rejected by they ?-test at 90 % confidence level for levels be-
the thresholdmzsg (mean plus three standard deviations) at eachtween 500 mb and 150 mb inclusive. (Note that this does not
pressure level. mean that Rayleigh distribution is the best-fit distribution.)

1000 I I I I I

5.1.1 Departure from Gaussian statistics
might even split the contributions among sub-categories, dis-
tinguishing between: land-sea and mountain-valley diurnal~O" the levels below 500 mb and at 100 mb, Jretest re-
circulations; Kelvin and Rossby waves of different equiva-18CtS Rayleigh distribution at 90 % confidence level. More-
lent depth; monsoon cold surges and westerly wind burstsOVel: MLE fits of Weibull distribution did showk <2 for
El Nifio — Southern Oscillation (ENSO) and Indian Oceanfhose levels and small but significant deviations flom?2 in
Dipole (I0D). But the detailed cause of eagh is not im- the upper troposphere. Further theoretical understanding for
portant to the following argument as long as there are more?UCh departure from Gaussian behavior is sought below by:
than a few independent, contributing tov. Over alongtime (1) examination the effect of non-zero mean wind; (2) intro-
such as 35 years, the set of values that agdiakes may be ducing Shannon’s entropy as a measure of non-Gaussianity
reproduced by the realizations of a random variable with its2nd €xplaining its variation in the lower and upper tropo-
own characteristic probability distribution. Note that this is SPhere.
!\IQT saying that each contribution actually varies randomly5.1.2 Non-zero mean wind
in time.

Assuming each random variahilg in Eq. (3) is indepen-  In the presence of non-zero mean wind, Appendix B shows
dent of the others, the Central Limit Theorem implies that that for isotropic Gaussian wind anomalies as in Eq. (4), the
the PDF of) v, approaches Gaussian distribution as the to-PDF for wind speed is
tal number of random variabled, increases without bound.

2 2
Note that the mean of v, is the sum of meam,, and the  p(y) dv = exp[ — .10<2vmv> . @exp “2 ) av (8)
variance of) v, is the sum of the variance af,. (Ap- c? c? c? c?
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4182 T.-Y. Koh et al.: Statistical dynamics of tropical wind in radiosonde data

o N 5.1.3 Shannon’s entropy
/\ v, /=049
1 \ v_16=0.1 3 H H
/ \ A0 Shannon’s entropy for a random two-dimensional vector
N\ m - . . .
0s \ Dok _ variablev is defined as
/| \ _ - e 2
® \ v def
3 06 j \\ Z Enl‘[P(v)]Z—// P(v)InP(v)dzv (7)
\ ¢
oaf fI/ allv
I/
/ . . . . .
o i/ \ Among all probability density function® (v) of unit vari-
,///’ \\ soof ! - —Ewz ance, Shannon’s entropy is maximal for the Gaussian distri-
% o5 1 15z 25 % o2 o1 05 08 1 12 bution only (Artstein et al., 2004). Thus, the Central Limit
e meanwind (ron-dmensionalizec) Theorem may be understood as an approach towards max-

Fig. 4. (a) The Rayleigh distribution (bold dashed) is compared to imal Shannon's entropy. Small Shannon's entropy denotes

the PDF of wind speed when the mean winglis non-zero (solid)  SU'0Nd departure from Gaussianity in the distribution.
assuming Gaussian wind anomalies. Examples of Weibull distri- ASSUMIng that isotropy prevails, Appendix C shows that

butions withk > 2 (dashed) are also shown for comparison. Wind _Shannon’s entropy of Weibull distributions of unit variance
speedv is normalized by its rms value for each distribution to S related to the shape parameter

facilitate comparison(b) Normalized mean windm/o for the set (27 2 2
of 7 stations on Malay Peninsula (MP) and mean normalized windEm{P(v/a)] =In (T) —In [F(E + 1)] +A=-pr+1 (8

um for Equatorial Monsoon Zone (EMZ), where=v/o foreach  \hereT is again the gamma function (Arfken, 2000) and
station. y is the Euler-Mascheroni constant (Whittaker and Watson,
1996). The expression shows that Shannon’s entropy has
maximum value ofEmax=In7 + 1 atk =2 and decreases
monotonically fork larger or smaller than two (graph not

is zero, the underlined factor in Eq. (6) is unity, recovering S"oWn). Thus, Shannon’s entropy corresponding to the k-

Rayleigh’s distribution. This factor comprises two terms: as V&lues at 500mb and beIth in Fig. 3b was computed and
vm increases, the exponential function decreases while théhown in Fig. 5. Shannon’s entropy at upper I_evels was not
modified Bessel function increases. The two tendencies ten§OMpPuted because the effect of strong mean wing aryo)

to balance for smalim, but the latter wins out for largem implies that Eq. (8) is not applicable to wind speed but to

and so the PDF departs increasingly from Rayleigh distriby-Wind anomaly magpnitude only. o
tion. From Eq. (8), to understand the variationko to under-

The effect of non-zero mean wingh on the PDF in Eq. (6) stand the variation of Shannon’s entropy. In Appendix D, we

was computed and is shown in Fig. 4a, where the PDFs aréhOW tnat notwithstanding the Central Limit The(_)rem, Wnen
expressed in terms of wind speed normalized by its rms valud€ variances are non-uniform among the velocity contribu-
o to facilitate comparison. Farm/o < 0.5, the effect can be  110NS v in Eq. (3), Shannon's entropy df(v/o) can de-
neglected as (v/o) approximates that for Rayleigh distri- Créase by an amount as much/es as the number of inde-
bution. While forvm/o > 0.5 the effect of non-zero mean penctent contnbutlonN.ln'creases, i.e. the approach to Gaus-
wind is significant, the PDF can in practice be approximatedSianity is not monotonic in general. For larg the theoret-

by Weibull distributions with > 2 (cf. dashed and solid lines ical lower bound for Shannon’s entropyigax— A E), could

in Fig. 4a). This explains why Weibull fits are still good even € €stimated roughly (see Appendix D for details).
in the presence of large mean wind. The vertical trend in Emax— AE) in Fig. 5 shows that

The magnitude of the mean wing, in MP is shown in ~ €Ven for largeN, wind anomalies can have the most depar-
Fig. 4b, normalized by the rms wind spegaver the region. ture from Gaussianity between 400 mb and 150 mb, which is
At 500 tnb and belowym /o < 0.49, which implies the mean consistent with our deduction at the end of Sect. 5.1.2. Thus,
wind has negligible effect o (v) and is not the main cause 7 2 in the upper troposphere may arise in part from the

of k £ 2 at those levels. At 400 mb and abovg,/o > 0.84. non-uniform variance among the wind contributians For
So, using Fig. 4a, Weibull fits t& (v) would result k=29 illustration, rough estimates of the theoretical lower bound

or larger at those levels, if the wind anomalies were Gaussian®" # for wind anomaly magnitude were computed from

Thus, strong mean wind can explain whytends to some- (Emax—AE) by inverting Eq. (8) (crosses in Fig. 3b). The
times overshoot 2 at upper levels, but it is also clear that thélecreasing effect ok by non-uniform variance appears to
wind anomalies are non-Gaussian becauieconsiderably ~ COMpete with the increasing effect by strong mean wind
less than 2.9 (Fig. 3b). There must be another cause£ 1 the upper troposphere, resultingArclose to and some-

in the upper troposphere that reduces the value of times overshooting 2. o _ o
From 925mb to 500 mb in Fig. SAE is negligible be-

cause the variance is roughly uniform among wind contri-
butionsv,,. But Shannon’s entropy is much less thERax.

wherev, is the magnitude of the mean wind vector akd
is the modified Bessel function of the first kind. Whean
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Fig. 5. Shannon’s entropy for the Weibull's distributions fitted to the

radiosonde wind Speed data from MP at 500 mb and below (Solld A common statistical threshold to reject Outlying data is

Iine)_. The wind speed was first normalized by its_ rms value. Thethe mean plus three standard deviations. For a variaple
maximal Shannon’s entropy and the value associated ntlb/3 this threshold is denoted agasg 1N Fig. 3¢, vmax iS COM-

(dotted lines) are shown. The theoretical bound (dashed line) forpared withumssg Where the mean and standard deviation are
reduction from maximal Shannon’s entropy is computed for wind

; computed from the MP data only. At all pressure levels, the

anomaly using Eq. (8). thresholdvmaxis larger than the regionapzsg implying that
more useful regional data is retained in our statistical dynam-

This meansV is not large enough for the wind anomalies ical approach rather than the common statistical mathemati-
to approach Gaussianity. Artstein et al. (2004) proved thatcal approach.
when the velocity contributions,, have uniform variance, The MP data below our wind speed threshalgy is com-
Shannon’s entropy increases monotonically as the number gbared with data from Integrated Global Radiosonde Archive
contributionsN increases (see Appendix D). This is consis- (IGRA) (Durre et al., 2006) in Fig. 6. The finding is that
tent with the trend in Shannon’s entropy in the lower tropo- a theoretically sound regional data-monitoring strategy can
sphere, suggesting an increase in the number of independeittentify erroneously high wind speed that escapes detection
contributionsN with height. in the QC of global datasets. This is possibly because global
QC assumes a larger spread of wind values than is valid
within a specific region like MP. Similar large erroneous
wind speed in Indonesia reported over the Global Telecom-

The preceding understanding for Weibull distribution of munication System (GTS) was also noted by Okamoto et

wind speed supports the view that beyond the empiricalal' (2003). o

threshold of validity of the distributionymayx, Wind speed In modern data assimilation systems, such as used
data are likely to be dominated by noise and hence are sudy European Centre for Medium-Range Weather Forecast
pect. It follows naturally to apply such thresholds to monitor (ECMWF), east-west and north-south wind components are
the quality of the radiosonde data from MP. For demonstra-2nalyzed separately and often assumed to follow Gaussian
tion purpose, data at three mandatory levels, 850 mb, 500 mgistributions of equal variance. The non-Gaussianity iden-

and 250 mb, were selected. Results showed that about halffied in the last section, especially in the lower tropo-

a percent of 278 711 available wind speed records at thesgPhere where the mean wind is weak may be cause for re-
three levels are suspect. examination of these assumptions. Moreover, in eliminating

unrealistic wind speed (€.9.> vmax= 52.1 knots at 850 mb
in MP, see Fig. 6), the proposed QC method would raise the

6 Application to monitoring data quality
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120 E 180 E

Fig. 7. All 242 tropical radiosonde stations used in the latter part of the study (including the seven stations in MP): “+” signs denote stations
in the upper-level (500 mb to 100 mb) westerly zone; circles denote stations in the upper-level mixed wind zone; all other symbols denote
stations in the upper-level easterly zone. Within the easterly zone, stations are denoted by their geographical regions (number of stations
shown in brackets): “x” sign = Africa (6); asterisk = South Asia (4); dot = Southeast Asia (31); triangle = Indian Ocean (2); diamond = West
Pacific (6).

quality of data assimilated and incrementally improve model (a) Westerly Zone
analyses and re-analyses in the tropics. This would eventu- *® =1
ally contribute to the quality of model first-guess fields so = , %j
that they could be used more reliably to check tropical obser- - "
vations at the time of assimilation. 700

Pressure(mb)

1000 t |
7 Extension to Equatorial Monsoon Zone e e 18 2 2224 26 28

In this section, the preceding statistical dynamical theory

for the Weibull distribution of radiosonde wind and the data 100

monitoring strategy developed from it are tested for their rel- -

evance to other tropical regions. 400
242 stations across the global tropics (including MP) were

first divided into three climatic zones according to the time-

averaged zonal wind in the upper troposphere (i.e. mandatory 1000

(b) Mixed Wind Zone

700

Pressure(mb)

14 16 18 2 2.2 2.4 2.6 2.8

levels from 500 mb to 100 mb inclusive): (a) westerly zone:

every level shows westerly mean wind; (b) mixed wind zone:

both westerly and easterly mean wind are present; (c) east (c) Easterly Zone
erly zone: every level shows easterly mean wind (Fig. 7). 00 o ros=i -y T

The existence of the mixed wind zone in the equatorial
belt and its significance to cross-equatorial propagation of g
Rossby waves have been noted before (Webster and Holton§ -,

mb)

400

1982). On a pressure level, each station is a point measure® . e
ment and would under-sample the underlying dynamics. The 1000t = = I a— e ——: S
k-value at each station would behave like a random variable ' ' ' K ' '

IFseIf W'th a pmbab'_l'ty dlstrlbuthn. Qompgrlso_n of the ver- Fig. 8. Scatter plot showing the values bfcross vertical levels at
tical profiles of median k-values in Fig. 8 with Fig. 3b Shows yqica) stations in the three upper-level climatic wind zones. For
that the statistical dynamics in the westerly and mixed windeach zone: median values at each level are connected to show a ver-
zones are probably different from that over MP, but the statis+ical profile; the delimited horizontal bars denote the inter-quartile
tics in the easterly zone warrant further investigation. range at each level. For the easterly zone, k-values of stations in
The k-values in West Pacific (diamonds in Fig. 8c) are con-Africa (“x” sign), South Asia (asterisk), Southeast Asia (dot), In-
sistently larger than most other values in the easterly zonglian Ocean (triangle) and West Pacific (diamond) are marked with
and bear closer resemblance to those in the mixed wind zonéhe same symbols as in Fig. 7.
The West Pacific stations are also the only ones in the easterly
wind zone that do not lie within the monsoon region accord- ] ) )
ing to figure 1.2 of Ramage (1971). Therefore, the Equatorial Unlike MP, EMZ spans half the globe across varying cli-
Monsoon Zone (EMZ) is defined to encompass the stationgnatology of wind speed (Fig. 9a). So at each pressure

in the easterly wind zone excluding the West Pacific stations!€vel, wind speed from each station must be normalized
by its rms valuer estimated in Eqg. (2) before the combined

dataset ofi = v/o can constitute a statistically homogeneous
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100 uct of the locab- and the regional thresholdhax derived es-
® sentially fromkgnz: the expected numbes; (u, su) < 1 for
‘ u > umax Using a bin sizéu of 2 knots divided by the mean
l o at each level. Away from the surfacebMZ is larger than
} thevEMZ for about 90 % or more of the stations, whefgZ,
700 | is the statistical mathematical threshold computed from the
1

100

400

400

700

Pressure (mb)
Pressure (mb)

union set of alb measurements in EMZ for each level. As a
threshold to flag off suspicious outlying radiosonde reports
1000 - 1000 H EMZ MZ
0 2 0 0 o5 I s in EMZ, vEMZ preserves more useful data thaf4Z, be-
o (knot) ez causevEMZ captures the region’s statistical dynamics and is
adapted to the local wind climatology. At 1000 miEYZ is
not a suitable reference for comparison as lagakqgshould
v os be used instead.

To understand the values/iafyz, the corresponding Shan-
p—— non’s entropy fou normalized to rms value of 1 is shown in
(ef) 25%-ile Fig. 10. As before, Shannon’s entropy was not computed for

(right) 75%~tile

(el 10%-tle 400 mb and above because of the effect of strong mean wind
i (um > 0.69) on P (u/oemz) (Fig. 4). The error bars fot in

Fig. 9c and hence for Shannon'’s entropy in Fig. 10 were es-
timated by generating another two sets of bestdjiz by
. 0 0200 200 separately removing the stations with the top or bottom 5
Bz Vinax (100 percentile of k-values (i.e. top or bottom 2 stations) and com-
puting the standard deviation among the three sets of best-fit

kemz. The theoretical lower bound for Shannon’s entropy,

100 100

400 400

Pressure (mb)
Pressure (mb)
> > 0 0 +

700 700

1000 1000

Fig. 9. (a)Scatter plot of rms wind speedcomputed using Eg. (2)

at all 43 stations in the Equatorial Monsoon Zone (EMZ). The verti- _ .
cal profile connects the median values and delimited horizontal bar Emax— AE), could also be estimated roughly for laryeas

denote the inter-quartile rangegb) The rms valuesgpz of non- efore (see Appendix D for details).

dimensional wind speed= v/c computed from the fitted Weibull Compared to the MP results in Fig. 5, the EMZ results in
distribution ofu in EMZ using Eq. (2). (c) The shape parameter Fig. 10 show that the lower troposphere (1000 mb to 500 mb)
kgmz describing the fitted Weibull distribution of in EMZ with is nearer to attaining maximal entropy because there is a
error bars shown. Crosses denote theoretical lower bouridftor larger number of independent velocity contributidvisaris-

wind anomaly magnitude(d) The spread of threshold wind speed ing from spatial de-correlation within EMZ. Below 850 mb,
(symbols) among the stations in EMZ compared to (line). it appears that the non-uniformity of variance among the
contributions across EMZ may be keeping Shannon’s en-
tropy away from the maximal value (dashed line in Fig. 10).
Above 500 mb, competing effects from non-uniform vari-
ance among velocity contributions (that decregsend large
Thean wind (that increasg tend to balance leading o~ 2,
although nearer the tropopause the former effect seems to
dominate (crosses in Fig. 9¢). Note that 2 does not imply
Gaussianity (but the converse would be true).

population that describable by a Weibull distribution of dis-
tinct shape and scale parametefisz, cemz). Because the

value 1,0 gmz computed fronkgyz andegnvz should be 1 for
a large dataset # at each station correctly captures the cli-
matological wind speed. From Fig. 9b, we see thayz ~ 1
for all levels indeed. The largest difference ofyz from
one is only—0.055 and occurs at 1000 mb, possibly due to
the complicating influence of local terrain and surface char-
acteristics. 8 Summary and discussion
It was not possible to carry out the-test for the Weibull
fit for the wind speed in the EMZ because the spatial autocorEmpirical Weibull distributions of wind speed were derived
relation is hard to estimate reliably from an irregular station by Maximum Likelihood Estimate for radiosonde data span-
distribution. However, the fact thatepmz ~ 1 is indirect but ~ ning more than 30 years from 7 stations in the Malay Penin-
clear evidence that the Weibull distribution is a good fit be- sula (MP) and from 43 stations in the Equatorial Monsoon
cause otherwise, Eq. (2) would have yielded wrong valuesZone (EMZ). The Weibull distribution is governed by two
not only forogmz but also foro at each station in the first parameters: the shape parametds the key quantity in-
place. vestigated in this paper; the scale parametisrdetermined
The characteristic profile okgmz and the associated by a givenk and the rms wind speed which is the re-
threshold for wind speedfMZ are shown in Fig. 9c and d re-  sult of planetary-scale climate dynamics. Wind in EMZ was
spectively. At each statiomﬁ';"xz was estimated as the prod- non-dimensionalized by the local to remove the effect of
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) climatology. Such an improved dataset from EMZ would ul-
timately benefit research and forecast.

100 1 The existence of non-Gaussianity in the troposphere ap-
N pears to be a natural consequence of non-linear dynamical
200 T g models. Sardeshmukh and Sura (2009) showed in an adi-
K abatic GCM that skewness and excess kurtosis (which are
300 Y E identically zero for Gaussian distribution and hence represent
(of) BL value ! non-Gaussian behaviour) are associated mainly with small-
400 (right) max value ! g scale turbulent fluxes. Interestingly, they also showed that

7 theorencalbound ! the statistical relation between skewness and excess kurto-
1 g sis can be reproduced in linear stochastic models when addi-
| tive (state-independent) and multiplicative (state-dependent)

E Gaussian white noises are correlated. This may hint at further

investigation of the non-Gaussianity identified in this work

. with linear equatorial wave models.

The current work also raises specific questions: (1) What

1 are the physical causes of the dominant velocity contribu-

tions? (2) Why does the number of independent velocity

. contributionsN seem to increase with height? (3) Does the

seemingly common value df=5/3 observed in the PBL

E (850 and 925mb) and at the tropopause (100 mb) in MP

reflect any statistical dynamics occurring at local scales at

those levels or is it mere coincidence in this dataset? (4) How
do we understand the profile d&f outside of the EMZ?

Fig. 10. Figure 10 shows Shannon’s entropy at 500 mb and below(5) What distributions do tropical temperature and humidity

for the Weibull's distributions fitted to the non-dimensional wind follow and what are their underlying statistical dynamics?

speedu = v/o from Equatorial Monsoon Zone (solid liney.was ~ These questions and others leave much room for exciting re-
first normalized by its rms valuegz as the latter is close to but  search into the statistical dynamics of regional atmospheres.
not exactly 1. The maximal entropy and the value associated with

k =5/3 (dotted lines) are shown, as well as the theoretical bound

(dashed line) for reduction from maximal entropy. Appendix A

pressure (mb)
o
=3
o
T

600 -
700 -
800 -

900 [~ _ -

1000 -

I I I I I I I I
2.07 2.08 2.09 21 211 212 213 214 215 2.16

Shannon’s entropy Ent[P(u/cEMZ)]

) o ] - ~ Non-zero covariance between velocity contributions
geographic variation of climatology before empirical fitting

of the Weibull distribution. _ _Ifaparticularv, has non-zero covariance with anothey,

A statistical theory of independent physical contributions the two velocity contributions would not be independent.
to the observed wind was proposed to explain the obsérved However, it is easy to define two new variables as follows:
as follows.

def -1
1. The increase in the number of such contributiogvis ~ Wr — Yn = COV(¥a, vm) [Var(wm)] ™" vm

: def _
causes Shannon’s entropy to rise and the valuke tof wn= {1+cov(v,, vm)[var(vm)] 1}vm

approach 2 from the lower to mid-troposphere. . . .
PP posp where the variance and covariance for vectors are defined

2. In the upper tropospheraiis likely to be large. Butthe in e.g. Feller (1968). The contributions tocould be re-
non-uniformity of variance among the velocity contri- expressed as
butions prevents Shannon’s entropy from attaining the
maximal value and tends to decredsewhile strong

mean wind tends to increase Thus,k has values close t s readily verified that the new random variablas, and
to 2 (EMZ) or sometimes may overshoot 2 (MP). wm, have zero covariance. In this way, the Central Limit

Best-fit Weibull distribution can be used to derive confi- Theorem may be applied as before.
dence thresholds for monitoring radiosonde wind speeds.
The thresholds are generally larger than those obtained by
taking the mean plus three standard deviations. More data is
retained and data quality is improved because these thresh-
olds are based on an understanding of the statistical dynam-
ics of near-equatorial wind and they are adapted to the local

Vy+vm=w, +wnm
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Appendix B In the last step above, we made use of
PDF for Gaussian wind anomaly under non-zero fglm(—mé) d§=—y
mean wind follns d& =[§In§]3—fold§ =-1
From Eq. (4), where the first integral is one expression for Euler-
1 — — Mascheroni constant (Whittaker and Watson, 1996).
5 wv=vv-v)] »
P(v)d°v= —zexp[——z]d v
TC C
1 02 20 V2 Appendix D

= —2 eXp —2 . eXp —2 coy |- eXp — —2 vdvdo . . )

e ¢ ¢ ¢ Derivation of entropy increment

wherevy, is the magnitude of the mean wind afds the an-
gle between the wind vector and the mean wind. Integratin
over all angles, the PDF for wind speeds

Recalling Eq. (3), let;? be the variance of,,. We define the
gfoIIowing average variances and partial suma pformal-
ized to unit variance:

P(v)dv=exp Yin I <2Umv> 2v exp v dv(B1) def , NAL def N+1
v)dv= - |lo\—7% ) —= —— |av 2 def 4 2 . de 1
CZ C2 C2 Cz SN+1 = N1 ngl (o , UN41™= m ’12::1 v, (Dl)
where Iy is the modified Bessel function of the first kind
(Arfken et al., 2000): def; NA1 def N+l
2 S/%/,m:% %2 ;OUNm = 1W > v, (D2)
Io(@) = 5 [ explacos)dd n=Ln#m NN =1 n#m
Theorem 2 of Artstein et al. (2004) states that the approach
Appendix C of > v, to Gaussian statistics with increasing number of
independent square-integrable random variabjegi.e. as
Shannon'’s entropy associated with Weibull distribution N — o0) obeys the inequality:

We assume that the wind velocitys isotropic and hence has , N2 1 , Nt
zero mean. Equivalently, we can takes an isotropic wind Entl P 7 El o | = N+1mZ:1Ent P ﬁn:LZn#n,v" (D3)

anomaly if the mean wind is non-zero. Let the variance of L o
the distribution ber2. For the magnitude obeying Weibull ~ Using definitions (D2) and (D3) and the identity Ent) =
distribution, we define a non-dimensional variable- v/  INs+Ent@), Eq. (D3) becomes

that follows Weibull distribution of unit variance:

P(u)du=P(v)dv
k1 k where the straight overbar denotes arithmetic mean e
= k\/F(% +1) [”\/F(i + 1)} expi_ [u /F(% + 1)} }du 1to N +1. Using the identities,
2 _ 2
= —d[E(u)] INLLT N
|ns12\,’m = |ns12\,’m

Insy+1+ENf{P(uyi)] > INsy n +EN{P(un )]

where Egs. (1 and 2) were used and(u) =

k .
2 , where the curly overbar denotes geometric mean from1
exp{ - [” Pz + 1)] } From Eq. (7), Shannon’s entropy , v\ 1 the expected increase in entropy is

foru is

or p P 2
ENt P (u)] = — / [ S (”)]udu / 4o (Cl) _ o _
o L2ru  2mu 0 AE is the minimal increment in Shannon’s entropy that can

Y N S O AP be expected.
N _fo : 27u (w)du The following statements can be deduced from Eq. (D4):

©'AE (D4)

ENP (01— ENEP @y i = 3n(s3,,, /55.,,)

l —_—~
=_f |n[%r(%+1)(_|ng)<k—2>/kg]d§ 1. If mean square velocity? is invariant ofn, s,zv,m =
0 1 1 S/%/,m' Thus, Shannon’s entropy is expected to increase
=—In[§l‘(%+1)] _ (1_ %)/ In(—Ing)dé _/ Ingde monotonically withN (Artstein, 2004).
0 0
=In(Z)-In|rE+1 1-2)y+1 En{P(uny1)]—EN{P(un )] >0 (D5)
ni % n (k+ ) [+ ( k)J/-f- N+1 N,m)l=
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2. If anz varies withn, it is straightforward to show that Chang, C. P., Wang, Z., McBride, J., and Liu, C. H.: Annual cycle of
S;%fvm <% and In(slfz\,vm/ﬂ) <0. Thus, Shan- Southeast Asia - Maritime continent rainfall and the asymmetric
’ ’ ’ ’ monsoon transition, J. Climate, 18, 287-301, 2005.
non’s entropy may even be expected to decreas€ as pjakarla, M. G., Barnet, C. D., Goldberg, M. D., McMillin, L. M.,
increases becauger < 0. Maddy, E., Wolf, W., Zhou, L., and Liu, X.: Validation of Atmo-
spheric Infrared Sounder temperature and water vapor retrievals
. o . with matched radiosonde measurements and forecasts, J. Geo-
in the limit asN — oo, uy approaches the Gaussian 05 Res 111, D09S1660i:10.1029/2005JD006118006.
distribution which has the maximum Shannon’s entropy pre 1., Vose, R. S., and Wuertz, D. B.: Overview of the Integrated
Emaxamong any distribution of unit variance. Global Radiosonde Archive, J. Climate, 19, 53—-68, 2006.
Feller, W.: An Introduction to Probability Theory and its Applica-
tions, 3rd Ed., Wiley, New York, 227-233, 1968.
ank, H. P. and Landberg, L.: Modelling the wind climate of Ire-

3. In all cases, the Central Limit Theorem requires that

By supposing that, take with equal chance one of two
values,Sp andS1, the largest possible reduction in Shannon’s Er

entropyA E can be simply estimated using Eq. (D4): land, Bound.-Lay. Meteorol., 85, 359-378, 1997.
Gandin, L. S.: Complex quality control of meteorological observa-
AE~1In ( 5251?2) <0 (D6) tions, Mon. Weather Rev., 116, 1137—1156, 1988.
o' Hadi, T. W., Horinouchi, T., Tsuda, T., Hashiguchi, H., and Fukao,
For MP, we used the ratio of rms wind speedf neigh- S.: Sea-breeze circulation over Jakarta, Indonesia: A climatol-
bouring levels (Eq. 2) as proxy for the ratio of variances of 09y based on boundary layer radar observations, Mon. Weather
velocity contributions: Rev., 130, 2153-2166, 2002. o
Hendon, H. H.: Indonesian rainfall variability: Impacts of ENSO
(&) ~ —0ik)  forisq (D7) and local air-sea interaction, J. Climate, 16, 1795-1790, 2003.
S1/; " otai-rki-g) Ibarra, J. I.: A new approach for the determination of horizontal

where the level indexincreases downwards with pressure.  wind direction fluctuations, J. Appl. Meteorol. Clim., 34, 1942—
For EMZ, unlike for MP, the variance of wind contribu- 1949, 1995. _
tions could be estimated from the extensive spatial sampling/©SePh. B., Bhatt, B. C., Koh, T. Y., and Chen, S.: Sea breeze sim-

. . ulation over Malay Peninsula over an intermonsoon period, J.
?cjllronqu?nglggtisrﬁaetiq across EMZ (Fig. 93). So we used the Geophys. Res., 113, D2012#i:10.1029/2008JD010312008.

Juneng, L. and Tangang, F. T.: Evolution of ENSO-related rain-
So\ _ (oupp fall anomalies in Southeast Asia region and its relationship with
(S_1> ~ (_> (D8) atmosphere-ocean variations in Indo-Pacific sector, Clim. Dy-
! ! nam., 25, 337-350, 2005.
whereo ypp andoow are the upper and lower quartiles of the Justus, C. G., Hargraves, W. R., Mikhail, A., and Graber, D.: Meth-
rms wind speed at each station in the EMZ respectively. As ods for estimating wind speed frequency distributions. J. Appl.
the choices in Egs. (17 and 18) are only rough estimates, the Meteor., 17, 350-353, 1978.

and not on the values per se. and Statistics, Stat. Sci., 17, 97-117, 2002.
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