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Abstract. This study utilizes large eddy simulation, aircraft
measurements, and satellite observations to identify factors
that bias the absolute magnitude of metrics of aerosol-cloud-
precipitation interactions for warm clouds. The metrics con-
sidered are precipitation susceptibilitySo, which examines
rain rate sensitivity to changes in drop number, and a cloud-
precipitation metric,χ , which relates changes in rain rate to
those in drop size. While wide ranges in rain rate exist at
fixed cloud drop concentration for different cloud liquid wa-
ter amounts,χ andSo are shown to be relatively insensitive
to the growth phase of the cloud for large datasets that in-
clude data representing the full spectrum of cloud lifetime.
Spatial resolution of measurements is shown to influence the
liquid water path-dependent behavior ofSo andχ . Other fac-
tors of importance are the choice of the minimum rain rate
threshold, and how to quantify rain rate, drop size, and the
cloud condensation nucleus proxy. Finally, low biases in re-
trieved aerosol amounts owing to wet scavenging and high
biases associated with above-cloud aerosol layers should be
accounted for. The paper explores the impact of these effects
for model, satellite, and aircraft data.

1 Introduction

The representation of the physical processes relating aerosol
particles, clouds, and precipitation in general circulation
models (GCMs) is characterized by highly uncertain parame-
terizations (Lohmann and Feichter, 2005). The links between
aerosol, clouds, and rainfall remain poorly understood owing
to the complexity of the processes, measurement limitations,
and the difficulty in isolating aerosol effects from compet-
ing factors such as meteorology. Climate models employ
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spatial resolution (>100 km) that is far coarser than the tools
used to inform parameterizations of aerosol-cloud processes,
including cloud model simulations and observations. Even
at the higher spatial resolutions available with these tech-
niques, there exists large uncertainty in quantifying cloud re-
sponses to changes in aerosol owing to differences in mea-
surement and data analysis techniques (McComiskey and
Feingold, 2008; Grandey and Stier, 2010). It is therefore im-
portant to address the source of variability in reported values
of aerosol-cloud-precipitation metrics, especially when com-
paring measurements between in situ measurements, models,
and satellite remote sensors.

The various constructs that are examined in this work are
of interest because they provide a link between climate model
parameterizations and observational and modeling studies.
For example, the process of collision-coalescence between
cloud drops to form precipitation, termed autoconversion, is
represented in GCMs using a parameterization typically re-
lating rain rate (R) to the amount of liquid water in clouds
(i.e. liquid water path, LWP) and drop number concentration
(Nd) in the form of the following power law:

R ∼ LWPx1N
x2
d (1)

The connection between aerosol andR is contained within
thex2 term sinceNd is directly proportional to aerosol num-
ber concentration,Na. Values ofx2 range widely between
−0.8 and−1.75 based on numerous aircraft-based studies
in stratocumulus regions (Pawlowska and Brenguier, 2003;
Comstock et al., 2004; van Zanten et al., 2005; Wood, 2005;
Lu et al., 2009). Such a broad range leads to widely vary-
ing simulated strengths of the second aerosol indirect effect
in climate models, some of which usex2 values ranging be-
tween 0 and−1.79 (Quaas et al., 2009).

Published by Copernicus Publications on behalf of the European Geosciences Union.

http://creativecommons.org/licenses/by/3.0/


4028 H. T. Duong et al.: Investigating potential biases

The following metrics have recently been introduced as
a way to improve the quantification and understanding
of aerosol-cloud-precipitation interactions (Feingold et al.,
2001; Feingold and Siebert, 2009; Sorooshian et al., 2010):

ACI= −
∂ ln re

∂ lnα
(2)

χ =
∂ lnR

∂ ln re
(3)

So = −
d lnR

d ln Nd
(4a)

S′
o = −

d lnR

d ln α
(4b)

wherere is drop effective radius,α is a cloud condensation
nuclei (CCN) proxy, and all partial derivatives are evaluated
with macrophysical conditions (e.g. LWP) held fixed. ACI
relates a change in drop size to an aerosol perturbation, and
using basic assumptions, this term is bounded by the range
0–0.33; a value of 0.33 corresponds to complete activation of
sub-cloud aerosol into droplets (i.e.α =Nd). A wide range
of ACI values has been reported in the literature, with higher
values usually associated with in situ and ground-based mea-
surements as compared to satellite remote sensing observa-
tions (McComiskey and Feingold, 2008); that study showed
that a difference in ACI of 0.05 generates a large uncertainty
in radiative forcing estimates (∼ −7 W m−2).

The relationship between aerosol perturbations and rain
rate can be quantified as the precipitation susceptibility (So),
which relates the precipitation response to a change in drop
concentration. Alternatively,So can be indirectly obtained
by the product of ACI andχ (Sorooshian et al., 2010). Us-
ing Eq. (4a), susceptibility can be quantified using remote
retrievals ofNd (with assumptions; Bennartz 2007) without
the need to assume that aerosol in cloud-free pixels is respon-
sible for the microphysical response in adjacent cloudy pix-
els. On the other hand, Eq. (4b) can quantify susceptibility
using the better-understood measurement ofα (in the form
of aerosol optical depth or aerosol index). Precipitation sus-
ceptibility is useful in that it comprises variables that can be
observed and it is directly related to the previously-defined
x2 value in the autoconversion parameterization employed in
climate models (at fixed LWP,So = −x2).

A number of recent studies have shown similar qualitative
behavior ofSo as a function of LWP for shallow cumulus
clouds (Jiang et al., 2010; Sorooshian et al., 2009a, 2010),
where at low LWP, clouds are relatively insensitive to aerosol
as they do not have a great potential to precipitate, while at
larger LWP, clouds can precipitate more and they become
progressively more sensitive to aerosol perturbations. The
precipitation susceptibility of warm clouds grows with in-
creasing LWP to a maximum, after which it decreases. This
represents a shift from a precipitation regime dominated by
autoconversion to one of accretion. Sorooshian et al. (2010)

showed using modeling and observational data thatχ essen-
tially captures the essence ofSo behavior as a function of
LWP, while ACI is approximately invariant with LWP, pro-
vided data has been binned by LWP. However, these studies
highlighted a number of issues, including statistical insignif-
icance of the values of these metrics when calculated us-
ing satellite data (S′

o), and disagreement in both the absolute
values of these metrics, and their LWP-dependent behavior
amongst the various methods (in situ measurements, models,
satellite remote sensing). Furthermore, aerosol-cloud-rain
relationships such as precipitation susceptibility could po-
tentially exhibit a different behavior for different cloud types
such as shallow cumulus clouds and stratocumulus clouds
(Wood et al., 2009).

The goal of this study is to directly identify potential
sources of disagreement in ACI,χ , So between satellite ob-
servations, in situ observations, and large eddy simulation.
We do so by examining the sensitivity of these parameters to
a number of factors thought to bias their absolute magnitudes
and LWP-dependent behavior. Only warm clouds are consid-
ered. The paper is structured as follows: (i) overview of ex-
perimental methods; (ii) analysis of the sensitivity of aerosol-
cloud-precipitation metrics to cloud lifetime and spatial reso-
lution of measurements, method of quantifying aerosol-cloud
parameters, using artificially low and high retrieved aerosol
concentrations owing to wet scavenging and above-cloud
aerosol layers, respectively; and (iii) conclusions.

2 Experimental methods

2.1 Modeling

The model used in this work is the Regional Atmospheric
Modeling System (RAMS, version 6.0) (Cotton et al., 2003),
a large eddy simulation (LES) model, coupled to an ex-
plicit bin-resolving microphysical model (Feingold et al.,
1996; Stevens et al., 1996). The simulations are initial-
ized with a thermodynamic sounding based on data from
the Rain In Cumulus over Ocean (RICO) field experi-
ment (Jiang et al., 2009, 2010); the model domain size is
25.6 km× 25.6 km× 6 km with a horizontal grid spacing of
100 m and vertical grid spacing of1z = 40 m up to 4 km,
and vertically stretched above that height with a stretch fac-
tor of 1.035.

Two simulations were carried out with initial aerosol con-
centrations (Na) of 100 cm−3 and 300 cm−3 to represent
clean and moderately polluted clouds, respectively. The sim-
ulations were run for 12 h, but only output from hours 6 and
7 were examined. Individual clouds were manually tracked
over the course of their lifetime, where a cloud is defined as
having an average LWP exceeding 20 g m−2 and a minimum
size of 0.3 km× 0.3 km. Merging and non-precipitating (R <

0.5 mm day−1) clouds are excluded in the analysis, to be
consistent with the analysis of Jiang et al. (2010). Merging
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events are of great interest but significantly complicate the
analysis because they provide the equivalent of a strong per-
turbation to the evolution of the microphysical and dynam-
ical state of the individual clouds entering the merger. The
cloud microphysical properties following a merging event
change significantly as compared to the original clouds and
therefore are not representative of the microphysical evo-
lution of single clouds. For example, the maximum drop
effective radius and precipitation rate of the newly merged
clouds typically increase between a factor of two and four
when compared to the original clouds prior to merging, pre-
dominantly owing to an acceleration in drop accretion. To
avoid this complexity, we focus on the evolution of individ-
ual clouds. The analysis is restricted to clouds that exhibit
lifetimes between 15–45 min (∼30 % of clouds in each sim-
ulation), as these clouds reach sufficiently high LWP values
to be classified as clouds and this discrimination also elimi-
nated cases of merging clouds. Extensive details on lifetime
and areal extent statistics for the entire cloud population are
provided by Jiang et al. (2010; refer to their Fig. 4).

At each minute of a cloud’s life the values of LWP,
cloud-top drop effective radius (re,top), column-maximum
drop effective radius (re,max), column-maximum cloud drop
concentration (Nd,max), and column-maximum precipitation
rate (Rmax) are calculated. These values are then averaged
over three different spatial resolutions (0.3 km× 0.3 km,
0.5 km× 0.5 km, and 0.7 km× 0.7 km) at each sampling
time. The highest resolution among these three resolutions
(0.3 km× 0.3 km) is centered around the maximum LWP,
and extended outward for the lower resolutions. Note that
some clouds were not sufficiently large to allow averages
over the larger spatial areas. Clouds are categorized into
three regimes based on terciles of lifetime: beginning (0–
33 % lifetime), middle (33–67 % lifetime) and end (67–
100 % lifetime). ACI,χ , andSo are quantified in each cloud
lifetime category for 15 different LWP bins with midpoints
including 50 g m−2, 100 g m−2, and up to 1400 g m−2 in
100 g m−2 increments. LWP bins extend up to 10 % around
the midpoints (i.e. LWP + 10 %× LWP) to maintain similar
numbers of points in each bin.

2.2 Aircraft measurements

The aircraft measurements derive from the second Marine
Stratus/Stratocumulus Experiment (MASE-II) field cam-
paign during July 2007 off the coast of Monterey, Cali-
fornia. The objective of MASE-II was to study aerosol-
cloud interactions in stratocumulus clouds. The flights
paths were designed to fly level legs below cloud base,
at three levels in cloud (above-base, mid-level, below-top),
and above cloud. Seven flights are examined here. The
measurements and instrument payload are described ex-
tensively elsewhere (Hersey et al., 2009; Sorooshian et
al., 2009b). Briefly, the forward scattering spectrometer
probe (FSSP; PMS, modified by DMT Inc.) was used to

quantify Nd and re, while the cloud imaging probe (CIP),
part of the cloud/aerosol/precipitation spectrometer package
(CAPS; DMT Inc), was used to quantify drizzle rate (R).

Maximum values forNd, re, andR were calculated as an
average over a 2.5 km long stretch of a level leg with the
maximum value of each parameter at the centerpoint; full
level legs usually lasted 10–15 min (30 – 45 km at the aircraft
speed∼50 m s−1). Cloud-top and cloud-base values of vari-
ous parameters were obtained by averaging data over the en-
tire below-top and above-base legs, respectively. Data used
in calculation of cloud parameters were only taken when
LWC exceeded 0.05 g m−3 to avoid biased calculations when
breaks appeared in the otherwise solid cloud. LWP is quan-
tified as the vertical integration of the liquid water content
(LWC) measured by a PVM-100 probe (Gerber et al., 1994)
during slant ascents and descents through the cloud decks.
Depending on the spatial variability in the cloud, these will
deviate from true profiles. Column-integrated values ofre,
Nd, andR are calculated using the slant ascent data as well.
We assume that these data are representative of the profiles
over a larger-scale cloud area defined by the level legs. The
mean percentage difference for LWC,re, Nd, andR values
between level legs in cloud and at the same altitude during
the selected slant ascent/descent are less than 20 %. A con-
densation particle counter (TSI CPC 3010,Dp >10 nm) and
a passive cavity aerosol spectrometer probe (PCASP; PMS;
Dp ∼100 nm to 2.6 µm) were used to quantify the sub-cloud
aerosol number concentration (Na).

2.3 Satellite products

For this study, 27 months of data are used from NASA’s A
Train constellation of satellites beginning from June 2006.
The description of all satellite products and data filtering
methodology are described extensively elsewhere (Lebsock
et al., 2008; Sorooshian et al., 2010). Briefly, data are only
used for warm maritime clouds in conditions of single cloud
layers. Precipitation rate data are obtained from the CloudSat
cloud profiling radar (CPR) (2C-PRECIP-COLUMN prod-
uct; Haynes et al., 2009) within the range of 0.1–5 mm h−1.
Collocated aerosol data are obtained from the Moderate Res-
olution Imaging Spectroradiometer (MODIS), specifically
the 1◦ × 1◦ gridded aerosol index (Level 3, MODIS Col-
lection 5) (Remer et al., 2005), which is defined as the
product of the 0.55 µm aerosol optical depth× 0.55/0.867 µm
Ångstrom exponent. AI serves as a sub-cloud CCN proxy
in the analysis as it has been shown to correlate better than
AOD with columnar CCN concentrations (Nakajima et al.,
2001; Bŕeon et al., 2002). Level 2 MODIS products at 1-km
resolution are used to obtain data for cloud-top drop effective
radius (re) and LWP (Platnick et al., 2003). In addition, at-
mospheric stability is quantified using estimates of the lower
tropospheric static stability (LTSS) from the European Cen-
tre for Medium Range Weather Forecasts (ECMWF) analy-
ses that have been matched to the CloudSat footprint (Partain,
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2007). LTSS (◦C) is defined as the potential temperature dif-
ference between 700 hPa and 1000 hPa.

3 Results and discussion

Large eddy simulation output is used in Sects. 3.1 and 3.2 to
examine the importance of cloud lifetime, spatial resolution,
and the minimumR threshold applied to the analysis. Air-
craft measurements are used in Sect. 3.3 to discuss the choice
of how to quantify aerosol-cloud properties. Satellite data are
used in Sects. 3.4 and 3.5 to look at the effect of above-cloud
aerosol layers and wet scavenging, respectively.

3.1 Cloud lifetime

Recent work has attempted to parameterize shallow cumu-
lus R in terms ofNd and LWP (Jiang et al., 2010). That
work showed that the parameterization is significantly im-
proved when cloud lifetime is taken into account. Building
on those results, we quantify the sensitivity ofχ andSo to
cloud lifetime for shallow cumulus clouds using LES out-
put. Modeling is used for this effort since satellites provide
‘snapshots’ at one point in time of a cloud field and therefore
there is no direct measurement of what stage of a cloud the
retrieved data represent. For example, is a cloud with a LWP
of 800 g m−2 a budding cloud that is in a growing stage or a
decaying cloud that is being depleted of its liquid water via
precipitation?

To determine what effect cloud lifetime will have onSo

andχ , the dynamic ranges ofR andre are first evaluated at
a representative LWP value (800 g m−2) for a population of
clean and polluted clouds at all stages of their lifetime be-
tween 0–100 % (Fig. 1). Note that few points are available at
the beginning stages of clouds as they have not yet had suffi-
cient time to reach a LWP of 800 g m−2. The two clusters of
points at varying levels ofNd correspond to the “clean” and
“polluted” simulations. Precipitation is driven more directly
by droplet size rather thanNd, which explains the narrower
range inR at fixedre as compared to fixedNd (i.e. R andre
are more closely linked physically thanR andNd). Cloud
lifetime is shown to be responsible for the wide range inR

at fixedNd, where clouds near the end of their lifetime are
raining most heavily. The dynamic range inR tends to be
wider for the clean clouds versus more polluted clouds since
they have a greater potential to rain owing to larger droplets
at fixed LWP.

Figure 2 illustrates the effect of cloud lifetime on the val-
ues ofχ and So as a function of LWP when evaluated at
different spatial resolutions. Consistent with previous work,
χ andSo are non-monotonic functions of LWP and similarly
exhibit small values at low LWP and then increase up to a
threshold LWP value after which they decrease. At fixed
spatial resolution, the absolute values and LWP-dependent
behavior ofχ andSo are insensitive to whether those val-

ues were quantified at lifetimes of 0–33 %, 33–67 %, 67–
100 %, or 0–100 %. From Fig. 1, it is evident that the
rare case when lifetime may have an important impact on
So is when using small datasets that only include clouds
in clean and polluted conditions that were at opposite ends
of cloud lifetime (clean + growing vs. polluted + decaying;
clean + decaying vs. polluted + growing).χ will be less sen-
sitive to lifetime as there is a relatively small dynamic range
in R at a givenre as compared to fixedNd conditions.

Remote sensing datasets typically include high volumes of
data, so within a particular LWP bin it is expected that clouds
across a wide range of lifetimes will be represented. Since
the results for ACI (not shown),χ , andSo are similar for
clouds when analyzing data for various bins of cloud lifetime
(0–33 %, 33–67 %, 67–100 %, and 0–100 %), this suggests
that when using large datasets the absolute values of ACI,
χ , andSo will not be biased to a large extent. The effect of
lifetime will likely become more important when using small
datasets.

3.2 Spatial resolution and minimum rain rate threshold

The magnitude of aerosol-cloud relationships can be biased
by the choice of the spatial resolution used for quantifica-
tion of aerosol and cloud parameters (e.g. Grandey and Stier,
2010). This is partly due to varying aerosol types, cloud
regimes, and meteorological conditions. The following anal-
ysis examines the sensitivity of the LWP-dependent behav-
ior of aerosol-cloud constructs to three different LES spatial
resolutions that are relatively fine as compared to satellite-
based studies that often examine data at resolutions exceed-
ing 1◦

× 1◦. These finer spatial resolutions apply more to
field measurements such as with aircraft.

As shown in Fig. 2, the peak values ofχ andSo shift to
lower LWP values with decreasing spatial resolution. This
is thought to be because the mean LWP is reduced at lower
resolution while values ofχ andSo are preserved to a greater
extent as they are quantified using relative magnitudes ofre,
R, andNd. (Recall that the highest resolution is centered
around the maximum cloud LWP and lower resolutions ex-
tend outward.) The values ofre, R, andNd will undoubtedly
vary if calculated over different spatial scales, however, the
analysis here shows that their relationships to one another
exhibit less sensitivity than the absolute value of LWP to the
change in resolution. This effect of spatial resolution can
at least partly explain results in recent studies (Jiang et al.,
2010; Sorooshian et al., 2010) where the precipitation sus-
ceptibility of shallow cumulus clouds was shown to exhibit a
maximum at varying LWPs, owing to averaging LWP across
different spatial scales. Although not shown, at these rela-
tively small scales, the ACI-LWP behavior is insensitive to
resolution as ACI exhibits relatively stable values across the
range of LWP examined, unlikeχ and So (Note that with
LES output the value of ACI was quantified usingNd in place
of α in denominator of Eq. 2). These results suggest that
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Figure 1. Large eddy simulation analysis of the effect of cloud lifetime on the quantification of 646 
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Figure 2. Large eddy simulation analysis of the dependence of (a)χ and (b) So on LWP and 654 

cloud lifetime, and also the dependence of (c)χ and (d) So on LWP and spatial resolution over 655 

which data for aerosol and cloud properties were obtained from the LES output.  656 
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Fig. 2. Large eddy simulation analysis of the dependence of (a) χ and (b) So on LWP and cloud lifetime, and also the dependence of (c) χ

and (d) So on LWP and spatial resolution over which data for aerosol and cloud properties were obtained from the LES output.

χ andSo will potentially exhibit peak values at lower LWP
for datasets where LWP is often averaged over larger spatial
scales such as with satellite observations.

An important note is that the choice of the minimum rain
rate can alter the absolute value ofSo andχ The analysis with
LES data was limited toR > 0.5 mm h−1 and this discrimi-

nation removes clouds with small drop effective radii that
do not precipitate. Jiang et al. (2010) showed that lowering
the R threshold value from 0.5 mm day−1 to 0.1 mm day−1

results in a change in the absolute value ofx2 in Eq. (1)
from −1.15 to −1.46, which is equivalent to an increase
in So at fixed LWP. This is because the higher minimum
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Table 1. Aircraft measurement summary of the sensitivity of ACI,χ , andSo (or S′
o) to the choice of how the aerosol proxy (Nd or Na), R,

andre are quantified. The maximum values (“max”) are quantified as being the average of the 25 points before/after the maximum value
(corresponding to a level flight length of∼2.5 km). Column-integrated values (“col”) represent the vertical integration of leg-mean values of
the respective parameter. Cloud-top and base values (“top” and “base”) represent the leg-mean value below cloud-top and above cloud base,
respectively.Na is the leg-mean average of particle concentration below cloud-base, as quantified with both a CPC 3010 (Dp>10 nm) and
a PCASP (Dp∼100 nm−2.6 µm). Bold signify that those points are not statistically significant with 95% confidence based on the student’s
t-test. Numbers in parentheses next to column and row headers correspond to the overall range of those values (Units:Nd andNa=# cm−3;
re=µm;R=mm day−1).

Nd,max Nd,col Na from Na from re,max re,col re,top
(86–407) (47–229) CPC 3010 PCASP

(187–1360) (54–424)

ACI

re,max (8.97–14.0) 0.31 0.24 0.22 0.23
re,col (8.26–11.2) 0.18 0.15 0.13 0.13
re,top (8.34–12.4) 0.21 0.20 0.14 0.16

So S′
o χ

Rmax (0.75–8.19) 1.23 1.10 0.88 0.90 4.24 4.16 4.20
Rcol (0.5–1.60) 0.37 0.44 0.19 0.25 1.31 0.78 0.93
Rbase(0.5–2.75) 0.56 0.67 0.33 0.40 1.82 1.05 1.23

R threshold removes more low-precipitation data points for
polluted clouds relative to clean clouds, thereby reducing the
slopes used to calculateSo andχ (see Fig. 1). Therefore,
the choice of the minimumR threshold is important when
comparing values ofSo andχ between studies.

4 Method of quantifying aerosol-cloud properties

The analysis shown in Table 1 assesses the sensitivity of
ACI, χ , and,So to the choice of how one quantifies the sub-
components of these metrics (re, Nd , andR) using aircraft
measurements from the MASE II study. As an example of
why this is important, the choice of whether to use cloud
column-integrated values ofre versus those at cloud-top has
previously been shown to influence the value of ACI (Ma-
sunaga et al., 2002; Matsui et al., 2004, 2006). The choice of
how to quantify each of these parameters to examine aerosol-
cloud interactions is dependent to a large extent on the intent
of the analysis including the following: (i) meaningful in-
tercomparisons with other aerosol-cloud datasets (e.g. other
aircraft datasets, remote sensing data, and simulations such
as LES); (ii) time synchronization with other measurements
such as aerosol composition, size distributions, and hygro-
scopicity; and (iii) to directly improve climate model pa-
rameterizations that represent aerosol-cloud interactions at
coarse spatial resolution.

Data from seven total cloud cases are examined exhibit-
ing a LWP range between 31–55 g m−2 and an average sub-
cloudNa range between 180–1400 cm−3 (using CPC 3010).
Cloud base drizzle rates during these cases ranged between

0.5–2.7 mm day−1. While the value ofre is retrieved with
satellite remote sensors at cloud-top, the aircraft data are
used to quantify this parameter in multiple ways including
at cloud-top, the maximum in-cloud value, and a column-
integrated average. The sub-cloud leg-meanNa value is
quantified using a CPC 3010 and a PCASP, whileNd is quan-
tified as a maximum in-cloud value and a column-integrated
in-cloud value. In addition to column-integrated and maxi-
mum values,R is quantified here as the leg-mean value above
cloud base.

Table 1 shows that ACI values are smaller than
−

∂ ln re
∂ ln Nd

∣∣∣
LWP

(= ACI with Nd in denominator), with slight

enhancements in ACI when usingNa values from the PCASP
as compared to the CPC 3010. ACI values are expected to

be lower than− ∂ ln re
∂ ln Nd

∣∣∣
LWP

, with a reduction approximately

equal to the factor “c”: Nd ∼ Nc
a (Feingold et al., 2001).

The values of “c” for these seven cases when usingNa (from
CPC and PCASP) andNd,max are 0.62 and 0.67, respectively,
which are close to the ratios of ACI when calculated usingNa
as the CCN proxy as compared toNd,max (0.67–0.76). The

−
∂ ln re
∂ ln Nd

∣∣∣
LWP

values tend to approach 0.33 when using the

Nd andre combinations that exhibit the widest range of val-
ues (value range:Nd,max> Nd,col andre,max> re,top> re,col).
Values ofχ andSo (or S′

o) are greater when usingRmax ver-
sus eitherRbaseorRcol, whereRmax exhibited a greater range
of values. Values of the three aerosol-cloud constructs gener-
ally are more similar to each other when quantified using leg-
averaged and column-integrated values. The metric values
and correlation coefficients are highest when quantifying the
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sub-components in ways that increase their dynamic range at
least partly because the strength of the relationship between
an aerosol perturbation and drop size (orR) at fixed LWP de-
creases over larger spatial scales. Furthermore, McComiskey
et al. (2009) showed that ACI decreases over larger spatial
domains because of the reduction in the correlative relation-
ship between aerosol and cloud fields.

The intent of this analysis is not to propose that there be
one generally accepted technique to calculate aerosol-cloud
parameters, but to carefully consider these factors during in-
tercomparisons between different studies. With regard to
specific applications, it is worth noting that climate mod-
els benefit from the spatial coverage of satellite observations,
which provide data at resolutions coarser than those repre-
sented by the “max” values used in Table 1. Therefore, the
use of leg-averaged and column-integrated measurements of
aerosol-cloud parameters better facilitate intercomparisons
with satellite datasets. For purposes of intercomparison with
remote sensing datasets, the choice of using either column-
integrated or leg-averaged aerosol parameters with aircraft
data will often depend on how such values are quantified
with the remote sensor of choice (e.g. cloud-top or column-
integrated data). Aircraft data obtained at finer resolution al-
low for more direct intercomparisons with cloud models with
comparably high resolution such as LES.

It is also worth noting that the product of ACI andχ agrees
with the directly-quantifiedSo; for example, the product of
χ (usingre,max and the various rain rates) with 0.31 (= ACI
with re,max and Nd,max) agrees to within 9 % for all three
combinations. This provides additional support for the utility
of the deconstruction of theSo metric into sub-components
(Sorooshian et al., 2010) to improve confidence in causal re-
lationships between aerosol perturbations and the precipita-
tion response of warm clouds by quantifying an intermediate
step with the use ofre (or alternatively cloud optical depth).
Past work has also highlighted the significance of the rela-
tionship between drop effective radius and precipitation (e.g.
Rosenfeld and Gutman, 1994).

4.1 Above-cloud aerosol layers

Previous work attempted to identify warm oceanic regions
between a latitude range of +/−30◦ with the largestSo

(Sorooshian et al., 2009a) and the largest potential relative
reductions inR. It was shown that the greatest predicted rel-
ative reduction in warm rainfall is off the western coast of
Africa. In that work,1R was calculated as the product of
annual average of dailySo values (as determined by satellite-
retrieved LWP and theSo-LWP relationship from LES out-
put for warm clouds) and dln(AI), as calculated from the dis-
persion (standard deviation/mean) in aerosol index for 2007.
However, the assumption that a column-integrated value of
AI is representative of aerosol impacting a cloud is especially
problematic in conditions characterized by high above-cloud
aerosol concentrations. In these conditions, AI becomes a

poor proxy for sub-cloud CCN. Such aerosol plumes, which
are common during the biomass burning season off the west
coast of Africa, are clearly evident based on CALIPSO ob-
servations (e.g. Chand et al., 2009).

A closer examination of this region off the coast of Africa
is carried out to assess the sensitivity of ACI,χ , andS′

o to
using satellite-retrieved aerosol in conditions when relatively
high concentrations of aerosol reside above the cloud, to rep-
resent the sub-cloud CCN concentration. The spatial domain
of this case study is (5◦ N, 20◦ S; 5◦ E, 35◦ W) and the time
duration is between June and October of 2006. CALIPSO is
used to identify cases of above-cloud aerosol plumes during
all A-Train overpasses when warm rain was evident based
on CloudSat observations. MODIS aerosol data were then
filtered to avoid any 1◦ × 1◦ scenes containing the above-
cloud aerosol plumes. The analysis of ACI,χ , andS′

o was
subsequently carried out both with all of the data and with the
filtered data. The analysis is conducted for 11 LWP bins with
up to 10 % spacing around bin midpoints, which increase in
25 g m−2 increments from 50 to 300 g m−2. The clouds in
this region typically exhibit LTSS values in excess of 20◦C,
which is indicative of stratocumulus clouds. Caution was
taken to use CloudSat data beginning vertically in the lowest
clutter-free range gate above the surface, which is between
600 and 840 m (Haynes et al., 2009).

Figure 3a shows that filtering the above-cloud plume data
results in an enhancement in the majority of ACI andS′

o

points, which rely on the collocated aerosol data retrieved
by MODIS. On average, the enhancement in ACI andS′

o was
20 % and 156 %, respectively, for the LWP range examined.
The explanation for the depression of these values during
cases of above-cloud plumes likely stems from a cluster of
data points at very high aerosol concentrations that obfuscate
the desired ACI andS′

o signals (hypothetically illustrated in
Fig. 4), leading to a reduction in their absolute values. These
results are in agreement with the recent work of Costantino
and Bŕeon (2010), who examined the relationship between
AI andre off the coast of Africa for cases when aerosols were
in contact with clouds and when aerosols were clearly sepa-
rated from cloud layers. They only detected a clear inverse
relationship between AI andre for the former case. Above-
cloud aerosol layers present a factor that may lead to lower
values of ACI andS′

o as compared to surface and aircraft
measurements and cloud models that are immune to this is-
sue. The values ofχ tend to be more evenly scattered about
the 1:1 line, which is partly expected asχ does not rely on
collocated aerosol data and thus is less sensitive to above-
cloud plumes. On average, there was an 8 % enhancement in
χ after the data filtering.

An issue that cannot be ignored in this discussion is the
effect of overlaying aerosol layers on MODIS retrievals of
cloud properties such asre and LWP, which are typically
thought to be biased low (e.g. Haywood et al., 2004; Cat-
tani et al., 2006; Bennartz and Harshvardhan, 2007; Wilcox
et al., 2009; Coddington et al., 2010). In support of the
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Fig. 3. Satellite data analysis of the sensitivity of aerosol-cloud-rain metrics to above-cloud aerosol plumes and wet scavenging.(a) Com-
parison of ACI,χ , andS′

o with and without above-cloud aerosol plumes off the coast of western Africa. The data represent the time period
between June and October 2006. Marker sizes are proportional to LWP [11 LWP bins with up to 10 % spacing around bin midpoints (LWP +
10 %× LWP), which increase in 25 g m−2 increments from 50 to 300 g m−2]. (b) Comparison of ACI,χ , andS′

o with and without filtering
of wet scavenging events prior to A-Train overpasses within the same 1◦

× 1◦ pixel. Marker sizes are proportional to LWP (12 LWP bins
with up to 10 % spacing around bin midpoints, which include 50 g m−2, 100 g m−2, and up to 1100 g m−2 in 100 g m−2 increments). The
data represent the JJA months for the three year period including 2006–2008 (filled) and 2007 only (open). Only points are reported in both
panels that were statistically significant at 95 % confidence (based on student’s t-test) with and without the data filtering.

presented analysis, potential biases inre have been shown to
be less than 1 µm for retrievals where the visible reflectance
is matched with the 3.7 µm or 2.13 µm reflectance. Wilcox et
al. (2009) report that when the aerosol index obtained from
the Ozone Monitoring Instrument (OMI) exceeds two, the es-
timated bias in the average LWP difference between AMSR-
E and MODIS exceeds the instantaneous uncertainty in the
retrievals. Even after removing the data points in this case
study analysis that exceeded this OMI threshold value (to ac-
count for issues in LWP retrievals), the conclusions of this
analysis remain robust.

4.2 Wet scavenging effects

Artificially low aerosol concentrations resulting from wet
scavenging can also influence the values of ACI,χ , andS′

o.
The methodology in a number of studies has included ob-
taining data for rain and cloud properties from CloudSat and
MODIS with a spatial resolution on the order of 1 km, while
aerosol data are retrieved from a significantly larger spatial
domain (1◦

× 1◦) (Lebsock et al., 2008; Sorooshian et al.,
2009a, 2010). The effect of wet scavenging is tested using
data for the months of June through August (JJA) between
2006–2008 and just the year 2007 within the tropics for shal-
low cumulus clouds. The Precipitation Estimation from Re-
motely Sensed Information using Artificial Neural Networks
(PERSIANN; Sorooshian et al., 2000) product is used to re-
move cases of precipitation for a period of time up to a day
before a satellite overpass within the same 1◦

× 1◦ domain
of MODIS aerosol retrievals. PERSIANN estimates rainfall
using geostationary infrared imagery of clouds (e.g. GOES-

8, GOES-9/10, GMS-5, Metsat-6/7) and microwave instan-
taneous rainfall estimates (e.g. TRMM TMI). The analysis is
performed for 12 LWP bins with up to 10 % spacing around
bin midpoints, which include 50 g m−2, 100 g m−2, and up
to 1100 g m−2 in 100 g m−2 increments. Approximately 20–
40 % of the points were removed in each LWP bin when ac-
counting for the wet scavenging effect.

Figure 3b shows that ACI andS′
o values are scattered

around the 1:1 line but with many points depressed after the
PERSIANN filtering. The reduction in ACI andS′

o as a re-
sult of the data filtering is likely due to aerosol measurements
being biased low when wet scavenging is not taken into ac-
count. Because wet scavenging could potentially influence
the polluted scenes more than clean ones (because there is a
greater potential to remove more aerosol; hypothetically il-
lustrated in Fig. 4), larger aerosol values need to be shifted
to commensurately larger values, which for the same cloud
microphysical parameter results in weaker ACI/S′

o slopes.
Similar to the analysis of artificially high aerosol levels in
Sect. 3.4, the value ofχ is less sensitive to the wet scaveng-
ing data filtering because it does not require aerosol data in
its quantification.

5 Conclusions

In previous work we explored the use of various parameters
(ACI, χ , andSo, defined in Sect. 1) that attempt to quantify
aerosol-cloud-precipitation processes, and here we assess the
sensitivity of such metrics to numerous biasing factors using
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concentrations could potentially have on quantification of ACI and
S′
o when using collocated aerosol-cloud satellite data. The thick

solid line represents a hypothetical slope when plotting−ln(R) or –
ln(re) versus ln(α), which corresponds toS′

o and ACI, respectively.
With above-cloud aerosol plumes, a cluster of points at high lev-
els of ln (α) will reduce the slope (i.e. lower ACI andS′

o). Low
aerosol concentrations as a result of wet scavenging likely will have
a greater impact for the most polluted scenes where there is a greater
potential to have a reduction in aerosol concentration. This will lead
to a higher slope (i.e. higher ACI andS′

o). The χ metric is rela-
tively insensitive to these effects as it avoids the use of retrieved
aerosol data.

LES, satellite observations, and aircraft measurements. The
major results of this work are as follows:

1. The time at which a cloud is sampled, relative to the
overall cloud lifetime, could bias estimates of precip-
itation susceptibility because of the inherent timescale
for a cloud to produce rainfall. This potential bias was
examined for simulated shallow cumulus clouds. The
absolute values ofχ andSo are insensitive to whether
those values were quantified at the beginning, middle,
or end of cloud lifetime, unless sampling conditions
were to somehow be biased towards covariance between
magnitude of the aerosol perturbation, and stage of
cloud development. Such covariance would be unlikely
to exist in nature, except perhaps in small datasets. In
large datasets, such as those from satellites, the ef-
fects of lifetime will likely be small owing to averag-
ing amongst vast amounts of data representing clouds at
varying stages in their lifetime, at their instantaneously
measured LWP.

2. The choice and/or limitation of spatial resolution in ob-
servational datasets are shown to influence the LWP-
dependent behavior ofχ andSo. At low spatial reso-
lution, the curves are compressed towards lower LWP
(see Fig. 2); in other words, the point at which the max-
imum values ofχ and So are reached occur at lower
LWPs. ACI is shown to be relatively constant as a func-
tion of LWP (provided ACI has been calculated in rela-
tively narrow LWP bins) and therefore is not as depen-
dent on spatial resolution asχ and So. Using higher
minimumR thresholds can underestimateSo andχ by
removing more data points for polluted clouds that may
precipitate more weakly than less polluted clouds.

3. The absolute magnitudes ofSo, χ , and ACI are sensitive
to the choice of how to quantify the aerosol proxy,re,
andR (e.g. cloud-top, maximum, vertically-integrated),
and to temporal/spatial averaging. Analyses of aircraft
data of aerosol-stratocumulus interactions show that the
values and correlative strengths ofSo, χ , and ACI are
reduced when using values ofNd, re, andR that ex-
hibit the lowest dynamic ranges over the span of clouds
examined. This is most relevant to model and aircraft-
based studies, where there are many choices for how to
quantify these variable values, as opposed to satellite-
based data sets where data products are more limited.

4. The inclusion of cases characterized by above-cloud
aerosol plumes, as examined in a case study off the coast
of western Africa, is shown to depress values of ACI
andS′

o. This is explained by data points at very high
aerosol concentrations that obfuscate the desired ACI
andS′

o signals. Appropriate filtering of these instances
shows more realistic sensitivity. On the other hand, ac-
counting for low biases in retrieved aerosol amounts as
a result of wet scavenging with the use of an artificial
neural network algorithm is shown in some cases to re-
sult in lower values of ACI andS′

o. An explanation
is that wet scavenging tends to influence the polluted
scenes more than clean ones, resulting in greater reduc-
tions in aerosol abundance during cases with the lowest
rain rates and drop sizes. The value ofχ is relatively in-
sensitive to both factors as it does not rely on collocated
aerosol data, but only data within cloudy pixels.

While variations are expected in the values of the aerosol-
cloud-rain constructs examined here owing to the complex-
ity of these physical interactions and meteorological feed-
backs, it is necessary to understand how much of the variabil-
ity is due to differences in measurement/modeling method-
ologies and data analysis techniques. Even though choices
used in data analysis procedures will often be motivated by
the specific application of the results (e.g. meaningful inter-
comparisons with other datasets, improving global climate
models), the results of this study emphasize the importance
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of considering all the issues identified above when compar-
ing results with other independent studies examining aerosol-
cloud interactions. For instance, details as basic as how, and
at what resolution cloud microphysical parameters are calcu-
lated may have a major impact on the absolute value of the
precipitation susceptibility of clouds to aerosol particles. Of
the various parameters relating aerosols to rain in this work,
χ is shown to be the least sensitive to the biasing factors in-
vestigated as it does not require collocated aerosol data in
its calculation, which is especially advantageous for satellite
studies.
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