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Abstract. Atmospheric emissions from wildfires in Portu-
gal were estimated yearly over the period 1990–2008 using
Landsat-based burnt area maps and land cover maps, national
forest inventory data, biometric models, and literature review
data. Emissions were calculated as the product of area burnt,
biomass loading per unit area, combustion factor, and emis-
sion factor, using land cover specific values for all variables.
Uncertainty associated with each input variable was quanti-
fied with a probability density function or a standard devia-
tion value. Uncertainty and sensitivity analysis of estimates
were performed with Monte Carlo and variance decomposi-
tion techniques. Area burnt varied almost 50-fold during the
study period, from about 9000 ha in 2008 to 440 000 ha in
2003. Emissions reach maximum and minimum in the same
years, with carbon dioxide equivalent (CO2eq.) values of 159
and 5655 Gg for 2008 and 2003, respectively. Emission fac-
tors, and the combustion factor for shrubs were identified
as the variables with higher impact on model output vari-
ance. There is a very strong correlation between area burnt
and emissions, allowing for good emissions estimates once
area burnt is quantified. Pyrogenic emissions were compared
against those from various economy sectors and found to rep-
resent 1% to 9% of the total.
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1 Introduction

Environmental impacts of wildfires affect abiotic and biotic
ecosystem components, including flora, fauna, soil, water,
air, and cultural resources (Brown and Smith, 2000). From
the standpoint of atmospheric impacts, land use and natural
resource managers need timely, accurate information to as-
sess, monitor, and predict emission magnitudes and air qual-
ity impacts, namely from prescribed burning programs, acute
health effects of smoke exposure, visibility reduction, and to
assess tradeoffs between air quality impacts from wildland
fire and prescribed fire (Sandberg et al., 2002).

Several studies have analysed various aspects of the at-
mospheric impacts of wildfires in Europe, ranging from the
more general, such as air quality issues (Miranda et al.,
2009a) and emissions assessment (Barbosa et al., 2009), to
more specific or local, including particulate matter emis-
sions, transport, and radiative effects (Hodzic et al., 2007),
mercury emissions (Cinnirella and Pirrone, 2006), emissions
and global warming relationships (Miranda et al., 1994), the
impact of Eastern European agricultural fires on Arctic air
pollution (Stohl et al., 2007), and satellite tracking of emis-
sion and transport of pollution from an extreme fire episode
(Turquety et al., 2009). Barbosa et al. (2009) presented an
analysis of wildfire numbers and area burnt in Europe us-
ing data from the European Forest Fire Information Sys-
tem (EFFIS), which show that an annual average (2000–
2005) of about 95 000 fires occurred and 600 000 ha were
burnt in 23 European countries. About two-thirds of the fires
were recorded in five southern European countries (France,
Greece, Italy, Portugal, and Spain) where an annual average
of about 500 000 burnt every year. Their pyrogenic carbon
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dioxide (CO2) annual emissions estimates for the 23 Euro-
pean countries were 8.4 to 20.4 Tg year−1.

A few studies have dealt with pyrogenic emissions in Por-
tugal. Miranda et al. (1994) estimated CO2 emissions due
to wildfires and found that in years when the burnt area ex-
ceeds 100 000 ha this contribution could reach 7% of the total
Portuguese CO2 emissions. Miranda et al. (2009a) modelled
smoke plume impact on urban air quality in Lisbon during
the extreme 2003 fire season and obtained results in reason-
able agreement with those observed at ground-based moni-
toring networks. Miranda et al. (2009b) modeled air quality
over the entire area of Portugal during August 2003, using
an operational 3-D chemistry transport model. Results were
compared with monitoring data from regional air quality net-
works, and were found to improve substantially where wild-
fire emissions were included, namely for particulate matter
and ozone (O3). Pio et al. (2008) collected aerosol samples
in central coastal Portugal, also during the summer 2003 ex-
treme fire season, when over 400 000 ha of forests, shrub-
lands and agricultural areas were burnt. During this period,
aerosol samples were analysed for total mass and for a set
of inorganic and organic compounds, including tracers of
biomass burning. From organic C-to-levoglucosan or organic
C-to-K ratios it was estimated that 40 to 55% of primary or-
ganic C could be attributed to wood smoke. Studies by Silva
et al. (2006) and Pio et al. (2006), which estimated pyrogenic
emissions in Portugal during the 1990s, are direct precursors
to the present analysis. Silva et al. (2006) estimated CO2
equivalent emissions ranging from a low of 0.474 Mt in 1997
to a maximum of 3869 Mt CO2eq. in 1998. CO2eq. is a univer-
sal measurement to evaluate the impact of releasing different
greenhouse gases to the atmosphere. Each greenhouse gas
(GHG) has a global warming potential (GWP), which esti-
mates the impact of a chemical species in global warming,
when compared to the impact of CO2 (which has a GWP of
1). A linear regression model between annual area burnt and
CO2eq. emissions for the 1990s led to an estimate of 7.39 Mt
CO2eq. emitted during the record area burnt year 2003. They
also calculated that the amount of GHG released by wild-
fires in 1991 corresponded to 22.4% of that emitted by the
energy sector, 44.2% of the manufacturing and construction
activities, 32.9% of the transport sector, 31.1% of that re-
leased by agriculture, and 81% of industrial activity emis-
sions. Pio et al. (2006) estimated pyrogenic dioxin emissions
as the second largest source for this pollutant at the national
level (17%).

Most biomass burning emission studies rely on the model
developed by Seiler and Crutzen (1980), which combines in-
formation on above-ground biomass available for burning,
combustion factors, burning area, and emission factors for
a certain species and vegetation type, to calculate the py-
rogenic emissions (Wooster et al., 2005). However, these
variables are hard to estimate, which causes large uncertain-
ties in results. Recently introduced methodologies based on
satellite measurements, are meant to improve these estimates

(Wooster et al., 2004). Recent biomass burning studies both
at regional (e.g. Pereira et al., 2009a) and global scales (e.g.
Kaiser et al. 2009) rely on the relationship between fire radia-
tive power (FRP), biomass consumed during a wildfire event,
and smoke aerosol emission factor to provide estimates of
the total amount of aerosol and trace gases emitted into the
atmosphere (Woodster et al., 2005; Freeborn et al., 2008;
Pereira et al., 2009a). These new methods are especially im-
portant to overcome one of the main limitations of traditional
methods: the difficulty in obtaining near real-time emissions
estimates. Despite their advantages, these new methodolo-
gies still have uncertainties attached. The FRP satellite prod-
ucts, both from the Moderate Resolution Imaging Spectrora-
diometer (MODIS) and from the Geostationary Operational
Environmental Satellites (GOES), require complex valida-
tions, yet unavailable. In addition, they also suffer from tech-
nical problems such as channel saturation, undetected fires,
and cloud cover, among others (Pereira et al., 2009a).

Schultz et al. (2008) considered that three main factors of
uncertainty limit the accuracy of long-term, global biomass
burning emission data sets. These factors, also relevant at
the regional scale of the present study, are the accuracy of
estimates of burnt area, combustion completeness, and emis-
sion factors. The effect of burnt area uncertainty on pyro-
genic emission estimates was taken into account by Barbosa
et al. (1999), and by Korontzi et al. (2004), using two differ-
ent burnt area spatial datasets. Burnt area maps used herein
were derived from much higher spatial resolution satellite
imagery, and checked for accuracy against field data. Use
of a country-wide, long-term, high accuracy burnt area geo-
graphical dataset is an important asset of the present study.
From a methodological standpoint, another relevant contri-
bution of this study is the use of a formal uncertainty and
sensitivity assessment approach that is much more sophis-
ticated than the error analysis approach used by Scholes et
al. (1996), Levine (1996), and Barbosa et al. (1999).

The objectives of the present study are to estimate atmo-
spheric emissions from wildfires in Portugal over the last two
decades, to assess the uncertainty inherent in those estimates,
and to identify the main sources of uncertainty. We rely on a
combination of burnt area maps and land cover maps derived
from remotely sensed data, forest inventory data, statistical
growth models for forests and shrublands, and results from
the literature for combustion factors, emissions factors, and
for biomass of some land cover types.

2 Study area

Portugal is located between latitude 37◦ N and 42◦ N and
between longitude 9.5◦ W and 6.5◦ W. Climate is temper-
ate, typically hot and dry during the summer, and cool
and wet in winter. Topography is rugged, especially in
the northern half of the country, and most vegetation cover
is evergreen, drought resistant, and pyrophitic. These
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environmental features make the region susceptible to veg-
etation fires, a characteristic that has been reinforced during
the last four or five decades by demographic, socio-economic
(Mather and Pereira, 2006) and climatic trends (Pereira et
al., 2002). Since the 1960s many countryside areas have suf-
fered substantial population losses, abandonment of agricul-
tural fields, reduction of goat and sheep herds, resulting in
a decrease in grazing, and lowered use of fuel wood. Thus,
progressive accumulation of fine fuels has been occurring in
forests and woodlands that previously were cleared of under-
brush. Given the decrease in agricultural activity, large areas
of marginal productivity were converted to forest or aban-
doned to old-field succession.

About one-third of the area of Portugal is covered by
forests and woodlands. Maritime pine (Pinus pinaster)
forests are located mainly in the northern half of the country,
while Eucalypt (Eucalyptus globulus) forests are widespread
in western Portugal, and in a few inland areas, in the central
and southern parts of the country. Evergreen oak woodlands
predominate in the south. Cork oak (Quercus suber) wood-
lands are the tree land cover type in SW Portugal and along
the Tagus river valley, while Holm oak (Quercus rotundifo-
lia) predominates in the SE. Agricultural areas occupy about
half of the country and, although widespread, dominate in
the central coastal plain, along main river valleys, and in
the south. Central and northern Portugal agricultural land-
scapes are a mosaic of diverse crops, vineyards, and olive
groves. Agriculture in southern Portugal is dominated by dry
land farming of cereal crops. Most shrublands are located in
northern and eastern Portugal, but also occur in other regions,
usually mountainous and/or sparsely populated.

3 Data and methods

Calculation of GHG (carbon dioxide (CO2), nitrous oxide
(N2O), and methane (CH4)), other trace gases and aerosols
pyrogenic emissions in Portugal between 1990 and 2008 re-
lied on the model of Seiler and Crutzen (1980):

Ea =

∑
i

∑
n

AiBniαniEFa (1)

whereEa is the mass emitted of chemical speciesa (kg), Ai

is the burnt area on land cover classi (ha),Bni is the biomass
of the n component on the land cover classi (Mg ha−1), α

is the combustion factor (%), andEF is the emission factor
(kg Mg−1).

However, there are important uncertainties associated with
estimates of these variables. Area burnt uncertainty is caused
by large inter-annual variability and inaccuracies in satellite-
based burnt area mapping. Uncertainties associated with
biomass, combustion factors, and emissions factors are the
result of sampling error and large variability in fire be-
haviour and effects on diverse vegetation types. Values for

Table 1. Land cover classes used to determine burnt area. These
classes were aggregated into three main groups on the basis of
methodological similarities for biomass estimation.

Land cover classes

Forest Maritime pine
Umbrella pine
Eucalypt
Cork oak
Holm oak
Other Conifer
Other Broadleaved
Mixed (Maritime pine
and Eucalypt)
Mixed (Eucalypt and
Cork oak)∗

Agriculture Agroforestry
Orchard
Vineyard
Annual crops
Olive groves
Heterogeneous crops
Sparsely vegetated

Shrublands Shrublands and grasslands
Burnt more than once

∗ only for the 2000–2008 period

the variables in Eq. (1) were obtained from a combination of
in-house data, literature review, and model-based estimates.
We performed an uncertainty and sensitivity analysis to as-
sess the dependence ofEa on values of the input variables.

3.1 Burnt area

Burnt area in each land cover class and each year was
estimated using the approach of Pereira and Santos (2003),
which assumes that there are no land-use changes, apart
from fire, during the period considered. Due to this
assumption and the existence of different land cover
datasets, with different spatial resolutions, the analysis
was split into two periods: for the 1990s, we used a
land cover map derived from aerial photo-interpretation,
with a spatial resolution of 1:25 000 and minimum map-
ping unit of 1 ha (Portuguese Geographic Institute, URL
http://www.igeo.pt/produtos/CEGIG/COS.htm). From 2000
to 2008, the analysis of annual fire incidence by land
cover type relied on the CORINE2000 land cover map
of Portugal, with a spatial resolution of 1:100 000 and a
minimum mapping unit of 25 ha (European Environment
Agency, URL http://www.eea.europa.eu/data-and-maps/
figures/corine-land-cover-2000-by-country-1). We derived
a common, simplified legend for the two maps, which
was deemed adequate for estimating pyrogenic emissions
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(Table 1). The land cover maps for each analysis period
were updated with the areas burnt annually, designated by
the corresponding fire year.

The CORINE2000 land cover map legend only consid-
ers three main forest classes (“Broadleaved”, “Conifer” and
“Mixed”), which are too broad for emissions assessment,
since each class contains forest types that are very different
in structure, biomass, and vulnerability to fire. Therefore,
we used data from the 2005–2006 National Forest Inventory
(NFI) field plots to split these overly broad classes into ho-
mogeneous forest types, from the standpoint of emissions as-
sessment.

The modified land cover map of Portugal was overlain
with the fire perimeter atlas to quantify the area burnt an-
nually in each land cover type. The fire perimeter atlas used
in the present study is derived from Landsat satellite imagery
for the period between 1990 and 2008, with a spatial reso-
lution of 30 m and a minimum mapped unit of 5 ha (Pereira
and Santos, 2003). The procedure is semi-automatic, start-
ing with a supervised approach using classification trees, fol-
lowed by on-screen editing of classification results. The final
step – validation – is made by comparing the results against
the Portuguese official field statistics (National Forest Au-
thority, URL: http://www.afn.min-agricultura.pt/portal/dudf/
estatisticas) at the parish and county level.

3.2 Biomass estimation

Estimating biomass fuel loadings is complex due to the high
spatial heterogeneity and dynamic character of vegetation.
For the sake of simplicity, all land cover classes were ag-
gregated into three main groups (Forests, Shrublands and
Agriculture), on the basis of methodological similarities for
biomass estimation (Table 1).

3.2.1 Forests

Forest fires can affect one or more fuel strata, including litter,
surface fuels, and tree crowns. We considered four compo-
nents of the total forest biomass: litter, understory shrubs,
tree crown leaves and fine (<2 cm Ø) branches. We as-
sume that woody fuels>2cm Ø are not consumed by wild-
fires, which may underestimate emissions under extreme fire
severity.

Forest litter fuel loadings were obtained from a literature
review (Table 2). These values are from temperate ecosys-
tems and are separated by different types of forest cover. The
fact that only one study quantifies litter for Umbrella pine
forests in the Mediterranean (Stamou et al., 1998), prevented
us from including this variable in the uncertainty and sensi-
tivity analysis.

NFI field plots provide data on understory shrub species
composition, percent cover, and mean height. Equation (2)
combines these data with species-specific bulk density (Silva

et al., 2006), to yield understory shrub fuel loading per
hectare:

Bj =

6∑
1

ρbsPcsiAi (2)

where Bj represents the shrubs biomass in the plotj

(kg m−2), ρbs is the bulk density of shrubs species s
(kg m−3), Pcsi is the percent cover speciess on height class
i (%), andAi is the class height (m).

In order to determine the crown biomass we first had to
estimate the trees’ height, using hypsometric equations (Na-
tional Forest Authority, 2010), since the NFI only describes
the height of the dominant trees. Afterwards, we applied
a set of equations from the Portuguese NFI (Correia et al.,
2008 and National Forest Authority, 2010) to estimate the
leaves biomass. For some species (Cork oak, Holm oak and
other broadleaved) we used the equations from the Spanish
NFI (Montero et al., 2005), since the Portuguese NFI does
not provide leaf biomass equations for these species. Finally,
to determine the fine branches biomass, we applied Spanish
NFI equations (Montero et al., 2005), since the Portuguese
NFI equations for branches biomass do not differentiate di-
ameter classes.

3.2.2 Shrublands

This broad group includes the “Shrublands and grasslands”
class, as well as those areas burnt at least twice during the pe-
riod under analysis (“Burnt more than once”), and considers
two components, namely litter and shrubs.

Estimation of total shrubland biomass relied on Ol-
son’s (1963) model and the field data gathered by
Simões (2006), relating shrubland biomass and age. Olson’s
model is given by:

Wshb= a
(
1−e−bt

)
(3)

whereWshb is shrub biomass (Mg ha−1), a represents max-
imum fuel load (Mg ha−1) andb is the time since last fire
(years). Parametersa andb were estimated with an ordinary
least squares model fit. Confidence intervals (95%) of the pa-
rameters estimated mean value were calculated as well as the
root mean square error of the model fitted, which quantifies
the error associated to the predictions of shrub biomass.

Using Eq. (3) requires knowledge of the shrub patch age.
We can determine age at the time of burning for the patches
that burnt at least twice during the study period. However, we
ignore the age of the ”Shrublands and grasslands” patches at
the time they burn during our study period. Therefore, it was
necessary to estimate a mean patch age, for input into Olson’s
model. That was done using the methodology of Johnson and
Gutsell (1994):

APL = b

γ
(

2
c

)
γ

(
1
c

)
 (4)
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Table 2. Litter load for different types of forest cover in Portugal.

Forest cover Litter load (Mg ha−1) Reference

Maritime pine 10.3 Cruz and Viegas (2001)
5.1 to 32.1 Fernandes et al. (2002)
1.2 to 7.4 Botelho et al. (1994)

7.5 to 8.98 Kavvadias et al. (2001)
1.2 to 19.9 Fernandes and Rigolot (2007)

10.4 van Wesemael and Veer (1992)
1.7 to 13.3 Viegas et al. (1998)

1.36 to 7.36 Fernandes (2009)

Umbrella pine 6.5 Stamou et al. (1998)

Eucalypt 5.8 Madeira et al. (2002)
5.7 Cruz and Viegas (2001)
1.5 Viegas et al. (1998)

0.83 to 5.16 Fernandes (2009)

Cork oak 5.57 Garćıa et al. (2006)
4.3 to 7.6 Fernandes et al. (2000b)

1.28 to 4.75 Fernandes (2009)

Holm oak 5.57 Garćıa et al. (2006)
4.3 to 7.6 Fernandes et al. (2000b)

1.28 to 6.37 Fernandes (2009)

Other Conifer 3.2 to 7.2 Stamou et al. (1998)
10.2 Dimitrakopoulos (2002)

13.79 to 16.38 Kavvadias et al. (2001)

Other Broadleaved 4.3 to 5.1 Fernandes et al. (2000b)
5.4 to 7.5 van Wesemael and Veer (1992)

2.85 Viegas et al. (1998)
1.6 to 6.37 Fernandes (2009)

Mixed forest
(Maritime pine and Eucalypt) Mean value of the values obtained for each class individually

Mixed forest
(Eucalypt and Cork oak) Mean value of the values obtained for each class individually

where APL represents the average prospective lifetime of
a landscape patch (years),b is the scale parameter of the
Weibull function (years),γ represents the gamma function
(dimensionless) andc is the shape parameter of the Weibull
function (dimensionless). Parametersb andc parameters of
the Weibull fire frequency distribution for Portugal were es-
timated by Oliveira (2010), using complete and incomplete
intervals between fires.

Litter biomass was estimated using another model pro-
posed by Olson (1963):

X =

(
L

k

)(
1−e−kt

)
(5)

whereX represents litter accumulation (Mg ha−1), L rep-
resents the annual litter production (Mg ha−1 year−1), k is
the decomposition rate (%) andt is the vegetation’s age
(years). Assuming thatL depends on shrub leaf biomass,

leaf/biomass ratio (RWleaves) was previously estimated with
Rambal’s (2001) model:

RWleaves= 0.07+0.365e−0.000589Wshb (6)

whereWshb (here in g m−2) is given by Eq. (3).

3.2.3 Agriculture

Wildfires affect a variety of agricultural crops, namely vine-
yards, olive groves, and rain fed cereal crops. However,
no data are available on typical fuel loads for these land
cover types, during the fire season. Therefore, we allocated
standard BEHAVE fuel models (Anderson, 1982) to agricul-
tural crops, according to the correspondence established by
Vélez (2000) for Spain (Table 3).
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Table 3. Fuel models used to characterize fuel accumulation in the agriculture classes.

Agriculture classes Fuel model Fuel load (Mg ha−1)

1 h 10 h Live

Orchard, Olive groves, Heterogeneous 1 1.6 – –
crops and Sparsely vegetated
Agroforestry 2 4.5 2.2 1.1
Annual crops 3 6.7 – –
Vineyard 5 2.2 1.1 4.5

3.3 Combustion factors

The combustion factor represents the fraction of the total
biomass that is consumed during a fire event. It is difficult
to estimate, since it is influenced by vegetation factors such
as age, phenology, and moisture content, and also by factors
related to fire behaviour, namely fire line intensity, fire rate of
spread, and flame residence time. Thus, combustion factors
are often estimated from fuel consumption measurements in
prescribed or experimental fires. However, these typically
are less severe than wildfires, possibly leading to combustion
factor underestimation.

Combustion factor values used in our analysis are pri-
marily from temperate ecosystems and are separated by fuel
strata. Discrimination by major land cover type is unfeasible,
due to lack of data (Table 4). The data in Table 4 result from
a review of the literature.

3.4 Emission factors

Emission factors represent the quantity of a chemical species
that is released to the atmosphere per unit biomass burnt (An-
dreae, 1991). Andreae and Merlet (2001) compiled emis-
sion factors data from a wide range of regions and vegetation
types, determined under natural conditions or in the labora-
tory. We used ”Savanna and grassland” emissions factors for
agricultural fires, since they affect mostly cereal crops and
the herbaceous layer of other agricultural land cover types.
”Extratropical forest” emissions factors were used for the
forest and shrublands land cover classes. We calculated py-
rogenic emissions of the following chemical species: car-
bon dioxide (CO2), carbon monoxide (CO), nitrous oxide
(N2O), methane (CH4), nitric oxide (NOx), total nonmethane
hydrocarbons (TNMH), organic carbon (OC), black carbon
(BC), total particulate matter (TPM) and particulate matter
<2.5 µm diameter (PM2.5).

3.5 Uncertainty and sensitivity analysis

Model output variability was assessed through uncertainty
analysis, followed by sensitivity analysis (Saltelli et al.,
2004). Uncertainty analysis is based on a Monte Carlo

approach. The first step in this procedure is to character-
ize the uncertainty associated with each input variable with
a probability density function. Next, the variable space
(k = 441) is sampled using quasi-random sequences (Sobol’,
1967). In general, such sequences explore the input space
better than simple random sampling strategies. Then, the
model is evaluatedN(k+2) times, in order to subsequently
estimate the sensitivity indices. Accuracy of the sensitivity
estimates increase withN , which was set to 256, for a total
of 113 408 model runs.

In the final step, sensitivity analysis is performed using
a variance-based decomposition technique (Saltelli et al.,
2009), to quantify the contribution of each variable to overall
model output variability. The first order index (Si) repre-
sents the single effect of each variable on model output vari-
ance. The total order index (STi) provides information on
overall effect of a given input variableXi , including all in-
teractions with other variables;STi is used to identify unim-
portant variables (Saltelli et al., 2004). These indices were
determined for each year and for each variable, using the
Saltelli and Jansen formulas (Saltelli et al., 2009).Si and
STi , which are model independent, identify the key vari-
ables where uncertainty reduction efforts ought to focus. The
quantity 1−(

∑
Si) reveals the fraction of model output that

is due to interactions among input variables. In addition, the
differenceSTi −Si returns the extent to which the variable
Xi is involved in interactions with other variables; this in-
formation is very helpful for understanding the relationships
between the input variables and the output at different points
in time.

No systematically acquired ground truth data are available
for a reliable accuracy assessment of the Landsat-based an-
nual burnt area maps. Based on a comparison with county-
level field statistics, we postulated a coefficient of variation
of 10% to quantify uncertainty for this variable.

In general, the Gamma, Weibull, and Exponential func-
tions fitted well forest biomass (shrubs, leaves and fine
branches) distributions, according to theχ2 goodness of fit
test. When none of the statistical functions tested provided a
good fit to the data, uncertainty was described by the discrete
empirical distribution of the variable (Salvador et al., 2001).
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Table 4. Combustion factor for each biomass component.

Biomass component Combustion factor (%) Reference

Litter 100 Cinnirella et al. (2007)
59 to 92 Ormẽno et al. (2009)
90 to 100 van der Werf et al. (2006)
93 Stephens and Finney (2002)
50 to 70 Arora and Boer (2005)
63 Botelho et al. (1994)
47.6 to 86.7 De Luis et al. (2004)
58.9 to 86.7 Fernandes et al. (2000a)

Shrubs 60 Cinnirella et al. (2007)
50 Narayan et al. (2007)
83 Botelho et al. (1994)
88.4 to 95.4 Fernandes et al. (2000a)
16 to 100 Fernandes et al. (1998)

Leaves 100 Cinnirella et al. (2007)
80 to 100 van der Werf et al. (2006)
70 to 80 Arora and Boer (2005)

Fine branches 50 to 65 Cinnirella et al. (2007)

Uncertainty in forest litter biomass data was described with
the mean and standard deviation of the data, assuming a nor-
mal distribution; due to lack of sufficient data to attempt fit-
ting a statistical distribution function.

Uncertainty in the distribution of standing biomass in
shrublands was described with the mean and standard devia-
tion of Olson’s model predictions (Eq. 3), assuming a normal
distribution. Rambal (2001) does not provide shrubland lit-
ter biomass model error information. Therefore, this variable
was not included in the uncertainty and sensitivity analysis.

The standard BEHAVE fuel models used to represent the
agricultural land cover types contain a single biomass load-
ing value (Table 3). Therefore, emission and combustion fac-
tors are the only source of uncertainty for agricultural fires,
in our analysis.

Uncertainty in combustion factors data was characterised
by the mean and standard deviation of the data, assuming a
normal distribution, because not enough data is available to
fit statistical distributions. Finally, uncertainty in emission
factors was represented with normal distributions, parame-
terised with the mean and standard deviation values given by
Andreae and Merlet (2001).

4 Results

4.1 Burnt area

Inter-annual variability in area burnt was very high during
the study period, ranging from over 300 000 ha and over
400 000 ha in 2005 and 2003, respectively, to a low of

9000 ha in 2008, i.e., over one order of magnitude (Fig. 1).
Burnt area increased substantially, from a total of 900 000 ha
in the first decade to 1300 000 ha in the second period.

During the 19 years under analysis, the land cover class
most affected by fire was “Shrublands and grasslands”, with
more than 600 000 ha burnt. Maritime pine forests and Eu-
calypt forests also burnt extensively: more than 335 000 ha
and 333 000 ha, respectively. On the other hand, orchards
and vineyards are the least fire-affected land cover types,
with 3600 ha and 5300 ha burnt, respectively (Fig. 2). In
Fig. 2, the class “Burnt more than once” includes those ar-
eas that burnt at least twice during each period. Due to lack
of information we assume that these areas are left to aban-
donment after fire, which leads to fuel (shrubs and litter)
accumulation.

These results confirm the small contribution of agricultural
lands to the total area burnt and reinforce the idea that shrub-
lands and forests are the most fire-affected areas. During the
1990s shrublands contributed with 62% of the total area burnt
(601 800 ha), forests with 30% (295 450 ha) and agriculture
with 8% (72 910 ha). In the following period forests were
the main contributor to total area burnt (54%, 694 374 ha)
while shrublands contributed with 36% (463 878 ha) and the
agriculture with 10% (129 803 ha). The breakdown by forest
type of this increase in forest area burnt is shown in Fig. 2.
Fire incidence is given by the ratio between the area burnt in
a land cover class, and the total area of that class.
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Fig. 1. Total burnt area in Portugal between 1990 and 2008.

Fig. 2. Total burnt area and fire incidence by land cover class be-
tween 1990 and 2008.

4.2 Biomass

4.2.1 Forests

The median was used to quantify the biomass of shrubs, and
of tree leaves and fine branches due to the strong bias of
the data towards a higher frequency of low biomass values.
Mean values are also given (in brackets) to facilitate compar-
ison with results from previous research.

Forest understory shrub biomass displayed a wide range
of values, varying from a median of 0 and 0.14 Mg ha−1

(1.8 and 3.09 Mg ha−1) for Holm oak and Cork oak in ev-
ergreen oak woodlands, to a maximum of 4.45 Mg ha−1

(8.24 Mg ha−1) in Maritime pine stands. Similar results
were obtained for tree leaf and fine branch biomass. The
lowest median tree leaf values were also obtained for
evergreen oak woodlands, varying between 0.21 Mg ha−1

Fig. 3. Biomass accumulation (Mg ha−1) in each forest class.

and 0.32 Mg ha−1 (0.25 and 0.41 Mg ha−1) for Holm oak
and Cork oak, respectively. For the fine branch biomass
the values obtained for these woodlands were 0.35 and
0.54 Mg ha−1 (0.42 and 0.7 Mg ha−1) for Holm oak and
Cork oak, respectively. The highest of all leaf median
biomass values were obtained for “other conifer forests”,
with 4.74 Mg ha−1 (5.06 Mg ha−1), while Umbrella pine
forests displayed the highest median fine branch biomass,
with 6.20 Mg ha−1 (7.61 Mg ha−1).

Figure 3 shows mean biomass accumulation in each for-
est class, by biomass component. The difference in crown
biomass values between the evergreen oaks and the other
species is due to stand density differences. Evergreen oak
woodlands in Portugal typically have very low tree density.

4.2.2 Shrublands

Parameter estimation for Olson’s equation yielded the shrub-
land biomass accumulation model:

Wshb= 18.86
(
1−e−0.23t

)
(7)

where Wshb (Mg ha−1) is the total aboveground shrub
biomass andt is the stand age, in years. The root mean
square error of the model is 8 Mg ha−1, which is rather
high, considering the mean biomass of the original data
(13 Mg ha−1). Therefore, this variable will have a signifi-
cant uncertainty attached. Table 5 shows the 95% confidence
intervals for the model estimated parameters.

Mean patch age estimated for “Shrublands and grasslands”
was 30 years, resulting in estimates of 3.40 Mg ha−1and
18.84 Mg ha−1 for shrubland litter and aboveground
biomass, respectively. The corresponding estimates for the
areas that burnt at least twice during the period under anal-
ysis were 1.21 Mg ha−1 to 2.68 Mg ha−1 and 3.86 Mg ha−1

to 16.46 Mg ha−1for shrub litter and aboveground biomass,
respectively.
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Table 5. 95% confidence interval of the parameters estimated
mean value.

Parameter Mean Lower limit Upper limit

a 18.86 17.12 20.60
b 0.23 0.17 0.29

4.3 Uncertainty and sensitivity analysis

For each year and each of the ten chemical species stud-
ied we obtained a frequency distribution of annual emis-
sions as model output. As an example, Fig. 4 shows the
model output for the CO2 emissions in 1990. Figure 5
shows the mean value and the upper and lower limit of
the 95% confidence interval for six of these distributions
(CO2, CO, N2O, NOx, CH4 and TNMH). The remaining
four distributions not shown in Fig. 5 (PM2.5, TPM, OC and
BC) present the same emissions pattern, clearly linked to
the annual variability in burnt area. For these four chemi-
cal species, emissions reached the maximum in 2003 (mean
values of 4.11× 107 kg, 5.57× 107 kg, 3.64× 107 kg, and
1.80× 106 kg, respectively) and the minimum in 2008 (mean
values of 0.11× 107 kg, 0.16× 107 kg, 0.10× 107 kg, and
0.05× 106 kg, respectively). Within the period under anal-
ysis GHG (CO2, CH4 and N2O) emissions reach maximum
in 2003, with 5655 Gg CO2eq. and minimum in 2008 with
159 Gg CO2eq. CO2eq. estimates were obtained based on the
GHG global warming potential (GWP) of CH4 (GWP = 21)
and N2O (GWP = 310).

All time series display a strong relation between mean and
confidence interval, i.e. years with higher mean emissions
values also show wider confidence intervals, implying higher
uncertainty in the estimates. Direct proportionality between
mean and confidence interval is expected in a model that is
a sum of products. The standard deviation of the emission
factor for the OC is higher than its mean value (Andreae and
Merlet, 2001). Consequently, the uncertainty attached to the
emissions of this chemical species is much higher than for
any other.

In the sensitivity analysis we considered important those
variables showing a first order sensitivity index equal or
higher than 0.1 (Si > 0.1). Figure 6 shows the results of the
sensitivity analysis performed for the full time series and for
four chemical species (C2O, CO, N2O and CH4). Notice that
a small number of factors (one to four) contribute to the ma-
jority of model output variance. For the remaining chemical
species the results are very similar to those found for CH4.
Only two variables (combustion factor of shrubs and emis-
sion factor) explained the majority (more than 80%) of the
output variance.

To understand the relationship between annual burnt area
and GHG emissions, we established a linear regression

Fig. 4. Uncertainty analysis output for the CO2 emissions in 1990.

(Fig. 7) forced through the origin, since absence of burnt area
must correspond to no pyrogenic emissions. In addition, to
assess the uncertainty in the regression we used a bootstrap
method (Effron, 1982). A sample of 1000 points was drawn
to reconstruct the original curve and establish confidence in-
tervals for the parameters (dashed lines in Fig. 7). The results
revealed a slope distribution centred at 0.014 (±0.001, sig-
nificant at 0.05 level, by Student’st-test) and a coefficient of
determination (R2) distribution highly skewed to high values
(0.95± 0.03, significant at 0.05 level, by Student’st-test),
which indicates a good agreement between annual burnt area
and annual pyrogenic GHG emissions.

5 Discussion

5.1 Burnt area

Area burnt displays high inter-annual variability in Portugal.
The two most severe fire years occurred in 2003 and 2005,
which explains the substantially larger area burnt during the
second study period (2000–2008). In spite of the large areas
of forest (Maritime pine and Eucalypt) affected by fire during
these two extreme years, over the full study period (1990–
2008), shrublands and grasslands, which can be considered
together with sparsely vegetated areas, clearly are the most
fire-prone land cover class in Portugal. In part, this is due
to the role fire plays in shrubland/grassland management for
sheep and goat herding. These areas are frequently burnt, to
promote the growth of new, palatable vegetation, and to pre-
vent excessive shrub encroachment. Oliveira (2010) showed
that the shortest fire return intervals in Portugal, calculated
over the period 1975–2005, occur in regions with extensive
shrublands, and peak in some mountainous areas under pas-
toral land use, which were observed to burn over 10 times in
a 31-year period. The rationale for fire in sparsely vegetated
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Fig. 5. Uncertainty analysis of(a) CO2, (b) CO, (c) N2O, (d) NOx, (e) CH4 and (f) TNMH emissions from vegetation fires in Portugal
between 1990 and 2008.

areas is similar to that of shrublands and grasslands and these
two land cover classes taken together account for almost
800 000 ha of area burnt.

A comparison of fire incidence between the two decades
under analysis shows that fire incidence remained approx-
imately constant in the agriculture and shrubland classes
(Fig. 2). On the contrary, in some forest classes (e.g. Eu-
calypt) fire incidence increased greatly, contributing to the
growth in forested area burnt during the second period.
The expansion of area under Eucalypt plantation during the
1990s, and the effects of land abandonment in the Maritime
pine forest region of central Portugal may help to explain the
increase in forest area burnt.

5.2 Forests biomass

5.2.1 Understory shrub biomass

Our results revealed that the Maritime pine stands contain
the highest shrub fuel loading, a consequence of decreased
use of understory vegetation for cooking, heating, and fertil-
ization of agricultural fields during the last half century. A
relatively broad range of shrub biomass values has been re-
ported for the understory of Maritime pine forests in Portu-

gal. Fernandes and Rigolot (2007) estimated a mean value of
15 Mg ha−1, whereas Fernandes et al. (2002) provide a mean
value of 6.1 Mg ha−1, varying from 0.1 to 20.8 Mg ha−1. Not
only for the Maritime pine (42 Mg ha−1) but also for Euca-
lypt stands (13.1 Mg ha−1), the values obtained by Cruz and
Viegas (2001) for total surface fuel (litter and shrubs) are
higher than the ones we obtained (8.24 and 4.96 Mg ha−1,
respectively). However, they also obtained higher under-
story shrub fuel loadings for Maritime pine than for Eucalypt
stands.

The higher understory shrub fuel loadings reported by
Fernandes (2009) were found in Maritime pine forests
(0.9 Mg ha−1to 6.35 Mg ha−1) whereas Eucalypt forests and
Cork oak woodlands recorded the lowest shrub biomass
values (0.49 Mg ha−1 to 4.02 Mg ha−1; 0.56 Mg ha−1 to
4.39 Mg ha−1, respectively). Other broadleaved forests con-
tained between 2.48 Mg ha−1 and 4.89 Mg ha−1. Our esti-
mates are slightly higher than these, for all forests and wood-
lands.

Silva et al. (2006), whose methodology we followed to
estimate forest understory shrub biomass, obtained qualita-
tively similar results using data from the 1995–1998 NFI.
Mixed forests, other conifer forest and Maritime pine forest
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Fig. 6. Sensitivity analysis of(a) CO2, (b) CO,(c) N2O and(d) CH4 emissions from vegetation fires in Portugal between 1990 and 2008 (CF
– combustion factor;EF-emission factor; MP – Maritime pine; EC – Eucalypt; BA – Burnt area; SHV – Shrublands and grasslands class).

were the classes with higher loadings, whereas Holm oak and
Cork oak woodlands and Eucalypt forest display the lowest
loadings. We obtained generally lower estimates that those
of Silva et al. (2006), possibly because we used data from
the 2005–2006 NFI, which were collected shortly after the
two worst fire years on record in Portugal (2003 and 2005).

5.2.2 Leaf and fine branch biomass

Maritime pine and Eucalypt forests have much higher leaf
and fine branch biomass (11.53 Mg ha−1 and 6.86 Mg ha−1)

than Cork oak and Holm oak woodlands (1.11 Mg ha−1 and
0.67 Mg ha−1), mostly due to the much higher stand density
of the former. Data on canopy biomass for forests and wood-
lands in Portugal are scarce. Fernandes et al. (2002) provide
a range of values from 0.2 Mg ha−1 to 10.9 Mg ha−1 for Mar-
itime pine forests in northern Portugal, while Fernandes and
Rigolot (2007) obtained a mean value of 16 Mg ha−1 for the
canopy biomass of Maritime pine stands.

At the national level, our canopy biomass estimates are
slightly lower than those of Silva et al. (2006). The dis-
crepancy is larger for Cork oak and Holm oak woodlands,
probably reflecting differences in woodland density between

Portuguese evergreen oak woodlands and those considered
in the European Environment Agency (1999) study that were
used by Silva et al. (2006).

5.3 Shrubland biomass

5.3.1 Shrub biomass

Our estimates for the standing biomass of shrublands are
within the range of values reported in the literature, both for
the “Shrublands and grassland” class (18.84 Mg ha−1) and
also for the areas that burnt at least twice (age known) in
each study period (3.86 Mg ha−1 and 16.46 Mg ha−1).

Vega et al. (2006) obtained higher results (15 Mg ha−1

to 45 Mg ha−1) than Viegas et al. (1998) (10 Mg ha−1 to
17 Mg ha−1) for the same shrub species (Erica sp., Ulex sp.,
Chamaespartium tridentatum). Fernandes et al. (1998) esti-
mated shrub biomass for vegetation patches of various ages.
For one year old patches, the value reported (3.86 Mg ha−1)

is substantially higher than that we obtained from Eq. (7).
However, our country-wide model includes data from ar-
eas with lower net primary productivity than that studied
by Fernandes et al. (1998). Also, the biomass estimates
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obtained by Fernandes et al. (2000a) in the north-eastern Por-
tugal for 5-year old shrublands are lower those predicted by
Eq. (7). Our own estimates, although higher than those of
Silva et al. (2006), are closer to values previously reported
for Portugal.

5.3.2 Litter biomass

Our results for shrubland litter biomass are within the range
of values reported for Mediterranean countries. Dimi-
trakopoulos (2002) estimated loadings of 0.7 Mg ha−1 to
3.4 Mg ha−1 for shrublands in Greece. In Turkey, Saglam
et al. (2008) reported shrubland litter values of up to
12.4 Mg ha−1, with a mean value of 4.4 Mg ha−1. In
Spain, De Luis et al. (2004) obtained higher values than
ours, for 12-year old shrubland communities (9.24 Mg ha−1,
18.17 Mg ha−1, and 18.98 Mg ha−1). Our calculations of
litter accumulation have a direct, deterministic relation-
ship with shrubland biomass (Eq. 7). Since our estimates
of shrubland biomass were higher than those of Silva et
al. (2006), our litter estimates necessarily exceed theirs.

5.4 Uncertainty and sensitivity analysis

Figure 5 summarises model output uncertainty. Results
of the uncertainty analysis for the entire time series re-
veal a very high inter-annual variability, which reflects an-
nual area burnt. Within this large annual variability, 2003
was the year with the highest pyrogenic GHG and aerosols
emissions. CO2 was the gas with larger quantities emit-
ted (5083± 1,703 Gg, 95% C.I.,n = 256) (Fig. 5a). How-
ever, significant amounts of N2O and CH4 were also released
(259± 140 Gg and 313± 233 Gg CO2eq., 95% C.I.,n = 256,
respectively) (Fig. 5c and e). Pyrogenic emissions were
lowest in 2008 with only 143± 46 Gg CO2, 9± 6 Gg CO2eq.
CH4 and 7± 4 Gg CO2eq. N2O (95% C.I.,n = 256) emitted
(Figs. 5a, c and e). Our estimates are highly correlated (Pear-
son’s correlation (r), all significant at 0.01 level) with the
wildfires’ GHG emissions reported by the European Environ-
ment Agency (EEA) for the same period in Portugal (Pereira
et al., 2009b). The burnt area estimates are highly correlated
(r = 0.95), as well as the GHG (r = 0.91), CO2 (r = 0.91),
CH4 (r = 0.99) and N2O emissions (r = 0.99).

Both methods revealed 2003 and 2008 as the years
with higher and lower emissions, respectively. However,
our estimates are much more conservative (5655versus
11 289 Gg CO2eq. in 2003), despite the fact that our burnt
area estimates are higher (440 025versus286 000 ha). These
differences arise mainly from significant discrepancies be-
tween CO2 pyrogenic emissions estimates. Contrarily to our
study, EEA also account for indirect carbon losses, such as
the natural decay of dead organic matter following fires, as
well as harvesting emissions, which account for the loss of
the entire dead tree at the time of fire (Pereira et al., 2009b).
This can lead to an overestimation since it includes leaves,

branches, wood, bark and roots. On the contrary, as men-
tioned above, we assume that in a typical fire only leaves and
small branches are consumed, which can lead to some under-
estimation in the case of severe wildfires.

The complexity of the sensitivity analysis performed in
this study is due to the large number (a total of 441) of vari-
ables considered. However, most of these variables haveSi

andSTi values close to zero, meaning they have very small
impact in the output variance and can be held constant. Inter-
actions between variables play hardly any role in determining
model output variability. Only a small number of factors in-
teract (STi > Si), and they do it at a very weak levels. This
is true for every chemical species except CO2, which dis-
plays stronger interactions between variables (Fig. 6a). CO2
emissions are orders of magnitude larger than those of other
species, and since uncertainties are directly proportional to
emissions (due to the multiplicative model used); this proba-
bly leads to the existence of more interactions between vari-
ables. The same argument can explain why in the years 2003
and 2005, which were the years with the highest amount of
area burnt, there are more interactions than in any other year
within the time series (Fig. 6). Therefore, the occurrence and
magnitude of interactions are evidently related to the exis-
tence of variables with larger uncertainty range.

Sensitivity analysis for chemical species with a positive
emission factor coefficient of variation (for example, PM2.5,
OC and TNMH) revealed the large influence of this variable
on model output. In these cases, the single effect of this vari-
able always accounted for more than 80% of model output
variance.

The sensitivity analysis identified emission factors for
forests and shrublands, and the combustion factor of shrub-
lands as the variables with the largest impact on model output
variance. Importance of the latter variable possibly reflects
the large extent of shrubland area burnt. The single effects of
these two variables add to roughly 80–90% of the total model
output variance, meaning that the effect of interactions be-
tween variables is quite low (10–20% of the total variance).
These results were similar for every year and every chemical
species under analysis (except for CO2). Therefore, it is very
important to reduce uncertainties attached to these variables,
in order to lower model output variance.

Combustion factors intrinsically are very variable, due to
their strong dependence on fuel moisture and fire behaviour.
A shortage of data on this variable for wildfires in Portu-
gal further enhances associated uncertainty. It may be possi-
ble to model combustion completeness as a function of a fire
weather index (Amiro et al., 2001), thus obtaining more ac-
curate estimates, but natural variability is expected to remain
high. Emission factors proved to be the variable to which
model outputs are most sensitive. Thus, it ought to be a pri-
ority target for uncertainty reduction in emissions estimation.

Miranda et al. (2008) published emission estimates for a
range of land cover types in Portugal, but only mean values
were provided. Pyrogenic emissions obtained in the present
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Fig. 7. Linear regression between the annual burnt area and the
annual GHG pyrogenic emissions in Portugal between 1990 and
2008 (dashed lines represent the slope’s 95% confidence interval).

study are very similar to those provided by Silva et al. (2006)
for the 1990s. For example, for 1990 Silva et al. (2006)
estimated 1640 Gg CO2eq. of GHG whereas we determined
a mean value of 1540 Gg CO2eq.. For the 1990s, Silva et
al. (2006) calculated a value of 19 218 Gg CO2eq., whereas
we obtained a value of 16 360 Gg CO2eq.. The difference is a
result of the data variability included in our study.

As expected, Fig. 7 shows a high correlation (meanR2 of
0.95) between the annual burnt area and the annual GHG py-
rogenic emissions in Portugal, between 1990 and 2008. The
regression slope represents the amount of GHG emitted per
unit area. Thus, it is feasible to estimate annual pyrogenic
emissions using area burnt as the single independent vari-
able. Pio et al. (2006) used this approach to estimate dioxin
emissions from wildfires in Portugal during 2003.

Finally, it is interesting to compare vegetation fire emis-
sions in Portugal with those produced by other GHG sources
(Fig. 8) (Pereira et al., 2009b). Energy production is the main
source of GHG, representing 34 to 45% of total annual emis-
sions, followed by transportation (25% to 35%). Industry and
agriculture are also important sources of GHG, representing
respectively about 10 to 15% and 12 to 20% of total annual
emissions. Emissions from vegetation fires in Portugal rep-
resent 1 to 9% of the annual total.

Fig. 8. Greenhouse gases emissions (CO2, N2O and CH4) from five
different sources in Portugal, between 1990 and 2007.

6 Conclusions

We estimated national level, multi-year, pyrogenic emis-
sions of greenhouse gases, other trace gases, and aerosols
for Portugal, using the approach proposed by Seiler and
Crutzen (1980). Our analysis relied on satellite-based burnt
area maps and land cover maps, biomass field measure-
ments and model-based estimates, and on previously pub-
lished combustion completeness and emission factors data.
Detailed uncertainty and sensitivity analysis established that
emission factors and the combustion factor for shrublands
and grasslands are the stronger determinants of uncertainty
in emission estimates and, thus, ought to be the primary fo-
cus of future research efforts. It is feasible to estimate mean
annual pyrogenic emissions as a function of area burnt, given
the high correlation between the two variables. Within the
extremely large variability found, 2003 and 2005 were the
years with highest amount of area burnt and pyrogenic emis-
sions. Of all ten chemical species studied, CO2 was the gas
emitted in highest magnitude. However, other GHG, trace
gases, and aerosols are also emitted in important quantities.

Unlike the other sources of GHG, pyrogenic emissions are
strongly seasonal and heavily concentrated in the summer
months. Thus, during peak fire activity periods their pub-
lic health and environmental impacts can be much higher
than might be inferred from the relatively low overall value.
Additionally, while emissions from industry, agriculture, and
transportation result in the production of goods and services,
most pyrogenic emissions are associated with environmental
and economic damages and losses.
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Correia, A., Faias, S., Toḿe, M., Evangelista, M., Freire, J.,
and Carvalho, P.O.: Ajustamento simultâneo de equações de
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Portugal, in: Inĉendios florestais em Portugal: caracterização,
impactes e prevenção, edited by: Pereira, J. S., Pereira, J. M.
C., Rego, F., Silva, J. M. N., and Silva, T. P., ISAPress, Lisboa,
257–282, 2006.

Miranda, A. I., Coutinho, M., and Borrego, C.: Forest fire emissions
in Portugal: A contribution to global warming?, Environ. Pollut.,
83(1–2), 121–123, 1994.

Miranda, A. I., Monteiro, A., Martins, V., Carvalho, A., Schaap, M.,
Builtjes, P., and Borrego, C.: Forest fires impact on air quality
over Portugal, in: NATO/CCMS International Technical Meet-
ing on Air Pollution Modeling and its applications, 29, 190–198,
edited by: Borrego, C. and Miranda, A. I., Springer, Aveiro, Por-
tugal, 2008.

Miranda, A. I., Marchi, E., Ferretti, M., and Millán, M. M.: Forest
fires and air quality issues in Southern Europe, in: Developments
in Environmental Science, edited by: Bytnerowicz, A., Arbaugh,
M., Riebau, A., and Andersen, C., 8, 209–231, 2009a.

Miranda, A. I., Borrego, C., Martins, H., Martins, V., Amorim, J. H.,
Valente, J., and Carvalho, A.: Forest fire emissions and air pollu-
tion in southern Europe, 171–187, in: Earth observation of wild-
land fires in Mediterranean ecosystems, edited by: Chuvieco, E.,
Springer-Verlag, Berlin, Heidelberg, Germany, 2009b.

Montero, G., Ruiz-Peinado, R., and Munoz, M.: Producción de
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