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Abstract. Using a Large-Eddy Simulation model, we have
systematically studied the inability of boundary layer turbu-
lence to efficiently mix reactive species. This creates re-
gions where the species are accumulated in a correlated or
anti-correlated way, thereby modifying the mean reactivity.
We quantify this modification by the intensity of segrega-
tion, IS, and analyse the driving mechanisms: heterogeneity
of the surface moisture and heat fluxes, various background
wind patterns and non-uniform isoprene emissions. The het-
erogeneous surface conditions are characterized by cool and
wet forested patches with high isoprene emissions, alternated
with warm and dry patches that represents pasture with rela-
tively low isoprene emissions. For typical conditions in the
Amazon rain forest, applying homogeneous surface forcings
and in the absence of free tropospheric NOx, the isoprene-
OH reaction rate is altered by less than 10 %. This is sub-
stantially smaller than the previously assumedIS of 50 %
in recent large-scale model analyses of tropical rain forest
chemistry. Spatial heterogeneous surface emissions enhance
the segregation of species, leading to alterations of the chem-
ical reaction rates up to 20 %. The intensities of segregation
are enhanced when the background wind direction is parallel
to the borders between the patches and reduced in the case
of a perpendicular wind direction. The effects of segregation
on trace gas concentrations vary per species. For the highly
reactive OH, the differences in concentration averaged over
the boundary layer are less than 2 % compared to homoge-
neous surface conditions, while the isoprene concentration
is increased by as much as 12 % due to the reduced chemi-
cal reaction rates. These processes take place at the sub-grid
scale of chemistry transport models and therefore need to be
parameterized.

Correspondence to:H. G. Ouwersloot
(huug.ouwersloot@wur.nl)

1 Introduction

The Amazonian region is an area of great interest for the
global climate, since the rain forest exchanges large quan-
tities of carbon containing species with the atmosphere. This
area is steadily changing from a natural environment to a
human-controlled environment associated with deforestation
(Andreae and et al., 2002; Soares-Filho et al., 2006), caus-
ing changes in surface conditions and, consequently, bound-
ary layer characteristics (Fisch et al., 2004) and trace gas ex-
changes (Ganzeveld et al., 2010). To evaluate these changes
and their influence on atmospheric chemistry and global cli-
mate, the understanding of the boundary layer dynamics and
atmospheric chemistry over the Amazonian system needs to
be improved.

We present a numerical model study that focuses on the ef-
fects of surface heterogeneity on atmospheric dynamics and
chemistry. Both are affected by mesoscale circulations in-
duced by spatial differences in sensible and latent heat fluxes
and additionally, chemistry is affected by non-uniform reac-
tant emissions at the surface. Therefore, because of spatial
variations of surface properties, chemical reactants can ei-
ther be separated more strongly or be more efficiently mixed
by circulations, as we will investigate. Other dynamical as-
pects relevant for chemistry, like the boundary layer height
development or turbulent mixing, are dependent on the sur-
face heterogeneity as well. Although many studies have
been performed on the effects on the dynamics (Avissar and
Liu, 1996; Patton et al., 2005; van Heerwaarden and Vilà-
Guerau de Arellano, 2008), the effects on atmospheric chem-
istry have been investigated much less intensively (Krol et al.,
2000; Auger and Legras, 2007). To our knowledge a system-
atic study on the impact of surface heterogeneities on simul-
taneously boundary layer dynamics and chemistry has not
yet been performed.

Published by Copernicus Publications on behalf of the European Geosciences Union.

http://creativecommons.org/licenses/by/3.0/


10682 H. G. Ouwersloot et al.: The segregation of chemical species over heterogeneous land surfaces

Tropical rain forest chemistry is driven by the exchange of
biogenic compounds, dynamic processes like turbulent mix-
ing, and the diurnal variability of the atmospheric boundary
layer (ABL). The influence of ABL dynamics on chemistry
is often crudely described in large-scale atmospheric models
and in models that are used to analyse experimental observa-
tions (Ganzeveld et al., 2008; Vil à-Guerau de Arellano et al.,
2009). A list of the most important influences is presented in
Table1.

Recently, one of these processes, the segregation of
species due to inefficient turbulent mixing, has been recog-
nized as a possible relevant process to take into account in
the observational analyses and models (Butler et al., 2008;
Pugh et al., 2010, 2011). This segregation of species was pre-
viously studied for idealized cases (Schumann, 1989; Sykes
et al., 1992; Vil à-Guerau de Arellano et al., 1993). The in-
ability of turbulence to uniformly mix the emitted and en-
trained species creates sub-regions where the species are
non-uniformly distributed in a correlated or anti-correlated
way, thereby modifying the mean chemical reaction rate in
the boundary layer. The early studies focused on the bound-
ary layer dynamics and did not consider complex chemistry.
Krol et al.(2000) conducted a study for more complex chem-
istry using a Large-Eddy Simulation (LES) model and in-
vestigated the effect of heterogeneous surface emissions of
biogenic reactive compounds on the intensity of segrega-
tion. They found that non-uniform emissions significantly
enhance the segregation of reactants.

The acquired knowledge of these studies has only rarely
been applied to atmospheric chemistry models and measure-
ment analyses.Auger and Legras(2007) investigated the
segregation effects for urban air chemistry for both homoge-
neous and heterogeneous reactant emissions while keeping
the surface conditions that drive the dynamics uniform over
the domain. The intensity of segregation is also considered as
a potential contributor to large discrepancies between obser-
vations and model results of reactive trace gas concentrations
over the tropical forest, particularly for the biogenic volatile
organic compound isoprene and the hydroxyl radical (OH)
(Butler et al., 2008).

In the analysis of observations ad hoc values of the inten-
sity of segregation have been assumed that correspond to a
substantial decrease in the isoprene-OH reaction rate, while
not taking the governing physical and chemical processes
into account (e.g.Butler et al., 2008; Pugh et al., 2010). Ob-
servations on the intensity of segregation between OH and
isoprene, by relatively fast simultaneous measurements of
both compounds over a German deciduous forest, were made
by Dlugi et al.(2010). However, they only measured at one
location and one height, 7 m above the forest canopy. There-
fore their result, a decrease in the chemical reaction rate of
15 %, is representative for the surface layer of the atmo-
spheric boundary layer.Butler et al.(2008) made use of aver-
aged aircraft measurements taken with a low frequency (5 s)
compared to the flight speed. Their result, which corresponds

to a decrease in the chemical reaction rate of 13 % compared
to perfect mixing conditions, is therefore a first indication for
the segregation within the Amazonian atmospheric bound-
ary layer. However, their measurements do not capture the
fine dynamical structures associated to the small scales of
convective turbulence. It can not be inferred whether the to-
tal intensity of segregation is weaker or stronger, since these
fine structures can lead to either positive or negative contri-
butions.

The aim of the present work is to systematically study the
intensity of segregation for the isoprene-OH reaction under
conditions representative for the Amazon rain forest using a
LES model. This reaction is of interest since OH chemistry
largely controls the oxidizing capacity of the atmosphere,
both worldwide and above the Amazon rain forest (Zimmer-
man et al., 1988; Karl et al., 2007; Lelieveld et al., 2008).
The intensity of segregation can be calculated explicitly in
the LES, in contrast to mesoscale models and global climate
models where segregation is a sub-grid scale process. In
consequence, the LES experiments enable us to determine
the governing processes, which will be combined with inves-
tigating the impact of surface heterogeneities on the segre-
gation effect and the boundary layer growth under different
conditions.

The next section introduces the model and the numerical
experiments. Subsequently, the method of calculating the in-
tensity of segregation is explained. The first results presented
are the dynamical and chemical characteristics of the cases
with the standard homogeneous and heterogeneous surface
conditions. This is followed by a sensitivity analysis for sev-
eral governing variables affecting the impact of the surface
heterogeneities.

2 Methodology

2.1 Model

This study makes use of a modified version 3.2 of the Dutch
Atmospheric Large-Eddy Simulation (DALES) model (Heus
et al., 2010). This LES model originates fromNieuwstadt
and Brost(1986) and has been further developed and im-
proved since (e.g.Cuijpers and Duynkerke, 1993; Dosio,
2005). DALES explicitly resolves processes on a relatively
large scale using the filtered Navier-Stokes equations in com-
bination with the Boussinesq approximation (Heus et al.,
2010). In general, the filter size is set equal to the grid size
of the simulations. Subfilter-scale processes are parameter-
ized using one-and-a-half-order closure. The boundary con-
ditions in the horizontal directions are periodic. DALES 3.2
is extended with a chemistry module, thus allowing for si-
multaneous simulation of both boundary layer dynamics and
chemistry (Vil à-Guerau de Arellano et al., 2005).

Our model is modified with respect to the standard DALES
3.2 to the extent that the domain can be divided in patches for
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Table 1. Influence of ABL dynamics, radiation and surface conditions on atmospheric chemistry.

Influence Effect on chemistry

Boundary layer growth Lowering concentrations by dilution
Entrainment of air from the free troposphere

Clouds Photolysis rate modification by radiation scattering
Impact on photosynthetically active radiation
Enhancement of the vertical transport of chemical com-
pounds
Venting chemical compounds to the free troposphere

Turbulence Driver of the mixing of air: organized in coherent structures
leading to inefficient turbulent mixing that can create a seg-
regation of species which alters the mean reactivity

Temperature Modification of reaction rate coefficients
Moisture Influence on reactivity as a catalyst or reactant (e.g. the for-

mation of OH)
Atmosphere-vegetation-soil interaction Emission and deposition fluxes of chemical compounds

(isoprene, ozone) depending on the radiation, canopy char-
acteristics and both atmospheric and soil conditions con-
cerning temperature and moisture

Surface heterogeneity Modification of the dynamics by induction of mesoscale cir-
culations and the chemistry by non-uniform emission or de-
position fluxes of reactants. In consequence, potential en-
hancement of spatial reactant segregation

which the boundary conditions at the surface can be generi-
cally set instead of assuming uniform surface conditions. For
these patches, the number of grid points in each horizontal
dimension is required to be equal to the total number of grid
points in that dimension divided by a power of 2. The kine-
matic surface fluxes for heat and moisture are prescribed for
each patch.

2.2 Model setup

For all cases in this study the resolution of the LES domain
is set to 50 m× 50 m×20 m in the x, y and z directions re-
spectively. The standard grid size is 256×256×128, result-
ing in a simulated domain of 12 800 m×12 800 m×2560 m.
The simulations are run for 4 h with a maximum time step
of 1 s. This time step is small enough to prevent instabilities
in the chemical solver. With these settings the relevant tem-
poral and spatial scales for both atmospheric dynamics and
chemistry are resolved. Output is generated every minute
and the first hour is considered as spin-up of the model. The
chemical and dynamical input data of the control cases are
based on measurements in the Amazonian rain forest during
the TROFFEE campaign that was conducted 14–29 Septem-
ber 2004 (Karl et al., 2007; Vil à-Guerau de Arellano et al.,
2011).

In order to investigate the effects of surface heterogene-
ity without the effects of the diurnal variability, the cases are
based on noon conditions characterized by a well-developed
boundary layer. The initial boundary layer height is set to
1000 m. We assume no large scale subsidence and, in the
control cases, no background wind as well (i.e. local free
convection). The surface roughness length,z0, is set to 0.1 m.
The initial potential temperature profile is constant at 300 K
in the boundary layer with a temperature jump of 0.8 K at
1000 m. In the free troposphere, the potential temperature,
θ , rises by 6× 10−3 K m−1. The initial humidity profile,q,
is set constant at 6×10−3 kg kg−1 in the boundary layer and
3×10−3 kg kg−1 in the free troposphere. The chosen humid-
ity is lower than the characteristic values for the Amazonian
rain forest to prevent cloud formation and maintain a clear
boundary layer during the numerical experiments. The draw-
back of this choice is its impact on the HOx production. Con-
sequently, the intensity of segregation for the isoprene-OH
reaction is affected as well and quantitative results should
be considered as first order estimates. The surface kine-
matic heat flux and moisture flux are set to 0.15 K m s−1 and
1×10−4 kg kg−1 m s−1 respectively. This corresponds to a
sensible heat flux of approximately 185 W m−2 and a latent
heat flux of approximately 300 W m−2.

As well as a passive tracer, 18 reactant species are sim-
ulated in the numerical experiments. The applied chemical
scheme contains the 19 essential reactions for the O3-NOx-
VOC-HOx system during daytime in the Amazonian rain for-
est (Vil à-Guerau de Arellano et al., 2011) and is shown in
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Table 2. Chemical reaction scheme solved in the numerical experiments by the chemistry module of DALES (Vil à-Guerau de Arellano
et al., 2011). T is the absolute temperature in K. The unit of first-order reaction rate coefficients is s−1 and that of second-order reaction rate
coefficients is cm3 molec−1 s−1. Reaction (R15) has a more difficult expression for its reaction rate∗. Reactions (R1), (R5) and (R6) are
photolysis reactions which only occur if photons interact with the reactants. REST stands for products and/or secondary fast reactions with
reactants in the ambient air that are not directly evaluated.

Name Chemical equation Reaction rate constant

R1 O3 + hν → O1D + O2 6.62×10−5
·e−0.575

R2 O1D + H2O → 2 OH 1.63×10−10
·e

60
T

R3 O1D + N2 → O3 + REST 2.15×10−11
·e

110
T

R4 O1D + O2 → O3 3.30×10−11
·e

55
T

R5 NO2 + hν → NO + O3 + REST 1.67×10−2
·e−0.575

R6 CH2O + hν → HO2 + REST 5.88×10−5
·e−0.575

R7 OH + CO → HO2 + CO2 + REST 2.40×10−13

R8 OH + CH4 → CH3O2 + REST 2.45×10−12
·e

−1775
T

R9 OH + C5H8 → RO2 1.00×10−10

R10 OH + MVK → HO2 + CH2O + REST 2.40×10−11

R11 HO2 + NO → OH + NO2 3.50×10−12
·e

250
T

R12 CH3O2 + NO → HO2 + NO2 + CH2O + REST 2.80×10−12
·e

300
T

R13 RO2 + NO → HO2 + NO2 + CH2O+ MVK 1.00×10−11

R14 OH + CH2O → HO2 + REST 5.50×10−12
·e

125
T

R15 2 HO2 → H2O2 + O2 k∗

R16 CH3O2 + HO2 → REST 4.10×10−13
·e

750
T

R17 RO2 + HO2 → REST 1.50×10−11

R18 OH + NO2 → HNO3 3.50×10−12
·e

340
T

R19 NO + O3 → NO2 + O2 3.00×10−12
·e−

1500
T

∗ k =
(
k1+k2

)
k3, k1 = 2.2×10−13

·e
600
T , k2 = 1.9×10−33

·e
980
T ·cair, k3 = 1+1.4×10−21

·e
2200
T ·cH2O.

Table 2. Concentrations are converted from ppb to molec
cm−3 before applying the chemical scheme and back after-
wards. The simulated reactants correspond to the species
listed in this scheme, although it should be noted that all first
generation oxidation products of isoprene (C5H8), through
Reactions (R9) and (R13), are lumped into methyl vinyl ke-
tone (MVK). For 10 reactants the surface fluxes and initial
concentrations are assumed to be 0, but the other 9 reactants
have non zero emissions or initial concentrations. O3, CH4,
CO, O2 and N2 are assigned initial concentrations over the
whole domain of 10 ppb, 1724 ppb, 124 ppb, 2×108 ppb and
8×108 ppb, respectively. The initial concentrations of NO2
and MVK are 1 ppb and 1.3 ppb below the initial boundary
layer height and both 0 ppb in the free troposphere. The
emission of NO is set to 5×10−4 ppb m s−1. For isoprene
the emission is set to 0.65 ppb m s−1 and the initial concen-
tration profile is set to 2 ppb in the boundary layer and 0 ppb
in the free troposphere. In this idealized setup NOx is not
completely realistically represented. Sensitivity studies have
shown that under the chosen set of conditions the NOx emis-
sions have very limited impact on the isoprene-OH segrega-
tion. However, entrainment of NOx from the free troposphere

can significantly alter the boundary layer chemistry as will be
shown in Sect.3.6.

As mentioned before, this study is based on two control
cases: one with homogeneous and one with heterogeneous
surface conditions. The control case with heterogeneous sur-
face conditions is split into 4 patches in the x-direction. The
first and third patch correspond to a forest, while the second
and fourth patch have typical savannah surface properties.
Because of the periodic boundary conditions (i.e. opposing
borders of the domain are connected) used by DALES, this
configuration represents an infinite sequence of alternating
forest and savannah patches. A scheme of the setup of the
numerical experiments is shown in Fig.1.

Over the whole domain the total emissions of reactants,
moisture and heat are kept equal to the case with homo-
geneous surface conditions, and only the distribution is
changed. Over the forested patch the kinematic mois-
ture flux is enhanced from 1×10−4 kg kg−1 m s−1 to 1.2×

10−4 kg kg−1 m s−1 due to extra evapotranspiration in the
forest compared to the savannah. For compensation the kine-
matic moisture flux is decreased to 0.8×10−4 kg kg−1 m s−1

for the savannah patch. These changes correspond to
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Fig. 1. Schematic overview of the heterogeneous surface conditions
for the numerical experiments performed by DALES. The simulated
domain is split intoforest andsavannahpatches. Over the rela-
tively cold and wet forest patch thesensible heat fluxis lower than
over the relatively warm and dry savannah patch, but thelatent heat
flux is higher. Theemission of isopreneis highest over the forest.
Over the whole domain the total isoprene emission and surface heat
fluxes are kept the same as the case with homogeneous surface con-
ditions. For both terrains the sum of the latent and sensibleheat
fluxes is the same. Generated statistics are averaged in the direction
perpendicular to the direction of heterogeneity.

Fig. 1. Schematic overview of the heterogeneous surface conditions
for the numerical experiments performed by DALES. The simulated
domain is split intoforest andsavannahpatches. Over the rela-
tively cold and wet forest patch thesensible heat fluxis lower than
over the relatively warm and dry savannah patch, but thelatent heat
flux is higher. Theemission of isopreneis highest over the forest.
Over the whole domain the total isoprene emission and surface heat
fluxes are kept the same as the case with homogeneous surface con-
ditions. For both terrains the sum of the latent and sensible heat
fluxes is the same. Generated statistics are averaged in the direction
perpendicular to the direction of heterogeneity.

approximately 60 W m−2. To keep the total energy budget
equal for both patches, the sum of sensible and latent heat
fluxes is kept constant too. This results in a change of the
kinematic heat flux to 0.1 K m s−1 for the forest patch and
0.2 K m s−1 for the savannah patch. The biogenic emission of
isoprene over the forest patch is higher than over the savan-
nah patch (Kesselmeier and Staudt, 1999; Garcia-Carreras
et al., 2010). An emission of 1.0 ppb m s−1 is set for the for-
est and 0.3 ppb m s−1 for the savannah configuration. Other
emissions and the initial concentration, temperature and spe-
cific humidity profiles are kept equal to the case with homo-
geneous surface conditions. As will be shown in Sect.3.1.1,
the changes in kinematic heat and moisture fluxes cause a
difference in buoyancy flux between the forest and savan-
nah patches. This difference generates mesoscale circula-
tions in the xz-plane. To enable visualisation of these cir-
culations and to study the different atmospheric conditions
over the two terrain types, average statistics are calculated
in the y-direction (Patton et al., 2005; van Heerwaarden and
Vil à-Guerau de Arellano, 2008).

Next to the two control cases, we perform sensitivity anal-
yses. These simulations are based on the control case with
heterogeneous surface properties. An overview of all per-
formed numerical experiments with their altered input vari-
ables is shown in Table3. To study the influence of wind
on the dynamics and chemistry, the large scale background
wind profiles,ug andvg in m s−1, are varied in Sect.3.2. For
some simulations the grid size is doubled in the x-direction,
resulting in a larger domain size. For these simulations, the
total number of patches in which the surface is divided in
the x-direction,Npatches, is varied to determine the impact
of the length scale of heterogeneous surface properties. The

odd numbered patches represent forest areas and the even
numbered patches represent savannah. These results are dis-
cussed in Sect.3.3. The dependence on the magnitude of
the difference in emissions between the two land types is
studied for heat fluxes and isoprene emissions separately. In
Sect.3.4 the difference in isoprene emission by the forest
relative to the savannah,1Eisoprene,f −s in ppb m s−1, is var-
ied. The sensitivity analysis presented in Sect.3.5 treats the
dependences on the differences between the forest and the
savannah in kinematic heat flux,1w′θ ′

f −s in K m s−1, and
kinematic moisture flux,1w′q ′

f −s in kg kg−1 m s−1. The
impact of NOx is discussed in Sect.3.6.

2.3 Formulation and interpretation of the segregation

We derive the intensity of segregation for a generic second-
order chemical reaction,

A+B → C. (1)

For a 3-dimensional field of filtered atmospheric variables, as
generated by Large-Eddy Simulations, the concentration of a
chemical compoundC satisfies the conservation equation

∂cC

∂t
+

∂uicC

∂xi

+SGF= R (2)

with

R = k ·cA ·cB . (3)

A, B andC are indicators for chemical compounds,ui andxi

are respectively the wind velocity and the coordinate in thei-
direction, SGF is the parameterized sub-grid flux (seeHeus
et al. (2010) for a complete description),k is the reaction
constant,R is the chemical reaction rate andcA, cB andcC

are the concentrations of respectively the chemicalsA, B and
C.

Equations (1), (2) and (3) describe processes for a 3-D
field. However, numerical calculations are often performed
using spatially averaged values. In order to compare box
models, mesoscale models or climate models with measure-
ments, the averages for the 3-D field should be calculated
over the complete mixing volume. Every possible variable,
φ, can be expressed as

φ = [φ] +φ′, (4)

in which the rectangular brackets correspond to a spatial av-
erage and the prime corresponds to a deviation from the spa-
tial average. The spatial average is calculated over a hori-
zontal plane or over a volume. If the reaction rate constant
is considered to be equal throughout the boundary layer, the
spatial average of the reaction rate is equal to

[R] = k · [cA ·cB ] . (5)

By applying a Reynolds decomposition (Eq.4) with its prop-
erties, Eq. (5) becomes

[R] = k ·
(
[cA] · [cB ] +

[
c′

A ·c′

B

])
. (6)
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Table 3. Description of the different simulations. Variables not listed in this table are kept the same as the control cases treated in Sect.2.2.
ug andvg are the large scale background wind profiles.Npatchesrepresents the total number of patches in which the surface is divided in

the x-direction.1w′θ ′
f −s is the difference in kinematic heat flux over the forest patch,f , relative to the savannah patch,s, and1w′q ′

f −s

is the difference in kinematic moisture flux.1Eisoprene,f −s represents the difference in isoprene emission between the forest and the
savannah.cNO2 is the initial free tropospheric NO2 concentration. The input variables that are altered with respect to the heterogeneous
control numerical experiment, HET, are printed in bold.

Name Grid ug vg Npatches 1w′θ ′
f−s 1w′q′

f−s 1Eisoprene,f−s cNO2

[−] [−×−×−] [m s−1
] [m s−1

] [−] [K m s−1
] [10−3 kg kg−1 m s−1

] [ppb m s−1
] [ppb]

Control numerical experiments

HOM 256×256×128 0.0 0.0 4 0.0000 0.000 0.0 0.0
HET 256×256×128 0.0 0.0 4 −0.1000 0.040 0.7 0.0

Impact of background wind

WU1 256×256×128 0.0 2.5 4 0.0000 0.000 0.0 0.0
WU2 256×256×128 0.0 5.0 4 0.0000 0.000 0.0 0.0
WU3 256×256×128 0.0 7.5 4 0.0000 0.000 0.0 0.0
WX1 256×256×128 2.5 0.0 4 −0.1000 0.040 0.7 0.0
WX2 256×256×128 5.0 0.0 4 −0.1000 0.040 0.7 0.0
WX3 256×256×128 7.5 0.0 4 −0.1000 0.040 0.7 0.0
WY1 256×256×128 0.0 2.5 4 −0.1000 0.040 0.7 0.0
WY2 256×256×128 0.0 5.0 4 −0.1000 0.040 0.7 0.0
WY3 256×256×128 0.0 7.5 4 −0.1000 0.040 0.7 0.0

Impact of the length scale of heterogeneity

LS1 256×256×128 0.0 0.0 2 −0.1000 0.040 0.7 0.0
LS2 256×256×128 0.0 0.0 8 −0.1000 0.040 0.7 0.0
LS3 256×256×128 0.0 0.0 16 −0.1000 0.040 0.7 0.0
LSB1 1024×512×128 0.0 0.0 4 0.0000 0.0000 0.7 0.0
LSB2 1024×512×128 0.0 0.0 2 −0.1000 0.040 0.7 0.0
LSB3 1024×512×128 0.0 0.0 4 −0.1000 0.040 0.7 0.0
LSB4 1024×512×128 0.0 0.0 8 −0.1000 0.040 0.7 0.0
LSB5 1024×512×128 0.0 0.0 16 −0.1000 0.040 0.7 0.0

Impact of the spatial variation of isoprene emissions

IS1 256×256×128 0.0 0.0 4 −0.1000 0.040 1.3 0.0
IS2 256×256×128 0.0 0.0 4 −0.1000 0.040 0.0 0.0
IS3 256×256×128 0.0 0.0 4 −0.1000 0.040 −0.7 0.0

Impact of the spatial variation of surface heat fluxes

HF1 256×256×128 0.0 0.0 4 0.0000 0.000 0.7 0.0
HF2 256×256×128 0.0 0.0 4 −0.0125 0.005 0.7 0.0
HF3 256×256×128 0.0 0.0 4 −0.0250 0.010 0.7 0.0
HF4 256×256×128 0.0 0.0 4 −0.0375 0.015 0.7 0.0
HF5 256×256×128 0.0 0.0 4 −0.0500 0.020 0.7 0.0
HF6 256×256×128 0.0 0.0 4 −0.1500 0.060 0.7 0.0
HF7 256×256×128 0.0 0.0 4 −0.2000 0.080 0.7 0.0

Sensitivity to free tropospheric NO2

UNO 256×256×128 0.0 0.0 4 0.0000 0.000 0.0 0.5
HNO 256×256×128 0.0 0.0 4 −0.1000 0.040 0.7 0.5
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The physical interpretation of the intensity of segregation is
the relative deviation of the total chemical reaction rate from
the reaction rate due to the mean concentrations,

Rmean= k · [cA] · [cB ] . (7)

This is expressed as

IS≡
[R] −Rmean

Rmean
. (8)

IS is the intensity of segregation. Substituting Eqs. (6) and
(7) in Eq. (8) yields

IS=

[
c′

A ·c′

B

]
[cA] · [cB ]

(9)

and the average chemical reaction rate reads:

[R] = k ·(1+IS) · [cA] · [cB ] = keff · [cA] · [cB ] . (10)

Equation (9) shows that the intensity of segregation is equal
to the covariance of the two reacting chemicals divided by
their mean concentrations. Since DALES explicitly resolves
turbulence, including quantities like covariances, the intensi-
ties of segregation are calculated directly.Ouwersloot et al.
(2010) validated the DALES results, confirming the depen-
dence of segregation on the ratio of the turbulent time scale
versus the chemical time scales and on the reactant concen-
tration ratio (Schumann, 1989) and giving results in agree-
ment with measurements (Butler et al., 2008; Dlugi et al.,
2010) and previous simulations (Krol et al., 2000; Vinuesa
and Vilà-Guerau de Arellano, 2003).

We further discuss the dependence of the intensity of seg-
regation on the physical and chemical processes. For in-
stance, for perfectly mixed conditionsIS is 0, though its
value can range from−1 to infinity. More insight on the sign
of the intensity of segregation is obtained by analysingIS as
a function of the correlation and the concentration variances.
The intensity of segregation for 2 reacting species is related
with the correlation factor,r, where

r =
σAB

σA ·σB

. (11)

The standard deviations of the concentrations of compounds
A andB are expressed byσA andσB and their covariance
is expressed byσAB . The variance ofcA is defined asσ 2

A =[
c′

A ·c′

A

]
and the covariance betweencA andcB is equal to[

c′

A ·c′

B

]
. Equations (9) and (11) show that

IS= r ·
σA ·σB

[cA] · [cB ]
. (12)

This can be denoted as

IS= r · iA · iB , (13)

whereiX is the concentration fluctuation intensity of com-
poundX, defined as

iX ≡
σX

[cX]
. (14)

Since concentrations and standard deviations are always pos-
itive if non-zero, the sign ofIS equals the sign ofr. This
correlation factor is controlled by transport and chemistry.
First we will briefly address the influence of transport. Inert
species that are transported together are positively correlated,
r > 0. This is the case for two compounds which are both
entrained from the free troposphere or both emitted from the
surface. If one compound is emitted from the surface and the
other is entrained from the free troposphere, then the species
are negatively correlated,r<0. Further, chemistry has an im-
pact on the correlation factor since two reacting compounds
are negatively correlated. For two reactants that are trans-
ported, the overall sign of the correlation factor therefore de-
pends on the interaction between the dynamics and chem-
istry. The correlation between isoprene and OH as a function
of height will be treated in Sect.3.1.3.

2.3.1 Definition of the boundary layer height

To calculate the intensities of segregation in the boundary
layer, the boundary layer height needs to be defined. For a
heterogeneous surface forcing, it varies over the domain. In
order to determine the boundary layer heights as a function
of time and the x-coordinate, an adaptation of the maximum
gradient method (Sullivan et al., 1998) is applied to the av-
erages in the y-direction of the virtual potential temperature,
θv:

θv = θ ·(1+0.61·q) (15)

Differences inθv between air parcels and the air surrounding
them drive the buoyancy (Stull, 1988). The buoyancy flux in
a clear boundary layer is

w′θ ′
v
∼= (1+0.61q)w′θ ′ +0.61 θ w′q ′, (16)

emphasizing the importance of the surface energy partition-
ing into sensible heat and moisture flux for buoyancy. Con-
sidering the difference in orders of magnitude of the different
terms, this equation shows that the buoyancy flux is domi-
nated by the kinematic sensible heat flux,w′θ ′. Note that in
the case of a uniform sensible surface heat flux, differences
in the kinematic surface moisture flux,w′q ′, result in buoy-
ancy flux differences and the generation of turbulence and
mesoscale circulations. Hence, analyses that only take into
account the amplitude of the sensible surface heat flux het-
erogeneity would be erroneous.

Mesoscale circulations lead to advection of warm air at
the top of the boundary layer over a patch with relatively
cool air. This results in a virtual potential temperature pro-
file as shown in Fig.2a. It shows the initial profile together
with a profile after half an hour of simulation. The location
is an arbitrary position in the area towards which warm air
is advected. In the inversion zone,z ≈ 1000 m, no clearθv

gradient is present. This would result in a flawed determi-
nation of the boundary layer height using the maximum gra-
dient method. To circumvent this, an alternative method is
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Fig. 2. (a)The initial profile in blue and the profileafter 30 min in red for the virtual potential temperature as a function of height. The
profile is calculated for an arbitrary position in the area towards which warm air is advected in the top of the boundary layer. In(b) the
boundary layer heights as determined by themaximum gradient and thethreshold gradient methods are shown as a function of the x-
position in respectively red and blue. As a reference, the boundary layer height over ahomogeneoussurface, as determined by the maximum
gradient method, is shown in black. The dashed and solid lines show the boundary layer heights averaged over the first and third hour of the
simulation, respectively. The relatively cold forest patches are located at−6400 m< x < −3200 m and 0 m< x <3200 m. Here, the boundary
layer is shallower than over the relatively warm savannah patches.

proposed: a threshold gradient method. This method sets the
boundary layer height equal to the lowest height for which
the gradient of the considered variable, in our case the vir-
tual potential temperature, exceeds a certain percentage of
the maximum gradient. In the case no sharp inversion is
present, this maximum gradient will be equal to the lapse rate
in the free troposphere. In the treatment of the numerical ex-
periments presented in this paper, the threshold percentage is
set to 90 %. This threshold percentage is chosen such that the
erratic boundary layer height determinations are suppressed,
but the determined heights for profiles with a clear inversion
remain similar. The result is shown in Fig.2b. This graph
is based on the numerical experiment HET. During the first
hour the threshold gradient method results in smoother and
less random boundary layer heights as a function of the x-
position. In the third hour the gradient is more well defined
at all locations and both methods result in similar boundary
layer heights.

3 Results

The main properties of the numerical experiments during the
fourth hour of simulated time are summarized in Table4. The
dynamical properties include the boundary layer height, the
averages over the whole boundary layer of the potential tem-
perature and the specific humidity, and the convective veloc-
ity scale. The convective velocity scale is almost unaffected
by the differences between the numerical experiments. The
listed chemical properties represent the volume averages of

the isoprene and hydroxyl radical concentrations over the en-
tire boundary layer and the intensity of segregation of the
isoprene-OH reaction. The mean concentration of OH is less
strongly affected by the differences between the simulations
compared to the intensity of segregation and the mean iso-
prene concentration. A more detailed analysis of the results
follows in the next paragraphs.

3.1 Influence of heterogeneous surface conditions

3.1.1 Dynamics

In Fig. 3, the dynamical characteristics are shown for the
cases with standard homogeneous, HOM, and standard het-
erogeneous, HET, surface forcing. The savannah patches are
located at−λ

2 < x < 0 andλ
2 < x < 1. The depicted variables

are averaged both over the fourth hour of the numerical ex-
periments (1 h average) and over the y-coordinate, which is
the horizontal direction perpendicular to the direction of het-
erogeneity. The flow of air within the boundary layer is in-
dicated by the arrows in Fig.3a and b. From these graphs
it is clear that a heterogeneous surface forcing influences
the mixing in the atmospheric boundary layer. While the
potential temperature and specific humidity are well-mixed
throughout the boundary layer for the homogeneous case, a
mesoscale structure appears for the heterogeneous case. The
differences in surface buoyancy fluxes between the forest and
savannah patches induce mesoscale circulations. Over the
warm and dry savannah patches air is transported to the top
of the boundary layer, while air is transported downward over
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Table 4. Main properties of the different numerical experiments averaged over the fourth hour of simulated time.hBL represents the
boundary layer height.〈θ〉 and〈q〉 are respectively the potential temperature and specific humidity averaged over the whole boundary layer.
w∗ is the convective velocity scale. The boundary layer averaged concentrations of isoprene and OH are denoted by respectively

〈
cIsoprene

〉
and〈cOH〉. IsR9 is the intensity of segregation for Reaction (R9) (Table2).

Case hBL 〈θ〉 〈q〉 w∗

〈
cIsoprene

〉
〈cOH〉 IsR9

[−] [m] [K] [10−3 kg kg−1
] [m s−1

] [ppb] [ppt] [−]

HOM 1550 302.11 5.74 2.04 1.28 0.142 −0.070
HET 1587 302.16 5.68 2.05 1.33 0.142 −0.126
WU1 1538 302.10 5.76 2.03 1.30 0.142 −0.077
WU2 1528 302.08 5.78 2.03 1.32 0.142 −0.087
WU3 1527 302.08 5.78 2.03 1.32 0.142 −0.093
WX1 1534 302.09 5.77 2.03 1.34 0.143 −0.110
WX2 1529 302.09 5.77 2.03 1.33 0.142 −0.104
WX3 1530 302.09 5.77 2.03 1.33 0.142 −0.104
WY1 1587 302.16 5.68 2.05 1.33 0.142 −0.132
WY2 1576 302.15 5.69 2.05 1.35 0.142 −0.143
WY3 1576 302.15 5.69 2.05 1.37 0.143 −0.154
LS1 1557 302.12 5.73 2.04 1.42 0.143 −0.176
LS2 1606 302.19 5.64 2.06 1.29 0.142 −0.114
LS3 1568 302.14 5.71 2.05 1.30 0.141 −0.090
LSB1 1549 302.11 5.74 2.04 1.28 0.142 −0.070
LSB2 1528 302.11 5.78 2.03 1.61 0.168 −0.405
LSB3 1547 302.12 5.75 2.04 1.54 0.153 −0.308
LSB4 1552 302.12 5.74 2.04 1.43 0.143 −0.177
LSB5 1587 302.16 5.68 2.06 1.33 0.142 −0.126
IS1 1587 302.16 5.68 2.05 1.41 0.142 −0.183
IS2 1587 302.16 5.68 2.05 1.28 0.142 −0.087
IS3 1587 302.16 5.68 2.05 1.30 0.141 −0.095
HF1 1550 302.11 5.74 2.04 1.43 0.145 −0.196
HF2 1546 302.11 5.75 2.04 1.41 0.141 −0.148
HF3 1545 302.10 5.75 2.04 1.38 0.140 −0.114
HF4 1548 302.11 5.75 2.04 1.36 0.140 −0.110
HF5 1556 302.12 5.73 2.04 1.35 0.141 −0.111
HF6 1622 302.21 5.62 2.07 1.32 0.142 −0.146
HF7 1650 302.26 5.58 2.08 1.33 0.143 −0.174
UNO 1550 302.11 5.74 2.04 1.04 0.192 −0.124
HNO 1587 302.16 5.68 2.05 1.10 0.197 −0.209

the colder and wetter forested patches. This is in accord with
the findings ofPatton et al.(2005) andvan Heerwaarden and
Vil à-Guerau de Arellano(2008). The rising air moves faster
(with a velocity of more than 2 m s−1 in the core of the ris-
ing plume halfway up the boundary layer) and is spread over
a smaller area than the descending air (with an average ve-
locity of approximately 0.5 m s−1 halfway up the boundary
layer). Due to this pattern, turbulent mixing is stronger over
the savannah patches than over the forest patches.

For the heterogeneous case the average boundary layer
height is higher than for the homogeneous case, but also
more variability is observed in the x-direction. This effect is
explained byvan Heerwaarden and Vilà-Guerau de Arellano
(2008). At the top of the buoyant thermals, the entrainment is
enhanced, because the relatively warm air with more kinetic
energy can penetrate the inversion layer relatively easily.

The entrained air is horizontally advected towards the forest
patches where it is transported downwards. Over the forest
patches, thermals are suppressed by the subsiding branch of
the mesoscale circulations, reducing entrainment over these
areas. This process leads to higher boundary layer heights
over the savannah patches than over the forest patches. The
average boundary layer height of the numerical experiment
HET is higher than that of HOM, however this difference
is less than 40 m. The minimum boundary layer height in
the numerical experiment HET is approximately equal to the
average boundary layer height in the numerical experiment
HOM. A more detailed explanation of the dependence of the
boundary layer height on the surface energy partitioning is
presented in Sect.3.5.

The right panels of Fig.3 show that the variability of the
dynamic variables in the x-direction is increased significantly
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Fig. 3. Potential temperature and moisture for the homogeneous case (a, c) and the heterogeneous case(b, d). Each figure consists of two
panels. The first panel shows these variables averaged over the fourth hour of simulated time and they-direction, while the second panel
shows an additional average in thex-direction. The red area in the second panel shows the variability in the x-direction of the temporal and
y averaged values. The potential temperature,θ, is shown on top(a, b) and the specific humidity,q, at the bottom(c, d). Wind direction and
magnitude are indicated by vectors(a, b). Thex-coordinate is scaled by the length scale of heterogeneity,λ, which is twice the patch size.

Fig. 3. Potential temperature and moisture for the homogeneous case(a, c) and the heterogeneous case(b, d). Each figure consists of two
panels. The first panel shows these variables averaged over the fourth hour of simulated time and the y-direction, while the second panel
shows an additional average in the x-direction. The red area in the second panel shows the variability in the x-direction of the temporal and
y averaged values. The potential temperature,θ , is shown on top(a, b) and the specific humidity,q, at the bottom(c, d). Wind direction and
magnitude are indicated by vectors(a, b). The x-coordinate is scaled by the length scale of heterogeneity,λ, which is twice the patch size.

by a heterogeneous surface forcing. This is caused by en-
trained air and the mesoscale circulations. In the lower half
of the boundary layer, the air over the savannah is warmer
due to the higher sensible heat fluxes. The mesoscale circu-
lations caused by this difference transport emitted moisture
from the forest to the savannah. Therefore the air over the
savannah, which is transported upward, is warmer and more
moist than over the forest. In the upper half of the bound-
ary layer, entrainment is of importance. The entrained air
is warmer and drier than the air in the boundary layer and
is transported to the forest patch by a mesoscale circulation.
Therefore, also the air in the upper half of the boundary layer
is drier over the forested patch than over the savannah patch.
However, due to the relatively warm air parcels that are en-
trained, the temperature in the upper half of the boundary
layer is higher over the forest patch than over the savannah
patch. The processes near the surface and the entrainment
zone have the same effect on the horizontal distribution of
moisture in the boundary layer, while the effects are opposed
for the distribution of the potential temperature. Because of
this, the variability in the potential temperature is much lower
than the variability in the specific humidity if normalized by
the differences between the free troposphere and the bound-
ary layer for the respective variables.

In contrast to the increased variability of the dynamic vari-
ables, the horizontally averaged vertical profiles are very
similar. The maximum differences in potential temperature

and specific humidity are located at approximately 1350 m
and 1600 m height, which are, respectively, in the upper part
and just above the average top of the boundary layer. For the
heterogeneous case the potential temperature at these heights
are respectively 0.1 K warmer and 0.3 K colder, while the
specific humidity at these heights are respectively 0.1 g kg−1

lower and 0.3 g kg−1 higher. The small decrease in average
potential temperature and the small increase in specific hu-
midity for the heterogeneous surface forcing are due to the
intrusion of the buoyant thermals towards the free tropo-
sphere. Since the air in the boundary layer is more humid and
colder than the free troposphere, this leads to the deviation in
averaged quantities. The changes at a height of 1350 m are
due to entrained air from the free troposphere.

3.1.2 Atmospheric chemistry

The spatial distributions of the concentrations and reaction
rates of isoprene with the hydroxyl radical are displayed in
Fig. 4 for the numerical experiments HOM and HET. As we
specifically study the isoprene-OH reaction, the concentra-
tions of these two reactants are shown together with their
chemical reaction rate. Due to the induced mesoscale circu-
lations, the isoprene is advected near the earth’s surface from
the forest towards the savannah patches, where it is trans-
ported upwards. After emission, the isoprene reacts with
OH. Due to these interactions, above the surface layer the
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Fig. 4. Isoprene and OH concentrations and chemical reaction rates for the homogeneous case(a, c, e)and the heterogeneous case(b, d, f).
Each figure consists of two panels. The first panel shows these variables averaged over the fourth hour of simulated time and the y-direction,
while the second panel shows an additional average in the x-direction. The red area in the second panel shows the variability in the x-direction
of the temporal and y averaged values. The concentration of Isoprene,cIsoprene, is shown on top(a, b), followed by the concentration of the
hydroxyl radical,cOH, in the middle(c, d). At the bottom(e, f) the chemical reaction rates for Reaction (R9),ROH,Isoprene, are displayed.
The x-coordinate is scaled by the length scale of heterogeneity,λ, which is twice the patch size.

concentration of isoprene is significantly higher over the sa-
vannah patches than over the forested patches. This is shown
in more detail in Fig.5. Since isoprene depletes OH, the
chemical reaction rates are highest and the OH concentra-
tions are lowest over the savannah patches. At the top of the
rising thermals a region appears with a relatively high reac-
tion rate, because the chemical reaction rate depends on the
product of both concentrations. These features are governed
by the spatial distribution of isoprene. Dynamics have an
impact on chemistry, because in the thermals the lifetime of
isoprene (approximately 50 min) is of the same order of mag-
nitude as the transport time from the surface to the top of the
boundary layer (approximately 15 min). For both the homo-
geneous and heterogeneous surface forcings the reaction rate
is highest near the surface, where isoprene concentrations are
highest.

Due to the mesoscale circulations, the boundary layer over
the forest is strongly influenced by the entrained air, while
the boundary layer over the savannah is mainly affected by
the surface turbulent fluxes. Therefore, a heterogeneous sur-
face forcing leads to an enhancement of the variability of
the chemical variables. In addition, the mean variables as
a function of height, shown in the right panels of Fig.4, as
well as the averages over the entire domain are affected. For
the uniform surface forcing the relatively long-lived species
like isoprene are well-mixed, which results in a concentra-
tion that is approximately constant with height. However,
for a heterogeneous surface forcing the slope of the isoprene
concentration profile with height is strongly enhanced due to
the entrained air that is transported towards the forested ar-
eas. Over the forest, turbulent mixing is less effective for a
heterogeneous surface forcing, which results in a significant
concentration gradient. Since OH is depleted by isoprene,
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Fig. 5. Isoprene concentrations for the homogeneous case(a) and the heterogeneous case(b) at different heights. The concentrations are
averaged over the fourth hour of simulated time and the y-direction. The x-coordinate is scaled by the length scale of heterogeneity,λ, which
is twice the patch size. The forest patches are located at−1< x

λ < −0.5 and 0< x
λ < 0.5 and the savannah patches are located elsewhere.

also the OH concentration profile is influenced by this pro-
cess. The altered concentration profiles result in a differently
shaped profile of the isoprene-OH reaction rate. The average
concentrations over the entire domain are enhanced by 1.3 %
and 5.1 % for OH and isoprene, respectively, while the result-
ing average chemical reaction rate is reduced by 0.68 %. This
counter-intuitive combination of effects that shows a non-
linear response, is caused by increased segregation (1+ IS
over the entire domain is decreased by 6.7 %), as outlined in
Sect.2.3.

Figure4 shows that the y-averages of the concentrations of
OH and isoprene as well as the chemical reaction rate vary
both in the x-direction and in height. To calculate the average
reaction rate, the different rates have to be determined locally
and then averaged spatially, as shown in Eq. (5). For this
calculation spatially averaged concentrations cannot be used
without knowledge of the covariance of the reacting species
(Eq. 6). This poses a problem for the interpretation of ob-
servations that cover only one point in space at a time, e.g.
aircraft observations. To interpret these data, one needs to
know the intensity of segregation or perform simultaneous
observations of all relevant reactants at a high frequency in
order to determine the covariances between those reactants.

3.1.3 Processes driving segregation

For the numerical experiments HOM and HET the intensi-
ties of segregation in the boundary layer during the 4th hour
are−0.07 and−0.13, respectively. This corresponds to ef-
fective chemical reaction rates (keff in Eq. 10) of 93 % and
87 % compared to the chemical reaction rates that are cal-
culated from boundary layer averaged concentrations. This
shows that atmospheric chemistry is influenced by dynamics
and that a heterogeneous surface forcing might enhance this
influence. In this section the processes that drive the segre-
gation are explored.

The intensity of segregation profiles, for the reaction in
which OH and isoprene form RO2, are shown in Fig.6a, b.
To produce this figure, the instantaneous intensities of hor-
izontal segregation are determined for each height at 1 min
intervals. The mean and variability for these profiles during
the fourth hour are depicted with the solid lines and shad-
ing. The dashed lines represent the averages over the fourth
hour of the instantaneous intensities of segregation over the
entire boundary layer at 1 min intervals. Since the intensity
of segregation is used to relate the boundary layer averaged
chemical reaction rate to the reaction rate which would be
calculated using boundary layer averaged concentrations, the
intensities of segregation over the entire boundary layer are
of most interest. However, the profiles of the intensities of
horizontal segregation enable us to identify processes driv-
ing the segregation.

Figure6a and b show that the average horizontal segrega-
tion can be divided into 3 regions. The lowest region is the
surface layer in which the intensity is most negative. Near
the top of the boundary layer, the intensity of segregation
increases to large positive values. The largest region is in-
between, representing the bulk value of the intensity of hor-
izontal segregation. The intensities differ from each other
and all are different from the intensity of total boundary layer
segregation.

To understand these profiles, the two terms of Eq. (12) are
plotted separately in Fig.6c and e for the numerical experi-
ment HOM and in Fig.6d and f for the numerical experiment
HET. It is shown that for both numerical experiments the
horizontal correlation factors behave similar. In the bound-
ary layer, isoprene and the hydroxyl radical are almost per-
fectly anti-correlated. This indicates that the correlation is
strongly influenced by chemistry (Reaction R9). For the het-
erogeneous surface forcing this anti-correlation is lower in
the lower part of the boundary layer. This is probably caused
by the generation of regions characterized by low isoprene
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Fig. 6. Horizontal intensities of segregation and the contributing
components, evaluating the isoprene-OH reaction. The fourth hour
of the numerical experiments HOM(a, c, e)and HET(b, d, f) is
evaluated. At every height the instantaneous intensity of segrega-
tion over the horizontal plane is determined at intervals of 1 min.
Its averages are shown in(a) and(b) with the variability in time
depicted using the red shading. The intensity of segregation over
the entire boundary layer is shown by the blue dashed line. In
(c) and(d) the horizontal spatial correlations between isoprene and
OH are shown with their temporal variability. In(e) and(f) this is
also done for the product of the concentration fluctuation intensities
of OH and isoprene, i.e. the second term in Eq. (12). In blue and
purple dashed lines the separate concentration fluctuation intensi-
ties are shown forisopreneandOH, respectively. The numbers in
(e)and(f) denote their unnormalized maximum values.

concentrations. In those regions the importance of Reac-
tion (R9) to OH is relatively low compared to other chemical
reactions.

Above the boundary layer, isoprene and OH are strongly
positively correlated, indicating that OH producing com-
pounds and isoprene are transported together into the free
troposphere (Sect.2.3). In the free troposphere, the concen-

trations of these compounds are initially very low, as shown
in Fig. 4. Therefore, at locations where thermals have trans-
ported compounds to the free troposphere, the concentrations
of both OH and isoprene are higher than the surroundings.
This results in a positive correlation. The figures show that
the only height at which the magnitude of the intensity of
segregation is influenced by the correlation factor, is near the
entrainment zone. There the correlation factor changes sign
over approximately 100 m, decreasing and increasing again
in magnitude in the process. The correlation factor does de-
termine the sign of the intensity of segregation, since the con-
centration fluctuation intensities are positive by definition. In
the case of isoprene and the hydroxyl radical, the intensity of
segregation is therefore negative in the whole boundary layer
and positive above.

The products of the concentration fluctuation intensities
for isoprene and OH,iIsoprene·iOH, drawn with the black lines
in Fig. 6e and f, are shaped similar for both a homogeneous
and heterogeneous surface forcing. Near the surface a small
peak is present, which is caused by a relatively high concen-
tration fluctuation intensity ofOH. This is caused by the high
isoprene concentrations near the surface, resulting in rapid
depletion of the hydroxyl radical. Above the boundary layer,
the relative variabilities of both compounds peak. This is due
to local transport through the inversion layer. While the av-
erage concentrations decrease with height, the standard devi-
ations slightly increase in that region. Above this layer, also
the standard deviations drop with height. Since the area of
transport by thermals grows smaller with increasing height,
the concentration fluctuation intensity forisoprenestill in-
creases with height. Due to fast depletion, OH is character-
ized by a more uniform concentration in the free troposphere.
For the heterogeneous surface forcing the product of the con-
centration fluctuation intensities for isoprene and OH is en-
hanced, mostly due to OH. In turn, this leads to an increase
in magnitude of the horizontal segregation intensity.

3.2 Influence of background wind

In the previous simulations background wind was not present
(i.e. local free convection). In this section its influence will
be discussed. For the numerical experiments presented here,
the roughness length,z0, is kept constant to 0.1 m. The
validity of this parameter for our numerical experiments is
checked by applying a roughness length of 1 m for the forest
areas and 0.03 m for the savannah areas. The resulting differ-
ences in the main properties are very small for the conditions
studied (not shown). Another effect not taken into account in
this study is the possibility of differences in the background
wind between the boundary layer and the free troposphere.
The wind shear generates additional turbulence near the in-
version layer, thereby increasing entrainment (e.g.Pino et al.,
2003). In turn, this enhanced entrainment would influence
both dynamics and chemistry. However, in all simulations
presented here, the wind profiles are set constant with height.
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Fig. 7. Potential temperature and chemical reaction rate for Reaction (R9) for the numerical experiments WU2(a, c)and WX2(b, d). WU2
evaluates a homogeneous surface forcing with a background wind of 5 m s−1 in the positive y-direction. In the numerical experiment WX2
a heterogeneous surface forcing is applied with a background wind of 5 m s−1 in the positive x-direction. The potential temperature,θ , is
shown on top(a, b) and the chemical reaction rate,ROH,Isoprene, below (c, d). Each figure consists of two panels. The first panel shows
these variables averaged over the fourth hour of simulated time and the y-direction, while the second panel shows an additional average in the
x-direction. The red area in the second panel shows the variability in the x-direction of the temporal and y averaged values. Wind direction
in the xz-plane and its magnitude are indicated by vectors(a, b). The x-coordinate is scaled by the length scale of heterogeneity,λ, which is
twice the patch size.

In Fig. 7 the potential temperature and chemical reaction
rate of Reaction (R9) are shown for the numerical experi-
ments WU2 and WX2. Both experiments have a background
wind of 5 m s−1 (constant with height). In the case of WU2
a homogeneous surface forcing is applied with a background
wind pointing in the y-direction. WX2 is characterized by a
heterogeneous surface forcing and a background wind point-
ing in the x-direction. This corresponds to wind blowing
perpendicular to the borders between the savannah and for-
est patches. In Fig.7a it is visible that with a uniform sur-
face forcing, mesoscale circulations are induced in the plane
orthogonal to the direction of the background wind. These
structures are called horizontal roll vortices (e.g.Stull, 1988;
Young et al., 2002). At locations where the air is rising, the
potential temperature in the lower part of the boundary layer
is higher due to transport of air from the relatively warm sur-
face layer. Chemistry is influenced by these circulations too,
due to the horizontally heterogeneous vertical transport of
chemical species. The rising branches of the circulations
transport isoprene from the surface layer to the upper part
of the boundary layer, which is where the hydroxyl radical
mixing ratio is highest. Therefore, the chemical reaction rate
of Reaction (R9) is higher in the upward moving air than
in the downward moving air and has an increased horizon-

tal variability compared to the numerical experiment without
background wind (HOM), as shown in Fig.7c. Due to the
uneven distribution of isoprene and its depleting effect on the
hydroxyl radical, the segregation between isoprene and OH
is enhanced.

The influence of background wind on the turbulent co-
herent structures and the vertical wind velocity is shown in
Fig. 8. The mesoscale circulations that are characteristic for
a heterogeneous surface forcing are slightly enhanced by the
horizontal roll vortices if both circulations exist in the same
plane. The rising air in the core of the thermals is slower
(with a velocity of approximately 1.8 m s−1 halfway up the
boundary layer), but the structure of the thermals is wider.
However, if the background wind blows across the bound-
aries between surface types, it inhibits the mesoscale circu-
lations due to the extra mixing because of advection. Fig-
ure7b shows this suppresses the heterogeneous distribution
of the potential temperature, compared to the local free con-
vective case (Fig.3b). Because of this the horizontal variabil-
ity in the boundary layer height decreases. Consequently, the
chemicals are more effectively mixed as well, resulting in
more uniform chemical reaction rates in the boundary layer
as illustrated by Fig.7d. The dependence on wind direc-
tion and the significance of a background wind of 5 m s−1 is
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Fig. 8. Vertical wind velocity for the numerical experiments HOM(a), HET (c), WU2 (b) and WY2(d). The upper figures are based on
a homogeneous surface forcing while the lower figures are connected to a heterogeneous surface forcing. The background wind was set to
0 m s−1 for the numerical experiments shown in the left column and 5 m s−1 in the positive y-direction for the numerical experiments shown
on the right. Each figure consists of two panels. The first panel shows these variables averaged over the fourth hour of simulated time and the
y-direction. The red area in the second panel shows the variability in the x-direction of the temporal and y averaged values. The x-coordinate
is scaled by the length scale of heterogeneity,λ, which is twice the patch size.

in accordance with previous studies (Raasch and Harbusch,
2001; Kim et al., 2004).

Multiple numerical experiments have been performed with
background wind for both kinds of surface forcing. The mag-
nitudes were set to 2.5, 5.0 and 7.5 m s−1 and in the case
of a heterogeneous surface forcing the wind direction was
set either parallel or perpendicular to the borders. Figure9
summarizes the effects on the boundary layer height and the
intensity of segregation for the isoprene-OH reaction, Re-
action (R9) (Table2). The average boundary layer height
slightly decreases for increasing wind velocities.

This seems to be caused by the lower vertical wind veloc-
ity maxima near the inversion layer with stronger background
winds. For the cases with heterogeneous surface forcing and
wind across the boundaries of the patches, the mixing effect
of the background wind dominates the effect of surface het-
erogeneity. Therefore, the characteristics tend towards values
representative for a homogeneous surface and the decrease in
boundary layer height is strongest for these numerical exper-
iments.

In general, chemicals are segregated more if a background
wind is present, resulting in the heterogeneous chemical re-
action rate of Fig.7c. Figure9b shows that this effect in-
creases with the wind velocity. However, in the case of a het-
erogeneous surface forcing and advection across the patch
borders, the magnitude of the intensity of segregation de-

creases. Again, this is due to the background wind smoothing
the effect of surface heterogeneity: by enhancing the mixing
of chemical species, the reactants are segregated less.

3.3 Influence of the length scale of heterogeneity

Previous studies have shown that the impact of a heteroge-
neous surface forcing on dynamics is highly dependent on
the length scale of heterogeneity (e.g.Avissar and Schmidt,
1998; Raasch and Harbusch, 2001; Patton et al., 2005). Also
the effects on atmospheric chemistry depend on this length
scale. Figure10 shows the sensitivities of the boundary
layer height and the intensity of segregation of the isoprene-
OH Reaction (R9). Note that in this analysis, length scales
are scaled by the boundary layer height. When analysing
the TKE, scaled by the convective velocity, as a function
of the normalized length scale in a similar way asPatton
et al. (2005), we qualitatively find the same sensitivity (not
shown), but the maxima of TKE occur atλ ≈ 16hBL instead
of λ ≈ 8 hBL . Therefore a more appropriate scaling might
exist.
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Fig. 9. Dependency of the boundary layer height(a) and the intensity of segregation in the boundary layer for Reaction (R9)(b) on horizontal
wind. The plotted variables are averages over the fourth hour of simulated time. The boundary layer heights are additionally averaged in the
x-direction. The black lines represent the numerical experiments with ahomogeneous surface forcing, while the other two lines are based
on cases with a heterogeneous surface forcing. For these cases, the wind can have two directions. The blue lines correspond towind blowing
parallel to the borders between the grass and savannah patches, i.e. in the y-direction, and the red lines correspond towind blowing across
these borders, i.e. in the x-direction.

Fig. 10.Dependency of the boundary layer height(a)and the intensity of segregation in the boundary layer for the isoprene-OH Reaction (R9)
(b) on the length scale of heterogeneity (i.e. twice the patch size). The homogeneous surface forcing corresponds to a heterogeneous surface
forcing with a length scale of 0 m. The plotted variables are averages over the fourth hour of simulated time. The boundary layer heights are
additionally averaged in the x-direction. The length scales on the bottom axes are normalized by the corresponding averaged boundary layer
heights,hBL . In (a) the black vertical lines represent the variability in the hourly averaged boundary layer height in the x-direction.

In the case of the shorter length scales (λ < 2 hBL),
stronger mesoscale motions are induced for an increase in
length scale. Consequently, the upward moving thermals are
more localized over the savannah and therefore stronger. Due
to the more vigorous thermals over the savannah patches, en-
trainment becomes stronger, which leads to enhanced bound-
ary layer heights over the savannah, explaining the increase
in the maxima. At larger length scales, the cores of the ther-
mals increase in size if the length scale increases. Therefore,
entrainment does not intensify and the boundary layer height
maxima over the savannah remain the same. For very large
length scales (λ > 16hBL) the boundary layer over the centre
of the savannah (forest) patch is not affected by the surface
forcing of the forest (savannah), which is visible in Fig.11.
This shows a separation of the combined boundary layer into

separate boundary layers over the forest and savannah areas.
The only interaction occurs near the interface (for our cases
approximately 10 km wide) where a circulation still exists. If
the boundary layers are fully separated, increasing the length
scale of heterogeneity will not have any effect.

In the case of induced mesoscale circulations, hot air at the
top of the boundary layer is transported from the savannah to
the forest patches. Since no distinct temperature inversion
is present over the forests (see Fig.2a), the resulting heat-
ing enables more rapid boundary layer growth by generating
a more gradual transition in temperature to the free tropo-
spheric lapse rate. Therefore, for the smaller length scales,
also over the forest areas the boundary layer heights increase
with increasing length scale. However, in the case of larger
length scales (λ > 2 hBL), direct entrainment of air from the
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Fig. 11. The potential temperature(a), specific humidity(b), isoprene concentration(c) and OH concentration(d) for the fourth hour of
the numerical experiment LSB2. The length scale of heterogeneity,λ, is 51.2 km, which is equal to 33.5 times the averaged boundary layer
height during this period. Each figure consists of two panels. The first panel shows the variables averaged over the fourth hour of simulated
time and the y-direction, while the second panel shows an additional average in the x-direction. The red area in the second panel shows the
variability in the x-direction of the temporal and y averaged values. Wind direction and magnitude are indicated by vectors(a).

free troposphere does not occur over the forests due to the
mesoscale circulations, in accord with the findings ofvan
Heerwaarden and Vilà-Guerau de Arellano(2008). In ad-
dition, in those cases the relative amount of transported heat
from the savannah areas compared to the size of the forest
areas decreases with an increasing length scale, leading to a
decrease in the boundary layer heights over the forests. The
domain-averaged boundary layer height decreases due to this
more uneven distribution of entrained air as well.

The distribution of reactive species is also affected by the
length scale. In this analysis the focus is on isoprene and OH.
For the shorter length scales (λ < 2 hBL), the non-uniformly
distributed isoprene, due to heterogeneous surface emissions,
is mixed within the surface layer (Mahrt, 2000). Therefore
the strongest effect on the chemistry is an enhancement of
the horizontal segregation in the surface layer. For increasing
length scales, the mesoscale circulations become stronger,
transporting isoprene from the forests to the savannah. The
combination of the induced transport by the mesoscale circu-
lations and the depletion by OH leads to increasing concen-
trations of isoprene over the savannah areas and lower con-
centrations in the upper part of the boundary layer over the
forest areas. Since OH and isoprene react efficiently, the dis-
tribution of OH is affected in an opposite direction, leading
to additional segregation.

For even larger length scales (λ ≥ 16 hBL , not shown),
separation of the boundary layer between forest and savan-

nah sets in (Avissar and Schmidt, 1998). Almost no iso-
prene emitted from the forest will be transported to the sa-
vannah areas. The concentration of OH over the savannah
will therefore be much higher than over the forest, resulting
in a spatial segregation of the reactive species between the
boundary layer over the forest and over the savannah. In at-
mospheric chemistry models the intensity of segregation is
sometimes used to account for the changed chemical reac-
tion rates (Eq.10) (e.g.Butler et al., 2008). However, for
these length scales, both areas can have completely differ-
ent dynamical and chemical characteristics, and the intensity
of segregation concept can no longer be applied over the en-
tire domain. Therefore, both areas should be treated sepa-
rately instead of considering a single mixed boundary layer
if λ ≥ 16 hBL . This corresponds to a length scale of approx-
imately 25 km, which is of the same magnitude as the grid
size of meso-scale chemistry-transport models and smaller
compared to global climate models. For regions with surface
heterogeneity length scales of that magnitude, chemistry-
transport models should use a finer grid or nested models to
accurately resolve the boundary layer chemistry.

All numerical experiments performed in this study con-
sider 1D-heterogeneity of the land surface.Courault et al.
(2007) found that 2-D-heterogeneity leads to weaker induced
circulations. Relating these findings with the quantification
in Table4 suggests that in those cases the absolute value of
the intensity of segregation will be lower. Further research
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Fig. 12.Dependency of the intensity of segregation in the boundary layer for Reaction (R9)(a) and the boundary layer averaged concentration
of isoprene(b) on the difference in isoprene emissions between forest and savannah areas. The average isoprene emission is 0.65 ppb m s−1.
The plotted variables are averages over the fourth hour of simulated time and the whole boundary layer. The values on the bottom axis are
equal tow′c′

Isoprene,forest−w′c′
Isoprene,savannah.

on this subject is required, but this lies beyond the scope of
this study.

3.4 Influence of the difference in isoprene emissions

In our model, the heterogeneity of isoprene emissions does
not affect boundary layer dynamics, but it does influence at-
mospheric chemistry. The numerical experiments that are
discussed in this section are characterized by the heteroge-
neous surface heat fluxes of case HET. Figure12a shows that
with heterogeneous surface heat fluxes the intensity of seg-
regation is enhanced compared to the numerical experiment
HOM (Is = −0.07), even if the isoprene emission from the
surface is uniformly distributed. This segregation is caused
by the transport (near the surface) of isoprene from the forest
to the savannah by the induced mesoscale circulations and
the following upward transport. During transport, isoprene
is depleted by OH. The isoprene concentration is lower by
the time the air is advected to the forest area at the top of
the boundary layer. Consequently, in the bulk of the bound-
ary layer high isoprene concentrations are found over the
savannah and low isoprene concentrations over the forest.
Since the hydroxyl radical concentrations respond to the iso-
prene concentrations, the reverse is true for OH. This leads
to horizontal segregation. In the case where the isoprene
emission from the savannah is higher than from the forest
(1wcIsoprene= −0.7 ppb m s−1 in Fig. 12), this effect is
slightly enhanced.

Not all isoprene is transported to the savannah by the in-
duced mesoscale circulations. The horizontal transport is
strongest near the borders between savannah and forest. If
more isoprene is emitted over the forest, the average trans-
port time of isoprene to the savannah area and then to the
upper part of the boundary layer increases. Therefore, the
concentration of isoprene over the forest increases relative to
conditions with uniform emissions and, due to the ongoing

chemical reaction with OH, most isoprene will be located in
the lower part of the boundary layer. Again, OH responds to
the concentration of isoprene, resulting in higher concentra-
tions in the top of the boundary layer and lower concentra-
tions near the surface. This introduces additional segregation
in the vertical direction.

The concentration of isoprene is plotted in Fig.12b.
The effective chemical reaction rate coefficient when using
boundary layer averaged concentrations is equal tok ·(1+IS)

according to Eq. (10). In the case of stronger (more negative)
segregation effects, the effective coefficient of Reaction (R9)
is reduced, resulting in higher concentrations in the bound-
ary layer. Isoprene is most strongly affected, with a concen-
tration increase of up to 10.5 % compared to the case with
homogeneous isoprene emissions. After the build up of iso-
prene in the lower part of the boundary layer, a new chemical
balance is reached. Therefore, the boundary layer averaged
total chemical reaction rate is reduced only by 0.6 %. While
the lifetime of isoprene is increased significantly by the in-
crease in segregation, the lifetime of the short-lived hydroxyl
radical remains short due to other chemical reactions. There-
fore the concentration of isoprene will build up more than
that of OH and consequently OH is also affected much less
(only 0.5 %).

3.5 Influence of the surface energy partitioning

The effects of the surface energy partitioning on the bound-
ary layer height and the intensity of segregation for Reac-
tion (R9) (Table2) are summarized in Fig.13. The boundary
layer height has a non-linear dependency on the difference in
surface buoyancy flux between the forest and savannah. This
is due to two competing effects of the induced mesoscale cir-
culations. The circulations that are imposed on the boundary
layer dynamics intensify with larger surface buoyancy flux
differences. Therefore, more turbulence is generated over
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Fig. 13. Dependency of the boundary layer height(a) and the intensity of segregation in the boundary layer for Reaction (R9)(b) on
the difference in surface buoyancy flux between forest and savannah areas. The plotted variables are averages over the fourth hour of
simulated time. The boundary layer heights are additionally averaged in the x-direction. The values on the bottom axis are equal to
w′θ ′

vsavannah−w′θ ′
v Isoprene,forest. In (a) the black vertical lines represent the variability in the hourly averaged boundary layer height in the

x-direction.

the savannah areas and entrainment is increased, leading to
higher boundary layers. By transport of air from the savan-
nah to forest areas at the top of the boundary layer, the air
over the forest is heated, resulting in the growth of the lo-
cal boundary layer. For stronger circulations, the maximum
boundary layer height is larger and entrained air has a higher
potential temperature. Therefore the heating of the boundary
layer over the forest is also stronger, which results in higher
boundary layer height minima. The domain-averaged bound-
ary layer height also increases due to this warmer entrained
air.

The second effect is the suppression of turbulence over
the forest by the downward moving branch of the induced
circulations. Consequently, direct entrainment over the for-
est is reduced for increasing surface buoyancy flux differ-
ences and the local boundary layer height is lower. There-
fore the boundary layer height minima decrease. This effect
is relatively strong for weak mesoscale introductions which
are related to small buoyancy flux differences (1w′θ ′

v <

0.04 K m s−1). For larger differences, all entrainment over
the forest is suppressed and increasing the strength of the
circulations only impacts the first of the two effects men-
tioned above. As a result the boundary layer height minima
decrease with growing buoyancy flux differences as long as
those differences are small (1w′θ ′

v < 0.023 K m s−1) and in-
crease in the case of larger differences.

Atmospheric chemistry depends strongly on the partition-
ing of the surface buoyancy flux. The effect on the intensity
of segregation of Reaction (R9) is shown in Fig.13b. Two
regimes can be identified. For the regime with lower buoy-
ancy flux differences, the segregation is governed by local
emissions. In the case of larger buoyancy flux differences,
the segregation is governed by mesoscale effects.

If the buoyancy flux is uniformly distributed, mixing in
the vertical direction takes place due to thermals, but hori-
zontal mixing is limited. The isoprene emitted by the forest

stays in the boundary layer over the forest and the concen-
tration of isoprene over the savannah is much lower. Conse-
quently, the hydroxyl radical is mainly present in the bound-
ary layer over the savannah. This leads to strong horizon-
tal segregation that is approximately constant with height.
For increasing differences in surface buoyancy fluxes, the
mesoscale circulations become stronger. Near the surface,
isoprene is transported from the forest to the savannah where
vertical transport sets in. As a result, the horizontal mix-
ing is stronger and the segregation is reduced. Depletion by
OH limits the concentrations of isoprene in the upper part of
the boundary layer, resulting in vertical segregation. The in-
duced vertical segregation is weaker than the horizontal seg-
regation, and the magnitude of the total intensity of segre-
gation is reduced. For our numerical experiments this holds
until 1w′θ ′

v ≈ 0.035 K m s−1.
For even larger buoyancy flux differences, stronger in-

duced circulations transport more isoprene from the forest to
the savannah. The highest isoprene concentrations are now
located over the savannah and in the lower part of the bound-
ary layer over the forest. The OH concentration is therefore
highest in the upper part of the boundary layer over the forest.
For stronger circulations, the part of the boundary layer over
the forest with high isoprene concentrations grows thinner,
resulting in conditions with more negative horizontal segre-
gation. In such cases the isoprene is more concentrated over
the savannah and the hydroxyl radical over the forest. This
corroborates the importance of a correct partitioning of the
energy budget into surface moisture and heat fluxes when
modelling atmospheric chemistry.

3.6 Sensitivity to NOx

As mentioned in Sect.2.2, sensitivity studies are performed
on the role of NOx. In particular we focus on the im-
pact of biogenic NOx emissions and initial free tropospheric
NO2. According to these numerical experiments, a one
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Fig. 14. Isoprene and OH concentrations for numerical experiments UNO(a, c) and HNO(b, d). They are identical to HOM and HET,
respectively, except for the initial NO2 concentration above 1000 m (free troposphere). Each figure has two panels. The first shows the
variables averaged over the fourth hour of simulation time and the y-direction, while the second panel shows the additional average in the
x-direction. The red area in the second panel shows the variability in the x-direction of the temporal and y averaged values. The concentration
of isoprene,cIsoprene, is shown on top(a, b) and the concentration of the hydroxyl radical,cOH, at the bottom(c, d). The x-coordinate is
scaled by the length scale of heterogeneity,λ, which is twice the patch size.

order of magnitude change in the prescribed NO emissions
and changes in their distribution have limited impact on
the isoprene-OH segregation under the chosen set of condi-
tions. However, entrainment of NOx from the free tropo-
sphere, driven by the boundary layer growth in the morning
hours, can significantly alter the boundary layer chemistry
conditions. The presented numerical experiments (UNO and
HNO) are based on cases HOM and HET, respectively, but
have their initial free tropospheric NO2 concentration set to
0.5 ppb.

The temporal and y averaged profiles of the hydroxyl rad-
ical and isoprene concentrations are displayed in Fig.14.
OH is strongly affected by the free tropospheric NOx. Note
that in the free troposphere, the chemistry is characterized
by higher hydroxyl radical concentrations due to the lower
abundance of reduced species like isoprene. Therefore, air
masses that are entrained from the free troposphere into the
boundary layer are relatively rich in NOx and lead to higher
OH concentrations. Since this process occurs at the top of the
boundary layer, the spatial distribution of OH is changed and
the gradients of the additional x averaged OH profiles indi-
cate enhancements as well. The increase in OH subsequently
depletes isoprene. Therefore, the isoprene concentration is
lower compared to the cases without free tropospheric NOx.
However, the spatial pattern of isoprene remains similar to
the cases without initial free tropospheric NO2.

The intensity of segregation for the isoprene-OH reaction
is enhanced for the cases UNO and HNO. As mentioned,
the free tropospheric air has a chemical composition that
generates relatively high OH concentrations. This air en-
ters the boundary layer at those edges of the layer that are
positioned opposed to the locations of isoprene emissions.
For example, for homogeneous surface forcings, isoprene is
emitted at the surface and the entrained air is introduced at
the top of the boundary layer. For heterogeneous surface
forcings, i.e. when isoprene is mainly emitted by the forest
(at −1< x

λ
< −0.5 and 0< x

λ
< 0.5 in Fig. 14), it is subse-

quently horizontally transported to the savannah region (at
−0.5 < x

λ
< 0 and 0.5 < x

λ
< 1) by the induced mesoscale

circulations. There, the air is transported upwards. The en-
trained air, which is relatively enriched in NOx and conse-
quently characterized by higher OH concentrations, is intro-
duced at the top of the boundary layer over the savannah area
and transported by the upper branch of a mesoscale circula-
tion to the top of the boundary layer over the forest. There
it is transported downwards by the subsiding branch of the
induced mesoscale circulation. Consequently, the updrafts
are rich in isoprene and poor in OH, while in the down-
drafts, which are poor in isoprene, the abundance of OH is
enhanced due to the relatively high NOx concentration in
the entrained air. This leads to enhanced spatial segregation
compared to the cases without initial free tropospheric NO2.
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Fig. 15. Governing variables which affect the segregation of chemical species(a) and the resulting intensity of segregation for Reaction (R9)
as a function of the magnitude of those variables (see descriptions of sensitivity analysis experiments in Table 3 and their results in Table 4)
(b). The governing variables are thesurface buoyancy flux difference, thelength scale of heterogeneity, theisoprene emission difference,
wind blowing parallel to the borders between forest and grass andwind blowing acrossthose borders. The control numerical experiment
with heterogeneous surface forcing, HET, is indicated withan arrow. Not shown in panel(b) is the impact ofNOx mixing ratios and their
distribution within the boundary layer and free troposphere on the intensity of segregation for Reaction (R9).

Fig. 15.Governing variables which affect the segregation of chemical species(a) and the resulting intensity of segregation for Reaction (R9)
as a function of the magnitude of those variables (see descriptions of sensitivity analysis experiments in Table3 and their results in Table4)
(b). The governing variables are thesurface buoyancy flux difference, thelength scale of heterogeneity, theisoprene emission difference,
wind blowing parallel to the borders between forest and grass andwind blowing acrossthose borders. The control numerical experiment
with heterogeneous surface forcing, HET, is indicated with an arrow. Not shown in panel(b) is the impact ofNOx mixing ratios and their
distribution within the boundary layer and free troposphere on the intensity of segregation for Reaction (R9).

We find that averaged over the fourth hour of simulated time,
the intensity of segregation is changed from−0.070 (HOM)
to −0.124 (UNO) in the case of homogeneous surface forc-
ings and from−0.126 (HET) to−0.209 (HNO) in the case
of heterogeneous surface forcings.

These results show that NOx mixing ratios and their distri-
bution within the boundary layer and free troposphere signif-
icantly influence the intensity of segregation for the isoprene-
OH reaction. It stresses the need to take the VOC and NOx
conditions into account in future studies that aim at segrega-
tion parameterizations.

4 Conclusions

Numerical experiments with DALES, a model that simulta-
neously resolves turbulence and atmospheric chemistry at the
most energetic and relevant scales, are used to systematically
study boundary layer dynamics and mixing over a land sur-
face characterized by heterogeneous conditions. Particular
emphasis is put on the structure of the boundary layer and the
intensity of segregation for the isoprene-OH reaction. The
numerical experiments are based on conditions representa-
tive for the Amazon rain forest.

Figure15 summarizes the main driving variables includ-
ing a quantification of the intensity of segregation as a func-
tion of the magnitude of those variables. The results indi-
cate that in the absence of free tropospheric NOx the inten-
sity of segregation for the isoprene-OH reaction is normally
in the range−0.07> IS > −0.20. The difference in surface
buoyancy flux between the forest and savannah induces cir-

culations that affect segregation. The impacts depend on the
regime under study. For low buoyancy flux differences be-
tween savannah and forest, isoprene is mainly concentrated
over the forest and an increase in the horizontal transport be-
tween the forest and savannah due to a larger difference leads
to a lower magnitude of the intensity of segregation. For high
buoyancy flux differences, most isoprene is located over the
savannah and an increase of the surface buoyancy flux differ-
ence enhances this segregation. This non-linearity is visible
in Fig. 15b. An increase in the length scale of heterogeneity
always results in stronger segregation. However, for length
scales of heterogeneity much larger than the boundary layer
height (λ > 16hBL) the centres of the boundary layers above
each patch are hardly affected by the induced circulations
that only occur in a narrow zone near the surface disconti-
nuities. In these cases the intensity of segregation becomes
more negative than−0.20, but separation of the boundary
layers can occur.

For larger differences in isoprene emissions between for-
est and savannah, more negative intensities of segregation are
found. The intensity and direction of the background wind is
of importance too. Wind parallel to the borders between for-
est and savannah enhances the induced circulations and the
resulting intensity of segregation. Wind traversing these bor-
ders smoothens the effects of a heterogeneous surface forc-
ing, which results in a weaker intensity of segregation.

In general, the results suggest that the intensity of segrega-
tion cannot be taken as a constant number based on averaged
emissions and moisture and heat fluxes. It strongly depends
on the background wind conditions and the partitioning of
the emissions and surface fluxes.
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The intensity of segregation for the isoprene-OH reaction
varies significantly between the different simulated condi-
tions. However, with the exception of the cases in which the
boundary layers become separated or NOx is entrained from
the free troposphere, the boundary layer average concentra-
tion of OH is hardly modified. This is caused by an increase
in the isoprene concentration, compensating for the segrega-
tion effect. The increase in isoprene concentration for these
cases reaches values up to 12 %, which is actually within
the 15 % uncertainty in isoprene measurements (Karl et al.,
2007). Consequently, the chemical reaction rates remain al-
most equal, which explains the satisfactory performance of
mixed layer models that assume instantaneous mixing for at-
mospheric chemistry in the planetary boundary layer during
diurnal convective conditions (e.g.Vil à-Guerau de Arellano
et al., 2011).

The usual mismatch between OH observations and cur-
rent state of the art atmospheric model by factors over 2 (Tan
et al., 2001; Lelieveld et al., 2008) cannot be fully explained
by the intensity of segregation. Since the difference in con-
centrations due to segregation is comparable to the measure-
ment uncertainties and uncertainties in the reaction rate co-
efficients (5–15 %,Atkinson et al., 2006), representing the
segregation is not the final solution to reconcile modelled
and observed OH concentrations. Therefore, the implemen-
tation of parameterizations for the intensity of segregation
for the sub-grid scale processes in large scale atmospheric
chemistry-transport may not have first priority. However, pa-
rameterizations are needed when striving for the best pos-
sible model performance. This study shows dependences
on the length scale of heterogeneity, the differences in sur-
face buoyancy fluxes and isoprene emissions between for-
est and savannah and the intensity and direction of the back-
ground wind. These governing processes are interacting non-
linearly. Therefore, future research on representations of the
intensity of segregation in chemistry-transport models needs
to take these interactions between the different processes into
account. An effort should be made to obtain observational
data that can verify the results obtained from numerical ex-
periments. Finally, our study shows that in order to help rec-
oncile modelling with observations, it is recommendable to
combine future measurements of atmospheric chemistry and
boundary layer dynamics with a characterization of the het-
erogeneity of the land surface conditions and the direction
and magnitude of the background wind.
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