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Abstract. We have implemented six different inverse car-
bon flux estimation methods in a regional carbon dioxide
(CO2) flux modeling system for the Netherlands. The sys-
tem consists of the Regional Atmospheric Mesoscale Model-
ing System (RAMS) coupled to a simple carbon flux scheme
which is run in a coupled fashion on relatively high resolu-
tion (10 km). Using an Ensemble Kalman filter approach we
try to estimate spatiotemporal carbon exchange patterns from
atmospheric CO2 mole fractions over the Netherlands for a
two week period in spring 2008. The focus of this work is the
different strategies that can be employed to turn first-guess
fluxes into optimal ones, which is known as a fundamental
design choice that can affect the outcome of an inversion sig-
nificantly.

Different state-of-the-art approaches with respect to the
estimation of net ecosystem exchange (NEE) are compared
quantitatively: (1) where NEE is scaled by one linear multi-
plication factor per land-use type, (2) where the same is done
for photosynthesis (GPP) and respiration (R) separately with
varying assumptions for the correlation structure, (3) where
we solve for those same multiplication factors but now for
each grid box, and (4) where we optimize physical param-
eters of the underlying biosphere model for each land-use
type. The pattern to be retrieved in this pseudo-data exper-
iment is different in nearly all aspects from the first-guess
fluxes, including the structure of the underlying flux model,
reflecting the difference between the modeled fluxes and the
fluxes in the real world. This makes our study a stringent
test of the performance of these methods, which are currently
widely used in carbon cycle inverse studies.

Correspondence to:L. F. Tolk
(lieselotte.tolk@acaciawater.com)

Our results show that all methods struggle to retrieve the
spatiotemporal NEE distribution, and none of them succeeds
in finding accurate domain averaged NEE with correct spa-
tial and temporal behavior. The main cause is the difference
between the structures of the first-guess and true CO2 flux
models used. Most methods display overconfidence in their
estimate as a result. A commonly used daytime-only sam-
pling scheme in the transport model leads to compensating
biases in separate GPP andR scaling factors that are read-
ily visible in the nighttime mixing ratio predictions of these
systems.

Overall, we recommend that the estimate of NEE scaling
factors should not be used in this regional setup, while esti-
mating bias factors for GPP andR for every grid box works
relatively well. The biosphere parameter inversion performs
good compared to the other inversions at simultaneously pro-
ducing space and time patterns of fluxes and CO2 mixing ra-
tios, but non-linearity may significantly reduce the informa-
tion content in the inversion if true parameter values are far
from the prior estimate. Our results suggest that a carefully
designed biosphere model parameter inversion or a pixel in-
version of the respiration and GPP multiplication factors are
from the tested inversions the most promising tools to opti-
mize spatiotemporal patterns of NEE.

1 Introduction

Carbon cycle studies today rely on a wide range of meth-
ods with purely observation-based studies on one side of the
spectrum and pure modeling on the other side. In between,
there are many studies that use a combination of observations
and modeling techniques. A special branch of these com-
bined methods is inverse modeling, in which information is
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derived from observations using Bayesian statistical meth-
ods to minimize the difference between model predictions
and observations. Recent inverse modeling studies include
for instance efforts to derive the net carbon exchange across
the globe or at smaller scales from mixing ratio observa-
tions of CO2 (e.g. Bousquet et al., 2000; Gurney et al.,
2003; R̈odenbeck et al., 2003; Mueller et al., 2008; Lau-
vaux et al., 2009; Ciais et al., 2010; Göckede et al., 2010)
or attempts to constrain biophysical parameters from eddy-
covariance methods (Papale and Valentini, 2003; Carvalhais
et al., 2008).

One recurring issue in inverse studies is the large number
of choices to be made concerning amongst others, the selec-
tion and weighting of observations, the magnitude and cor-
relations of the uncertainties, the treatment of the time and
space domain, and even which unknowns to solve for in the
application. As a result, no two inverse studies use the same
assumptions and the outcome of inverse studies always needs
to be evaluated within the limits of the modeling framework
chosen.

Many authors have used atmospheric CO2 mole fraction
observations from around the globe to reconstruct the spa-
tiotemporal patterns of net ecosystem exchange (NEE), each
in a different way. Peters et al. (2007) used NEE multipliers
across large areas of similar vegetation to scale calculated
NEE from a biosphere model over each week over many
years. Lokupitiya et al. (2008) estimated NEE for a similar
time frame, but estimated separate multipliers for simulated
gross photosynthetic production (GPP) and ecosystem respi-
ration (R), and for each model grid box. Rayner et al. (2005)
in contrast chose to modify a set of physical parameters in
the underlying biosphere model directly, thus adjusting NEE
to match with observed CO2 mole fractions. That study how-
ever did not estimate separate parameters for separate parts
of the globe. The large resulting NEE differences between
these three estimates shows that methodology used is an im-
portant part of the final result. Clearly, the question which
method is most appropriate to estimate NEE has not been yet
been resolved (if it ever will) and remains one of the crit-
ical issues in estimating source and sink distributions from
observations.

In this paper, we want to further investigate the impact
of different methodological choices on estimated reanaly-
sis of NEE. The application we chose for this purpose is
a regional inversion of CO2 mole fractions using a high-
resolution transport model, and a realistic spatiotemporal dis-
tribution of NEE. We plan to use this framework for actual
NEE inversions at a later stage, after determining the opti-
mal approach through a set of pseudo-data inversions where
the true answer is known. The regional character of this in-
version allows us to disregard some of the issues related to
carbon cycling on longer time scales, and from long-range
atmospheric transport of CO2. The four methods we want to
test are related to the studies mentioned in the previous para-
graph: (1) where we estimate NEE multipliers per vegetation

type, (2) where we estimate GPP andR multipliers per vege-
tation type, (3) where we estimate GPP andR multipliers for
each grid box, and (4) where we estimate biophysical model
parameters for each vegetation type. The specific questions
we want to address are: what is the best strategy to deter-
mine the spatiotemporal pattern and magnitude of NEE in
our domain? What are the strengths and weaknesses of each
method?

Pseudodata studies always carry the danger of oversimpli-
fying the real problem, or to be designed in a way to favor
one outcome over another. We have tried to design our study
to prevent this issue by using a “true” CO2 exchange distri-
bution from a different biosphere model (FACEM; Pieterse
et al., 2007) than the one we use to retrieve the exchange pat-
terns (5PM; Groenendijk et al., 2011). Differences exist be-
tween the models in physical formulations, plant functional
types, driving parameter values, and in driving meteorolog-
ical input data, minimizing the a-priori expected similarity.
However, both models are based on similar principles and
equations and even though they do not share the same land-
use map for the domain, the prescribed land-use maps in each
model are realistic and thus similar.

New in our approach is that we test all inversion ap-
proaches, each with different underlying assumptions, at a
high resolution with the same meteorology, whereas in previ-
ous comparisons (e.g. Gurney et al., 2003) both the inversion
method and the transport model could differ. This enables
us to isolate the impact of the inversion methodology. We
expect our results to be applicable to similar setups (short
time periods, large flux heterogeneity, large CO2 variations,
small transport errors) but caution against extrapolation to
the larger scales.

After describing the details of each of the methods in-
cluded in our tests in Sect. 2.1, we will describe the gen-
eral characteristics of all inversions in Sects. 2.2 to 2.5. We
present our results next in Sect. 3, using a set of five met-
rics applied to each solution. Special attention is given to
the non-linearity of the biosphere model parameter inversion.
The strengths and weaknesses revealed in the result sections
are further discussed in Sect. 4. Finally, we revisit our re-
search questions and we present general conclusions and rec-
ommendations in Sect. 5.

2 Methods

2.1 Inversion methods

In this study we compare four different optimization meth-
ods that are used in current state-of-the-art inverse systems
for CO2. We will briefly describe their main characteristics,
which are also summarized in Table 1. For each inversion
we applied the same methodology (Ensemble Kalman fil-
ter). This approach was necessary as the biosphere model
parameter inversion is non-linear and could not be solved
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Table 1. Summary of the six inverse methods tested, indicating which variables are optimized in the inversions including their correlation
and for which spatial unit they are optimized, the degrees of freedom (D.o.f.) as calculated from the a-priori covariance matrix of each system
and theχ2 of innovations.

Inversion name Variables in state vector Correlation Optimization units D.o.f.χ2 of innovations

βNEE βNEE NA ecoregions 6 0.4
βRG0.0 βresp,βGPP 0.0 ecoregions 11 0.7
βRG0.5 βresp,βGPP 0.5 ecoregions 9 0.6
βRG1.0 βresp,βGPP 1.0 ecoregions 6 0.3
βRGpixel βresp,βGPP 0.0 pixels 62 0.3
Parameter βE0,βR10,βVmax,βα 0.0 ecoregions 22 0.6

with typical linear Bayesian solution methods. A description
of the Ensemble Kalman filter can be found in Appendix A.
Further we refer to Peters et al. (2005) and references therein
for a description of additional details of the inversion proce-
dure.

The first inverse method is one where pre-calculated pat-
terns of NEE from a biosphere model are linearly scaled
across larger areas, similar to the CarbonTracker system (Pe-
ters et al., 2007, 2010). This can be denoted as:

NEEpost(x,y,t) = βNEE(e)NEEprior(x,y,t), (1)

whereβ is a scaling factor for each land-use type (e), with
an a-priori value of 1.0. NEEprior(x,y,t) is a high resolution
NEE field from a biosphere model. This method has as ad-
vantage that it is straightforward to implement and needs lit-
tle extra assumptions to stabilize the solution. Disadvantage
is that theβ factors offer little possibility to change sources
into sinks (the sign ofβ then needs to change), or to scale
small (near zero) fluxes to large fluxes (β needs to change a
lot).

To overcome some of these disadvantages, systems were
suggested that linearly scale gross fluxes instead (Zupanski
et al., 2007; Lokupitiya et al., 2008; Schuh et al., 2009):

NEEpost(x,y,t) = βresp(e)Rprior(x,y,t)

−βGPP(e)GPPprior(x,y,t) (2)

R and GPP, which are large and stem from mostly indepen-
dent processes at short time scales, then each carry a scaling
factorβ. An advantage is that this system does more justice
to the actual processes in the carbon cycle, but a disadvan-
tage is that the separation of the large and opposing fluxes
using atmospheric CO2 is very difficult, and might need ex-
tra regularization of the solution in the form of prescribed
covariances. In addition to the uncorrelated version of this
inversion, we therefore also test this option with correlations
of 0.5 and 1.0 betweenβrespandβGPPfor each land-use type.

A final variant of the approach above is to make theβresp
andβGPPspatially explicit:

NEEpost(x,y,t) = βresp(x,y)Rprior(x,y,t)

−βGPP(x,y)GPPprior(x,y,t) (3)

This offers the advantage that theβrespandβGPPspatial pat-
terns are allowed to vary within each ecoregion. However,
additional regularization is necessary because the number of
unknown bias parameters is too large to estimate from the
limited atmospheric observations. In this study, we apply a
spatial covariation between all grid points in the same land-
use type that decreases exponentially with distance, simi-
lar to methods used in R̈odenbeck et al. (2003), Peylin et
al. (2005), Peters et al. (2005), Schuh et al. (2009) with a
smaller length scale (L = 100 km) to fit with the more de-
tailed regional setup of the inversion.

Another class of inverse methods uses atmospheric CO2
not to constrain the surface exchange patterns, but to directly
optimize the parameters of the underlying biosphere model
(Rayner et al., 2005; Scholze et al., 2007). The optimized
parameters then control the new surface CO2 exchange. An
advantage of this approach is the seamless extrapolation of
information across the space and time domain and the phys-
ical relevance of the optimized result (new biosphere model
parameter values instead of scaling factors). Disadvantages
come in the form of several pitfalls: limitations in the model
structure are difficult to overcome, the model parameters are
rarely directly constrained by atmospheric CO2 and aliasing
of information into the wrong parameter is possible. In addi-
tion, the biosphere model and often contains non-linearities
that conflict with the inversion assumptions, as we will dis-
cuss elaborately in Sect. 3.1. The biosphere model optimiza-
tion can be written as:

NEEpost(x,y,t) = f ( βE0(e)E0,prior,βR10(e)R10,prior,

βV cmax(e)Vm,prior,βα(e)αprior ) (4)

where we have selected to optimize 4 parameters for each
land-use class:βE0 is a scaling factor for the respiration acti-
vation energyE0 , βR10 is a scaling factor for the respiration
rate at reference temperature,βV cmax scales the carboxylation
capacity, andβα scales the quantum yield for light limited
assimilation. The first two parameters are used to adjust res-
piration while the latter two control photosynthesis (see next
section).
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The resulting six inverse methods described above will be
referred to as theβNEE inversion, theβRG0.0 inversion (no
GPP andR correlations), theβRG0.5 inversion (correlations
of 0.5), theβRG1.0 inversion (fully correlated GPP andR),
the βRGpixel inversion (estimates for each pixel), and the
parameter inversion. Note that theβRG1.0 inversion is not
the same as theβNEE inversion because the flux covariance
is distributed differently in space and time.

For each inversion method the degrees of freedom are es-
timated with the simple formula from Patil et al. (2001) that
considers the number of significant eigenvalues in the cor-
relation matrix (normalized covariance matrix). For each of
these inversions, the d.o.f. is relatively small compared to the
number of observations (336). The estimated number of de-
grees of freedom is given in Table 1.

2.2 Modeling system, simulation period and domain

All inversions are based on simulation with the same model
setup in which the non-hydrostatic mesoscale model RAMS
(Pielke et al., 1992) is used to simulate the atmospheric trans-
port. The version used in this study is B-RAMS-3.2, in-
cluding adaptations to ensure mass conservation (Meesters
et al., 2008). The prior NEE flux estimates are calculated
with the simple biosphere model 5PM (Groenendijk et al.,
2011) in which photosynthesis is calculated following Far-
quhar et al. (1980) and respiration is calculated with the rela-
tionship by Lloyd and Taylor (1994). The input for the bio-
sphere model is summarized in Table 2. Further details on
the transport and biosphere modeling system can be found in
Tolk et al. (2009).

The simulations are performed for an area of
400× 400 km at a relative high resolution of 10 km,
centered in the Netherlands at 52.25◦ N and 5.2◦ E
(Fig. 1). The Corine 2000 land use maps are used
(http://dataservice.eea.europa.eu). Most of the area con-
sists of cultivated land, in which the most abundant land
use type is “Agricultural areas with complex cultivation
patterns”, which is further referred to as “crops 1”. Second
most abundant is grassland, referred to as “grass”, and the
third is “Agricultural land with significant areas of natural
vegetation”, referred to as “crops2”. The simulation period
19 May 2008–2 June 2008 was selected to contain various
weather types and thus flux regimes, including cloudy, rainy,
and sunny days at the beginning of the growing season.

2.3 Control inversions

The simulations are performed in a pseudo-data environ-
ment, so that the “true” fluxes are known and the results
of the different inversion methods can be evaluated against
them. As a check on the inversion system, and as a reference
for the performance of the inversions with a perfect or near
perfect structure of the NEE flux pattern, we performed two
control simulations. In the first, pseudo data were created

Table 2. Summary of the differences between the FACEM bio-
sphere model (“true”) and the 5PM biosphere model (a-priori). In
our pseudo-data study these differences mimic the expected struc-
tural differences between real CO2 fluxes and those simulated with
a biosphere model, and limit the performance of the inversions sub-
stantially.

Prior fluxes “True” fluxes

Resolution 10 km 6′

Landuse map Corine2000 SYNMAP
LAI MODIS-2006 MODIS-2008
Soil map UN-FAO* IGBP-DIS
Meteorology RAMS ECMWF

 

Fig. 1. The domain of the study showing the distribution of six
different land-use categories according to the Corinne database, as
well as 4 locations where continuous, calibrated measurements of
CO2 are available (Cabauw, west; Lutjewad, north; Loobos, middle;
Hengelman; east). The area displayed, shown as lat long on the x
and y axis is used in the RAMS meso-scale transport model, and is
resolved on 10× 10 km spatial resolution.

as a multiplication of the prior NEE fluxes. This pattern is
within the solution capacity of each inversion option and it
could be retrieved by all inversions, confirming that the in-
version system worked correctly.

In addition, we created a flux field based on a simulation
with 5PM with parameters that were a realization of the a-
priori covariance of the parameters. The flux field is there-
fore fully within the statistical properties of each inversion
method (see also Sect. 2.5), and the spatial structure is repre-
sented perfectly in all methods. This is the control inversion
referred to in the rest of the text and serves in our setup as a
reference for the performance of the inversions in absence of
spatial biosphere model structure differences.

Atmos. Chem. Phys., 11, 10349–10365, 2011 www.atmos-chem-phys.net/11/10349/2011/
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2.4 True fluxes and pseudo observations

Usually, in pseudo-data studies true fluxes are chosen as
some realization of the underlying biosphere model (Zupan-
ski et al., 2007; Schuh et al., 2009), as done in our control
inversions. This choice is not very realistic when the struc-
ture of the underlying biosphere model itself is part of the in-
verse problem, and different structures will work better with
different optimization strategies. For example, a parameter
inversion when the truth was created with perturbed param-
eters will perform better than aβNEE inversion against the
same truth. To prevent this in our study, and also to make
the pseudo-data study more realistic, we have used as “true”
fluxes those from a different biosphere model.

Hourly biogenic respiration and photosynthesis flux fields
from the FACEM model (Pieterse et al., 2007) were used.
These were calculated at 6′ resolution and have a different
underlying land-use description, different soil type and LAI
map, and different meteorological driver data as summarized
in Table 2. As a result, all six test inversions have to over-
come a difference in model structure that causes the simu-
lated pseudo-CO2 time series to never perfectly match with
the true NEE distribution (Fig. 2a, b). This situation mimics
reality in which a biosphere model never grasps the full com-
plexity nor heterogeneity of the true NEE distribution, which
can be an important source of error (Kaminsky et al., 2001;
Gerbig et al., 2006; Carvalhais et al., 2008).

To create pseudo CO2 mixing ratio data, the true CO2
fluxes are coupled to the atmospheric model RAMS. The
simulated 3-D atmospheric CO2 field is sampled at the lo-
cations where also in reality CO2 mixing ratios observations
are available (Fig. 1), where the highest observation level at
the towers is used (Cabauw, 200 m; Lutjewad, 60 m; Loobos,
24 m; Hengelman; 18 m). Real observations will be used in
a companion paper to obtain a real flux estimate. The inver-
sions use hourly CO2 mixing ratios sampled from the well
mixed PBL between 11:00 and 16:00 UTC. In the control in-
version we applied a model-data-mismatch of 0.2 ppm and
with the FACEM truth we assumed a standard deviation of
1.2 ppm to account for the possible differences in the bio-
sphere structures. The observation selection and uncertainty
are the same in all different inversion methods. The total
number of observations assimilated is 4 towers times 14 days
times 6 h, equaling 336.

2.5 Prior flux covariance

A correct comparison between the different inversion options
requires that the overall prior covariance of all options is
equal. We require that the NEE, integrated over ecoregion
and time, has the same ensemble-variance for all inversion
options, and that the ratios between variance of ecoregion-
time integrated respiration and GPP are also the same for
the inversions. The standard is the parameter inversion, for
which mean and variances are prescribed based on our pre-
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Fig. 2. The spatial distribution of the two-week average fluxes: top
left: prior (from 5PM model); top right: “true” flux (from FACEM
model); the other pictures show the averaged posterior estimates of
the different inversion methods. Both sets of fluxes are used with
hourly temporal resolution.

vious work (Tolk et al., 2009; their Table 2), which was in
turn based on an eddy covariance study (Groenendijk et al.,
2011). For the other inversions, the prior covariance is scaled
such that the above-mentioned similarity between the inver-
sions is satisfied (see Appendix A for details).

This approach is an important choice in our experiment
design. It is interesting to note that equal variance of the
time/ecoregion integrated NEE does not ensure the same un-
certainty in the inversions at each point in space and time.
Our choice of covariance treatment has ensured that (a) the
inversions have equal covariance in the quantity that matters
most to our CO2 observations (NEE), (b) the spatial gradi-
ents in NEE variance between land-use types is conserved,
and (c) the time integral covariance over the inversion are
conserved suggesting that all inversions had an equal chance
to find the mean NEE of the truth.

The χ2 metric compares the a-priori model performance
to the specified error structure by dividing the squared fore-
cast residuals (y−Hx)2 by the total covariance (HPHT + R)
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of fluxes and measurements. It is thus a measure of the bal-
ance between expected skill and achieved skill. An innova-
tion chi-squared of close to 1.0 indicates a correct balance,
while smaller chi-squared values suggest that the model per-
formed better than specified in the covariance structure and
hence the inversion was conservative in its prescription of
covariance (Michalak et al., 2004).The innovationχ2 statis-
tics indicate that flux and observation uncertainties were well
balanced. Theχ2 values range from 0.34 to 0.78 (Table 1)
indicating that the model skill was high relative to the as-
sumed uncertainty. The inversions were thus conservative in
their flux adjustments and not over-constrained.

3 Results

In this section we present our results according to the per-
formance of all the different inversion methods against a set
of different metrics that each highlight a particular aspect of
the inverse results (Sects. 3.2–3.6). Before the overview of
the performance of all methods is presented, the special be-
havior of one of the methods which is partly non-linear (the
parameter inversion) is highlighted in Sect. 3.1. An overall
assessment of each individual method is given in the discus-
sion section.

3.1 Optimizations and non-linearity

Five out of six inversion systems used in this study are linear,
in the sense that a Gaussian set of parameters will translate to
a set of similar Gaussian set of CO2 flux fields. The excep-
tion is the parameter inversion. Out of the four parameters
chosen for optimization only the reference rate for respira-
tion (Rref) is linear, while the other ones are nonlinear. In
addition, the model follows the Farquhar et al. (1980) pho-
tosynthesis limitation principle, in which either light or car-
boxyl becomes limiting for photosynthesis. The transition
from one regime to another presents an important nonlinear
step in the simulation of NEE.

Figure 3 shows the distribution of fluxes resulting from a
chosen distribution of parameter values. It shows that the ac-
tivation energy parameter (E0) in particular affects the fluxes
in a nonlinear fashion when the chosen value approaches
zero. The carboxylation capacity (V cmax) and quantum yield
(αjv) parameters are weakly nonlinear across the chosen
range, and the reference respiration rate (R10) is fully linear.

The nonlinearity in the parameter inversion should in prin-
ciple be dealt with in the ensemble system as it implicitly lin-
earizes over the full model (H ). However, we could clearly
see the effect of imperfect linearization in our results. When
we fed the posterior parameter set back into our flux model,
and consequently propagated the solution through the RAMS
transport model (H(xa)) we did not obtain the distribution of
CO2 mixing ratios that the linearized inverse solution (Hxa)

had predicted. Generally, the propagated mean was further

 

Fig. 3. The distribution of calculated NEE from 5PM given a Gaus-
sian distribution of values for four different parameters in the model.
The figure shows the linear translation of for instanceV cmax and
R10 to a Gaussian shaped NEE distribution, and the non-linear re-
sponse ofα andE0.

away from the observations than the linearized mean, and
the propagated standard deviation of the ensemble was larger
than the linearized one.

We explored this further with an offline inverse system
that had only three parameters, as is further shown in Ap-
pendix C. A simple equation in which we varied the de-
gree of non-linearity related the parameters to observations.
The parameters were optimized against a truth obtained with
one realization of the parameters, and some additional noise.
We observed in our simple non-linear system that the prop-
agated posterior parameter spread always correctly included
the true parameter value. Additionally, the simplified model
showed that introducing a non-linear parameter does not af-
fect the ability of the inversion to return the correct values for
the other, linear parameters in the model. Nonetheless, this
simplified model showed the same behaviour with a poorer
match to observations, and a larger spread in the concentra-
tion when using the propagated posterior parameters instead
of the linearized model. This degraded performance of the
linearized model is caused by the tails of the a-priori param-
eter probability density function (PDF), which do not fol-
low the linearized propagation of the mean, or values close
to that mean. This results in the observed larger spread in
the non-linearly propagated CO2, and also in the overconfi-
dence of the posterior parameters (the linearized ensemble
lacks spread). We found that this effect could be reduced
in several ways: (1) by reducing the degree of non-linearity
in the model, (2) by starting with a good a-priori parameter
value around which the model is linearized, or (3) by limiting
the uncertainty of the non-linear parameter to a space where
the effect is mostly linear. These three strategies may be
generally applicable in future studies attempting non-linear
inversions.
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3.2 Metric 1: domain integrated fluxes

One of the important metrics in evaluating the performance
of the inversions is the ability to retrieve the NEE summed
over time and space. This is a final goal of the inversions,
but not the only one as more detail may be desired, and the
summed values may hide opposing errors. These issues are
addressed in the other metrics in the next sections. All except
one of the inversions have managed to find an improved pos-
terior time average flux for the whole domain (Fig. 4). The
two results closest to the truth are from theβRG inversions
without correlations (βRG0.0), or with partial correlations
(βRG0.5; not shown), followed by theβRGpixel inversion
and the parameter inversion. TheβNEE inversion was the
only inversion that had a worse posterior time mean flux than
prior time mean flux for the whole domain.

If we consider the root-mean-square-difference (RMSD)
of the true and estimated domain average flux over time, a
similar picture emerges: all inversions show an improvement
(Table 3, first column). This agreement was expected un-
der the current design of the study, in which many observa-
tions were available to constrain the hourly NEE. Again, the
βRGpixel andβRG0.0/βRG0.5 perform best, but also the
parameter inversion has captured the temporal structure of
the domain total flux better than the prior. TheβNEE inver-
sion struggles not only to find an improved time mean flux,
but also provides a poor match to the hourly domain averaged
time series.

The degree of RMSD improvement is rather small, espe-
cially considering the large number of observations avail-
able. Further investigation showed that the main limitation
to improving the flux estimate is the different structure of
the a-priori model (5PM) and the truth (FACEM). In the
control inversion, where this model structure difference was
not present, all methods (including theβNEE inversion) gave
much better time mean fluxes, and RMSD of the time se-
ries (Table 3). This suggests that synthetic studies using the
same land surface model to generate and retrieve fluxes may
overemphasize the ability of the model.

3.3 Metric 2: fluxes per land-use type

We can further separate the results above into each individ-
ual land-use class considered. Figure 4 shows these results.
The most striking feature is the lack of improvement in mean
NEE for most land-use classes in most inversions. This sug-
gests that overall, the inversions have failed to find a correct
distribution of time mean NEEwithin the domain (see also
Fig. 2). The discrepancy is relatively weak for the param-
eter inversion and theβRG1.0 inversion, which show im-
proved posterior meanβNEE in 3 out of 6 land-use classes.
The two inversions that did best on the total domain aver-
age NEE (βRG0.0 andβRG0.5) now reveal a lack of im-
provement within the dominant land-use classes, suggesting

 

 

 

 

 Fig. 4. True, prior and posterior NEE fluxes and their uncertainties
for the different inversion methods averaged for the whole domain
or per land use class [µmol m−2 s−1]. (a) Results of the control
inversion, where the truth fits the biosphere model,(b) results of
the inversions with an imperfect biosphere model.

that they might have gotten domain total fluxes right for the
wrong reason.

Assessing the RMSD of true and estimated flux time se-
ries per land-use type is consistent with the domain total pic-
ture of the previous paragraph: the parameter inversion and
βRGpixel inversion generally show relatively low posterior
RMSD and improve in 4 out of 6 land-use classes (Table 3).
The other inversions improve substantially in RMSD in only
2 classes. An example of posterior flux performance for the
largest land-use class (Crops1) is shown in Fig. 5. It shows
that poor RMSD is caused mostly by an inability to capture
the difference in the daytime signal at the different days, and
that nighttime NEE is poorly simulated in most of the inver-
sions.

Considering that the instantaneous fluxes per land-use
class are most closely connected to the CO2 mole fraction
observations, the performance of the inversions is disappoint-
ing, and also alarming. Also in this metric the performance
of the same inversion methods against the control fluxes is
much better, and agrees with the expectation that domain to-
tal and land-use fluxes improve in time (both flux average
and RMSD; Fig. 4 and Table 3).

3.4 Metric 3: uncertainty estimate

The contrasting performance of most inversions for individ-
ual land-use classes (bad) versus the domain integral (rea-
sonable) suggests significant spatial correlations between
classes, with canceling flux errors. Here we investigate the
posterior uncertainties.
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Table 3. The performance of the six inverse methods expressed as the RMSD of the optimized NEE time series compared to the truth, for the
total domain and for each separated land use class [µmol m−2 s−1]. The upper part of the table shows the results of the control inversions,
the lower part shows the results of the inversions where the truth is generated with a different biosphere model than the priors.

Temporal RMSD of the NEE flux

Prior/Posterior Inversion name Domain total Grass Crops1 Crops2 ENF DBF Rest

Prior 0.9 3.7 5.5 6.9 6.9 6.3 0.71

Truth fits Posterior βNEE 0.7 2.4 2.7 4.1 4.3 6.3 0.7
biosphere βRG0.0 0.6 1.5 0.6 1.3 5.6 6.3 0.2
model βRG0.5 0.5 1.5 0.6 1.4 5.8 6.3 0.3

βRG1.0 0.8 3.4 4.0 4.9 4.6 6.3 0.8
βRGpixel 0.7 1.6 2.4 3.5 6.1 6.7 0.8
Parameter 0.1 0.6 1.0 1.3 1.9 2.8 0.1

Prior 2.7 2.9 2.9 3.1 3.7 4.0 3.4

Imperfect Posterior βNEE 2.6 2.8 2.6 3.6 4.7 4.0 3.2
biosphere βRG0.0 2.0 4.5 2.0 3.5 2.9 4.0 2.5
model βRG0.5 2.0 4.5 2.0 3.1 5.0 4.0 2.6

βRG1.0 2.4 5.6 2.3 3.9 4.0 4.0 3.2
βRGpixel 1.8 2.7 2.5 2.5 3.8 9.9 2.8
Parameter 2.1 3.2 1.9 2.0 3.5 5.8 2.9
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Fig. 5. Time series of aggregated true, prior, and posterior fluxes
for the dominant land use type in the domain, Crops1. The figure
illustrates the different temporal behavior of each solution on hourly
time scales, leading to differences in two-week aggregated RMSD.

The inversions based on multiplication factors per land-
use class (βNEE andβRG) all produce posterior uncertain-
ties that are too small. This means they do at most locations
not encompass the true flux within one or two standard de-
viations (Fig. 6). This might have been expected since the
degrees of freedom in the inversion are much smaller (∼6–
62) than the number of observations assimilated (∼336).
However, theχ2 of innovations suggests a fair balance be-
tween CO2 residuals (y−H (xb)) and prescribed uncertainty
(HPHT

+R) and the posterior uncertainty does not scale di-
rectly with the degrees of freedom in each inversion. Thus,
the relatively large number of observations does not seem the
main cause of too low posterior uncertainty.

In fact, when we reduced the number of assimilated ob-
servations to 1 per day we saw only minor effects on the
posterior variances. Only if we reduced the number of obser-
vations and additionally increased the model-data mismatch
did we see an increase in posterior variances for the individ-
ual land-use classes. But even then the domain total variance
remained much too small to accommodate the large differ-
ence in flux mean. The small posterior uncertainty is thus
not simply an artifact of the inverse method setup.

If we consider the control inversion, the posterior flux es-
timates are much better for all inversions, and 4 out of 6 in-
versions report±1 sigma uncertainties that include the truth
(Fig. 4). This again points at an important role of model
structure in determining the outcome of an inversion, in this
case leading to overconfidence that the true value is retrieved.

The parameter and theβRGpixel inversions generally pro-
duce error estimates that are conservative and more realistic
compared to the other inversions, in the sense that the poste-
rior estimate (Fig. 6) is in large parts of the domain within 2
sigma of the truth and they encompass the truth within±2.5
sigma in 5 out of 6 land use classes. Note that in the 6th land
use class (rest) also the prior uncertainty is too low, and a re-
alistic posterior uncertainty could therefore not be expected
for this land use class.

Posterior covariances are large in all inversions. In the
βRG inversions the covariances occur betweenβ parame-
ters forR and GPP. The covariances reveal an inability to
separate the effect of photosynthesis and respiration based
on CO2 alone. This was demonstrated in earlier work too
(Ahmadov et al., 2009; Schuh et al., 2009). This type of
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Fig. 6. Spatial maps of the posterior flux residuals (true-minus-
optimized fluxes) scaled by the posterior standard deviation of the
flux estimate. Green colors indicate that the true flux is within±1
standard deviation of the estimated flux, yellow/light blue in dicate
within 2 or−2 standard deviation respectively and orange/blue col-
ors are outside this range. The figure shows the general tendency
of the inversions to be overconfident, because structural differences
between 5PM and FACEM are not taken into account in the treat-
ment of uncertainty.

covariances is more pronounced than those betweenβ ’s for
different land-use classes.

3.5 Metric 4: match to CO2 mole fractions

All six inverse methods reduce the mismatch between
pseudo-observations and simulated CO2 mole fractions for
those observations that were assimilated. This is expected
from an inverse calculation. Not all methods obtain equal
RMSD though, as each inversion adjusts fluxes differently.
Table 4 shows that the posterior RMSD in CO2 mole frac-
tions is largest for theβNEE optimization and smallest for the
βRGpixel optimization.

Theχ2 of innovations (Table 1), which indicates the bal-
ance between a-priori mismatch and assumed uncertainties,
is smaller for theβNEE and βRG1.0 inversion than for all

other optimizations per ecoregion. This is because these two
inversions had a much larger uncertainty in hourly NEE than
the other inversions (necessary to maintain the same uncer-
tainty over the full period, see Sect. 2.5), translating to more
simulated uncertainty in CO2 mole fractions.

More interesting is the comparison to CO2 mole frac-
tions that were not assimilated as they show the performance
against independent data. The second column of Table 4
shows that only three inversions perform better when as-
sessed against the full CO2 time series, while for three others
it deteriorates. This is an important result that suggests that
the estimated NEE field reflects only a limited part of the
CO2 mole fraction time series, as a result of the daytime-only
subsampling we used.

Moreover, theβNEE andβRG1.0 inversion – that improve
RMSD of non-assimilated CO2 – show the opposite result in
the control inversion, suggesting that the improvement in the
real inversion was fortuitous. This leaves only the parameter
inversion to improve the RMSD of assimilated and indepen-
dent CO2 observations, both in the control inversion and the
real inversion.

For theβRG inversions the good performance on the tem-
poral structure of NEE (Tables 3 and 4) contrasts with the
poor RMSD of the non-assimilated CO2 observations . The
reason is that the posterior nighttime flux is simulated poorly
which does not affect the RMSD of fluxes much (the prior
was also rather poor at night, and the nighttime NEE is rel-
atively small compared to the daytime NEE), but is strongly
amplified in CO2 concentration space due to the shallow
nighttime boundary layer. Now, the posterior variances in
βresp andβGPP mentioned in the previous paragraph really
come to expression: they give an acceptable aggregated flux
(NEE) but at the expense of incorrect nighttime CO2 mix-
ing ratios. The propagation of this incorrect nighttime CO2
signal through the domain will likely result in compensating
signals further downwind, or later in time. These effects are
not visible yet in our short experiment though.

The results above suggest: (1) that nighttime CO2 observa-
tions are needed to separate respiration from photosynthesis
fluxes, and (2) that interpretation of these observations de-
pends critically on the adequate simulation of the nocturnal
boundary layer.

3.6 Limitations of the inversions

The NEE inversion is the most simple inversion method
tested in this study, the number of degrees of freedom is with
6 the smallest compared to the other inversion methods (Ta-
ble 1). The results of this inversion did not correctly fit with
the true fluxes and were overconfident. This inversion ap-
peared to lack the flexibility to capture the correct fluxes. In
the other inversions tested in this study the flexibility is in-
creased in a number of ways indicating the limitations of the
inversion.
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Table 4. The performance of the six inverse methods expressed as the RMSD of the time series of the atmospheric CO2 mixing ratio related
to the optimized NEE flux fields compared to the pseudo observations [ppm]. For the times the observations are used in the inversions
(daytime only) and for the total time series (all hours). The left part of the table shows the results of the control inversions, the right part
shows the results of the inversions where the truth is generated with a different biosphere model than the priors.

Prior/Posterior Inversion name CO2 mixing ratio RMSE

Truth fits biosphere model Imperfect biosphere model

Daytime only All hours Daytime only All hours

Prior 2.3 2.5 2.6 4.3

Posterior βNEE 1.1 5.1 2.5 3.6
βRG0.0 0.4 0.9 1.1 6.0
βRG0.5 0.4 0.9 1.1 6.5
βRG1.0 1.3 6.8 1.9 4.2
βRGpixel 0.5 1.0 0.8 5.6
Parameter 0.4 0.5 1.6 2.8

In theβRG inversions the flexibility is increased compared
to theβNEE inversion as the respiration and GPP can be sep-
arately optimized. TheseβRG inversions provided a better
estimate of the domain total fluxes than theβNEE inversion
(Fig. 4). The different covariance strengths betweenβresp
andβGPP that were applied resulted in different d.o.f’s. The
performance of the inversions with 9 and 11 d.o.f. were com-
parable.

In the control inversions, where the truth fits the biosphere
model inversions, theβRG inversion performed correctly im-
proving the fluxes and the RMSE, for both the domain total
fluxes and the fluxes per ecoregion, with a realistic uncer-
tainty estimate (e.g. Fig. 4a). However, when the structure of
the truth and the prior were non-similar, the flux distribution
over space and time was not well captured. The flexibility of
the system in time and/or space appeared to be limiting for
the inversion. Below, first the temporal limitation of theβRG
inversion is discussed based on an analysis of the results of
the βRG inversion and the more flexible in time parameter
inversion, and secondly the spatial limitations of the inver-
sion are discussed based on the results of the pixel inversion.

TheβRG inversion performed badly when looking at the
CO2 mixing ratio RMSE for all hours (Table 4). This
is caused by a difficulty in capturing the nighttime fluxes
(Fig. 5). The CO2 mixing ratios during the day, which are
used to constrain the fluxes, contained a mixed signal of the
respiration and GPP fluxes. The results suggest that the dif-
ference between the temporal structure of the truth and the
prior caused the respiration fluxes to be altered by the inver-
sion to overcome the difference in the flux structure during
daytime, but thereby the nighttime flux estimate was wors-
ened (Fig. 5). In an additional test, in which the inversions
were performed for three days only instead of a 15 day pe-
riod the effect on the nighttime fluxes was smaller. In these
three days the weather was steady anti-cyclonic. This sug-

gests that the structure mismatch of the fluxes between the
prior and the truth over the 15 days time period due to differ-
ences in the response patterns to cyclonic and anti-cyclonic
weather influences the estimate of the fluxes, next to the in-
fluence of the different diurnal pattern of the fluxes between
the prior and the truth

In the parameter inversion, the flexibility to change the
fluxes in time is increased. In this inversion four instead of
the previous one (in theβNEE inversion) or two (in theβRG
inversion) parameters can be altered by the inversion for each
ecoregion, which means a d.o.f. of 22. The additional tem-
poral flexibility improved the results and was able to avoid
the incorrect change in the nocturnal fluxes that was seen in
theβRG inversions (Fig. 5, Table 4).

In the inversions where the structure of the truth did not fit
the structure of the prior, theβRG inversions showed a lack
of improvement within the dominant land-use classes. This
could be caused by the mismatch of variability of the fluxes
within one land use type. Therefore, in theβRGpixel inver-
sion, the flexibility of the system to alter the fluxes in space
was increased. Instead of one adjustableβresp andβGPP per
landuse type, these parameters could be optimized for every
pixel, with a correlation length scale of 100 km, which in-
creased the d.o.f. to 62. Despite the increased flexibility, the
inversion still could not capture the fluxes per land use type.
Nonetheless, theβRGpixel inversion provided acceptable re-
sults because it was realistic in its uncertainty estimate, only
changing the fluxes in a more limited part of the domain.

The fact that increasing the temporal flexibility in the pa-
rameter inversion and the spatial flexibility in the pixel inver-
sion does not fully solve the problems faced in the inversions
suggests that both temporal and spatial structure differences
between the truth and the prior were limiting to obtain re-
sults at a smaller scales than a few hundred kilometer. For
the coarser scale, which is in this inversion the full domain,
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the inversions performed well despite these limitations. The
structure mismatch is thus limiting for the detailed analysis,
and not so much for the aggregated results.

4 Discussion

With the steady expansion of (continuous) CO2 observation
sites comes a tendency to estimate carbon exchange patterns
at increasingly higher resolutions. Inversion methods are
thereto equipped with state-of-the-art meso-scale transport
models and detailed ecosystem models. The methodology
to optimize carbon exchange at regional scales is often trans-
ferred from existing global systems, thereby inheriting their
known strengths and weaknesses. At these regional scales
however, other considerations come into play that potentially
turn weaknesses into strengths and vice versa. An example
from this work is the scaling of the diurnal cycle amplitude
in the NEE inversion. This was a rather robust way to main-
tain a balance between respiration and photosynthesis over
long time periods in global inversions (Peters et al., 2010),
but seems to fail on the smaller scales. We suspect that this
is caused by the dominance of the CO2 diurnal cycle as a
source of information for the inversion, and the sensitivity
of the inversions to changes in the response to short term
weather influences, while in continental scale inversions the
average CO2 mixing ratios were more controlling.

In contrast, we see that at the regional scale the shortcom-
ings of biosphere model structure is expressed more strongly
than at continental scales. The potential to alias CO2 sig-
nals onto the wrong parameter because they are simply not
reproducible with the prescribed structure was demonstrated
and discussed convincingly in Carvalhais et al. (2008). Our
study corroborates their conclusions, and shows that spatial
mismatches in model structure can lead to incorrect mean
flux estimates, with error bars that are overconfident. Since
there is currently no metric, nor a place in the inversion for
this type of error to be included, we suggest that model struc-
ture is assessed critically when optimizing biosphere model
parameters or precalculated flux patterns on regional scales.
Comparison of resulting fluxes and uncertainties against in-
dependent data (i.e. not used on the inversion) is one way to
detect model structure errors for inversions using real data
(e.g. Lauvaux et al., 2009).

In our assessment of the inversions based on biosphere
model parameter optimizations we have seen an important
role of non-linearity in the model equations, similar to pre-
vious studies (Trudinger et al., 2007; Scholze et al., 2007;
Rüdiger et al., 2010). In this regional optimization based
on CO2 mixing ratio observations, we noticed that the non-
linear model parameters in particular were difficult to con-
strain. To use them correctly, they required a good first-
guess, a small uncertainty, or a full non-linear model prop-
agation of the solution (rather than a linearized one). These
parameters were often also the ones least constrained by day-

time atmospheric CO2, and thus likely suffered from the spe-
cific setup of our experiment. Since the estimation of non-
linear parameters did not affect the retrieval of the linear
ones, we suspect that a different setup (other observations,
such as water, energy, and CO2 fluxes and isotopes, more
temporal constraints) might perform better.

In contrast, estimates of bias scaling factors on photosyn-
thesis and respiration remains linear, depend less on model
structure, and have more freedom to use the diurnal cycle in-
formation on regional scales. In our studies it also proves a
good alternative to the NEE scaling and the biosphere model
parameter optimization. Also here, the daytime CO2 sam-
pling scheme used makes it difficult to confidently separate
the two processes. Simply including night time CO2 mix-
ing ratio observations is however not an option, because of
the limited skill of transport models to simulate the stable
boundary layer (Tolk et al., 2009; Gerbig et al., 2008; Law
et al., 2008; Steeneveld et al., 2008). Also, there is a large
potential for erroneous photosynthesis and respiration bias
scaling factors to propagate in time, and destabilize the in-
version after a few weeks. The short time window used in
this study does not incorporate this complication.

Perhaps the most important result from our pseudo-data
tests is that despite the relatively large number of observa-
tions, the high resolution of the (perfect) transport model,
and the increased freedom to fit spatiotemporal flux pat-
terns, we still have not achieved a correct estimate of car-
bon exchange at the local scale. Similar to previous studies
(Carouge et al., 2010; Schuh et al., 2009; Gerbig et al., 2006;
Ahmadov et al., 2009), we find that significant aggregation
of results is needed to come to robust numbers. The aggre-
gation scale is on the order of 100× 100 km as in previous
work. This suggests that the simple translation of methods
from the large scale to the small scale might not be sufficient.
A re-evaluation of inversion methods might be needed, with
an eye for nonlinear behavior, model structure, and multiple
constraints. In that respect, recent work where model mean
structure is relaxed in favor of extensive covariance structure
based on multiple auxiliary datasets (Michalak et al., 2004;
Gourdji et al., 2010; Yadav et al., 2010) is of great interest.

5 Conclusions

We started this paper asking which of six inversion ap-
proaches is the most suited for a regional inversion, and what
the pitfalls are of each method. From our analysis we have
learned that:

– With prior fluxes that have the same structure as the
true fluxes, all inversion methods improved the estimate
of the NEE, both for the domain total fluxes as for the
fluxes per ecoregion.

– When the structure of the priors differed from that of
the truth, the full domain estimates improved with all
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inversions except for theβNEE option, but all inversion
approaches had difficulties in obtaining the fluxes per
ecoregion.

– Model structure is therefore an important considera-
tion for inverse estimates that can lead to incorrect spa-
tiotemporal patterns of fluxes, and overconfidence in
posterior results. An assessment of model structure er-
ror, and its inclusion in the quoted uncertainty would
make any regional inversion more plausible.

– Inversions that scale NEE from prescribed spatiotempo-
ral patterns are most susceptible to these errors (which
include aggregation errors), and perform worst in the re-
alistic tests presented. We do not recommend using this
method for regional NEE estimates.

– Inversions that separately estimate photosynthesis and
respiration perform better on NEE, at least on these
short time scales, even though they cannot obtain real-
istic gross flux estimates, which might lead to problems
later. We recommend to use them only if the realism of
the gross fluxes can be assessed after the inversion, or
maintained by other means such as through nighttime
observations of fluxes or CO2 mixing ratios.

– The results with the smallest deviations from the
pseudo-truth over all metrics were obtained when the
land-use class concept was applied least strictly by al-
lowing spatial variations in bias corrections on gross
fluxes (RGpixel), or when the bias parameter approach
was abandoned altogether such as in the parameter in-
version. Nonetheless, also these inversions had difficul-
ties in estimating the specific fluxes per ecoregion.

– The parameter optimization approach has some appeal-
ing features. However, it can only be used if the non-
linear behavior of the system is dealt with.

– When optimizing non-linear parameters we recommend
to (a) start from a good a-priori mean estimate, (b)
keep the uncertainty on the parameter small, and (c)
check posterior results carefully using the full non-
linear model.

Appendix A

Ensemble Kalman filter method

All the inversions are performed with the Ensemble Kalman
filter (EnKF). In this Bayesian approach the optimum value
between the prior knowledge and the information in the ob-
servations is established by minimizing the cost function:

J = (y −H(x))T R−1(y −H(x))

+
(
x −xprior

)T P−1(
x −xprior

)
(A1)

In whichx denotes the state vector (the biospheric param-
eters or theβ ’s in the inversions),y the observation vector
(CO2 mixing ratios),P the error covariance matrix ofxprior,
R the error covariance matrix of the observations.H is the
observation operator, that contains the influence of the vari-
ables in the state vector (x) on the CO2 mixing ratio at the ob-
servation locations. The optimum posterior state vector that
minimizes the cost function, and its error covariance matrix
are:

xpost= xprior+K(y −H (xprior)) (A2)

Ppost= (I −KH )Pprior (A3)

whereK is the Kalman gain matrix:

K = (PpriorHT )(HPpriorHT
+R)−1 (A4)

In the Ensemble Kalman Filter method the information in
the error covariance matrixP, and its projection in obser-
vational spaceHP and HPHT are not calculated based on
independently determinedH andP matrixes. Instead of the
full calculation, an ensemble of state vectors that represent
the statistical properties ofxprior andPprior is used. Normally
this is done to reduce the size of the matrixes, which may
become very large if the amount of unknowns is large. Here,
the Ensemble Kalman Filter is applied because of another ad-
vantage: this method of directly calculatingHP andHPHT

from x andH (x) allows the use of a non-linear relation be-
tween the parameters (x) and the CO2 mixing ratios (H(x))
as is the case in the parameter inversion.

The ensemble of state vectors, withN ensemble members,
was created such that the normalized ensemble of deviations
define the columns of matrixX (Peters et al., 2005):

X =
1

√
N −1

(x1− x̄,x2− x̄,...,xN − x̄) (A5)

which is the square root of the covariance matrix:

P= XXT (A6)

In the ensemble membersx contains the parameter values
of the biosphere model in case of the parameter inversion,
or the multiplication factorsβRESPandβGPP in theβRG in-
versions, or the multiplication factorβNEE in the βNEE in-
version. All inversions are performed with ensembles con-
taining 100 ensemble members. For each ensemble member
the corresponding CO2 mixing ratios at the observation loca-
tions were calculated. This is done in the coupled biosphere-
atmosphere model (5PM+ coupled to B-RAMS3.2). Thus an
ensemble of CO2 mixing ratios was created:

H(X) = [H (x1− x̄),H (x2− x̄),...,H (xN − x̄)] (A7)

From the ensemble of state vectors (X) and the ensemble of
corresponding CO2 mixing ratios (H(X)) the Kalman gain
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matrix, and the posterior optimized values including their un-
certainty was calculated with Eqs. (A2–A4) combined with
(Peters et al., 2005):

HPHT
=

1

N −1
H(X)(H(X))T (A8)

and

PHT
=

1

N −1
X(H(X))T (A9)

Due to the use of an ensemble instead of the full KF, small
extra covariances may be created. The impact of these small
artificial covariances on the inversion result can be dimin-
ished by localization. In this study we used the localization
method and values established in Zupanski et al. (2007), a
threshold value for the ratio between the prior uncertainty
and the posterior uncertainty of 1.05 was applied.

In the control inversions in this study the observation vec-
tor (y) was created based on one realization of the parameter
state vector by selecting one of the columns of ensembleX.
In the other inversions the observation vector (y) was based
on the hourly NEE flux fields created by the biosphere model
FACEM (Pieterse et al., 2007). In both cases the correspond-
ing CO2 mixing ratios were calculated with the atmospheric
model RAMS in which the sea, the fossil fuel, and the bound-
ary fluxes of CO2 were kept constant.

The size of the state vector differed in the different inver-
sion methods, in the parameter inversion it had a dimension
of 24 (4 parameters times 6 land use classes), in theβRG in-
versions its dimension was 12 (twice the number of land use
classes), in theβNEE inversion its size was 6 (once the num-
ber of land use classes) and in theβRGpixel inversion its size
was 2218 (twice the number of land pixels). The dimension
of the observation vector was the same in all inversions with
336.

For the parameter inversion,βRG0.0 andβNEE inversions
all off-diagonals inPprior were zero. Additional inversions
were performed with a correlation betweenβrespandβGPPof
0.5 and 1.0. In this case all off-diagonals were zero except
the ones denoting the correlations betweenβresp and βGPP
of the same land use type. Also in the pixel inversions only
correlations within one land use type are applied with corre-
lations calculated based on distance (D) with a length scale
(L) of 100 km:

Pi,j = σiσj exp

(
−

D

L

)
(A10)

By the way, a comparable correlation length (130 km) was
found for the prior-truth residuals. The means and variances
for the parameter inversion are prescribed based on Tolk et
al. (2009). The other inversions use an ensemble ofβ ’s with
mean one and variances which are scaled to achieve the re-
quired similarity between the inversions (Sect. 2.5). First the
uncertainty related to the respiration fluxes on the one hand
and to the GPP fluxes on the other hand were separated. This

was done by running the biosphere model with two different
ensembles: (1) containing only variations in the parameters
determining respiration and (2) containing only variations in
the parameters determining GPP. To convert this to the vari-
ance related with theβ factors, each ensemble member is
scaled with the flux per ecoregion, separately for respiration
and GPP in theβRG inversions and for NEE as a whole for
theβNEE inversion. This ensures that the ratio between the
uncertainty in respiration and GPP per ecoregion is the same
in all inversion options. In the inversion where applicable
correlations were added toP. The new variances were sub-
sequently scaled with a multiplication factor per ecoregion,
with the same multiplication factor forβrespandβGPP. These
multiplication factors were chosen such that the uncertainty
in NEE integrated over ecoregion and time became the same
in all inversion options, taking into account the correlations
between respiration and GPP in theβRG0.5 andβRG1.0 op-
tions and the reduced correlation within one ecoregion in the
pixel inversion.

Appendix B

Biosphere model 5PM

The biosphere model used in this study to calculate the prior
NEE fluxes is 5PM (Groenendijk et al., 2011) extended with
the use of LAI to upscale the fluxes from leaf to the canopy
scale. In this model the photosynthesis is calculated based on
the Farquhar model (Farquhar et al., 1980) and heterotrophic
respiration is based on the relationship by Lloyd and Tay-
lor (1994).

In the Farquhar approach assimilation of CO2 by the veg-
etation is either limited by the amount of radiation or by the
availability of the enzyme Rubisco, which is involved in the
conversion of CO2 into glucose and oxygen. Photosynthe-
sis is formulated as the minimum of the light limited (wj)

or enzyme limited assimilation rate (wc), corrected for the
maintenance respiration of the vegetation (Rd):

A = min(wc,wj)−Rd (B1)

The assimilation rate depends on the CO2 concentration
inside the leaf available for photosynthesis (Ci), the internal
oxygen concentration (O), the compensation point for CO2
(0∗) and the Michaelis-Menten parameters for CO2 (Kc) and
O2 (Ko). The latter are temperature dependent. The first
option, Rubisco-limited assimilation is calculated as:

wc = V cmax
Ci −0∗

Ci +Kc

(
1+

O
Ko

) (B2)

where V cmax is the maximum carboxylation capacity
(µmol m−2 s−1). The second option, light limited assimila-
tion is calculated as:

wj = J
Ci −0∗

4(Ci +20∗)
(B3)
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Table B1. Prior values of the parameters in the biosphere model for
the different land use classes.

Assimilation

V cmax µmol m−2 s−1 α mol mol−1

Grass 70 0.4
Crops 100 0.4
Needle leaf forest 80 0.5
Broadleaf forest 100 0.5
Urban vegetation 80 0.4

Respiration

E0/< R10

K µmol m−2 s−1

All land use classes 200± 110 4.0± 1.2

whereJ is the electron yield, specified by:

J =
αIPARJm

αIPAR+2.1Jm
(B4)

in which IPAR is the photosynthetic active radiation
(µmol photons m−2 s−1), Jm the maximum potential elec-
tron transport rate (µmol m−2 s−1) andα the quantum yield
(mol mol−1). Assumed is that the plants aim for an optimum
between the energy allocated to the potential electron trans-
port rate and to the carboxylation capacity, andJm is linked
to Vm by (Collatz et al., 1991):

Jm = 2.5V cmax (B5)

Leaf internal CO2 is estimated with the method described
in Arneth et al. (2002) in which the value for lambda was
kept constant at 700 mol mol−1. The atmospheric CO2 mix-
ing ratio is assumed to be 380 ppm during photosynthesis.
Integration of the photosynthetic flux to the full canopy is
based on MODIS leaf area index (LAI) observations (Sellers
et al., 1996):

Ac = 5An0, with 5 =
1−e−k̄LAI

k̄
(B6)

whereA is the assimilation, subscriptn0 refers to leafs at the
top of the canopy, subscript “c” refers to total canopy andk

is the PAR extinction coefficient.
Respiration is calculated with the temperature dependent

relationship by Lloyd and Taylor (1994):

R = R10 e
E0
<

(
1

283.15−T0
−

1
T −T0

)
(B7)

whereR10 is the respiration rate at a reference temperature
of 10◦C, E0

<
is the activation energy divided by the univer-

sal gas constant,T0 is a constant of 227.13 K andT is soil
temperature.

In a previous study (Tolk et al., 2009; Groenendijk et al.,
2011) the main parameters of this model (V cmax, α, R10 and
E0) were optimized for the full canopy based on a large num-
ber of Fluxnet observations (Baldocchi et al., 2001). To de-
termine our prior fluxes, we applied parameter values opti-
mized for the temperate zone, for the period of May–July for
all years (Tabel B1).

The relationship between the parameters in the biosphere
model and the NEE fluxes is for most parameters non-linear.
The strength of this non-linearity was estimated for each pa-
rameter, by running the biosphere model with ensemble of
Gaussian distributed parameter values and showing the ac-
companying distribution of the NEE fluxes (Fig. 3). For all
parameters exceptR10 it was shown that the resulting NEE
distribution was non-Gaussian, affecting the inversions if the
prior had a large deviation from the true values.

Appendix C

Simple non-linear model

To test the impact of non-linearity on the inversions we ap-
plied simple forward models that calculate a series of obser-
vations from a triplet (a, b, c) of arbitrary parameters. Subse-
quently, several inversion methods were used to estimate (a,
b, c) from the observations: a regular minimum least-squares
without priors, a full Bayesian solution with a Kalman filter,
a serial ensemble KF, and a matrix based ensemble KF. In
the Bayesian solutions, the three parameters had prior val-
ues that varied between realistic and unrealistic relative to
the truth. Also, we varied the degree of nonlinearity in the
forecast model (from fully linear to strongly nonlinear).

We applied all methods to a fully linear problem first, and
confirmed that each estimation method gave the same (cor-
rect) result as long as enough observations were available.
Prior values that were reasonably chosen (i.e. with enough
uncertainty to accommodate the truth) were thus correctly
modified. The statistics of the posterior solution were also as
expected: uncertainty on all 3 parameters was reduced in ac-
cordance with the specified noise, and the propagated poste-
rior solution satisfied the observations to within the specified
uncertainty.

Next, we applied the ensemble KF (the only system to
handle nonlinear problems) to the nonlinear functionf (x) =

a+sin(b)x +cx2. We noticed here first that the mean of the
linear parametersa, c was estimated correctly, but the mean
of the nonlinear one (b) was not. Uncertainty on the non-
linear parameter was also miscalculated: the truth was far
outside the posterior error. Moreover, we noticed that if we
placed the posterior parameter values back in the nonlinear
model, the match to the observations was much worse than
the statistics of the filter suggested. This was because the lin-
earization that is contained in the ensemble method was not
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Fig. C1. An illustration of the effect of non-linearity on the results
of the inversion.

able to overcome the nonlinearity and therefore mispredicted
the mixing ratios and their spread given a set of parameters.

In Fig. C1 we show this feature for the typical nonlinear
estimation problem as above. The yellow line is the true
function, which. This we “observe” at the 20 black dots, and
then we add a little bit of noise. The noisy observations are
fed to the ensemble KF to estimate the 3 parameters (a, b,
c) that underly the yellow curve. The red line (±1 standard
deviation) is the match to the observations that the system
thinks it will achieve given would correspond to the ensem-
ble statistics and its posterior estimate. This coincides with
the true curve in yellow. But when the posterior values (a, b,
c) are fed into the functionf (x), the blue curve is the actual
result. This is much less accurate than was predicted by the
filter, and actually outside the specified uncertainty range.

The above problem could be remedied through the exact
solutions we suggest in the main text: making the more prob-
lem more linear, starting from a better prior, or reducing un-
certainty on the nonlinear parameter. The figure moreover
led us to suggest to always use the full nonlinear model to
check your the accuracy of the result, rather than the filter
statistics.
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