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Abstract. An algorithm is introduced to downscale the 0.6
and 0.8 µm spectral channels of the METEOSTAT SEVIRI
satellite imager from 3×3 km2 (LRES) to 1×1 km2 (HRES)
resolution utilizing SEVIRI’s high-resolution visible channel
(HRV). Intermediate steps include the coregistration of low-
and high-resolution images, lowpass filtering of the HRV
channel with the spatial response function of the narrow-
band channels, and the estimation of a least-squares linear
regression model for linking high-frequency variations in the
HRV and narrowband images. The importance of account-
ing for the sensor spatial response function for matching re-
flectances at different spatial resolutions is demonstrated, and
an estimate of the accuracy of the downscaled reflectances is
provided. Based on a 1-year dataset of Meteosat SEVIRI
images, it is estimated that on average, the reflectance of a
HRES pixel differs from that of an enclosing LRES pixel
by standard deviations of 0.049 and 0.052 in the 0.6 and
0.8 µm channels, respectively. By applying our downscal-
ing algorithm, explained variance of 98.2 and 95.3 percent
are achieved for estimating these deviations, corresponding
to residual standard deviations of only 0.007 and 0.011 for
the respective channels. For this dataset, a minor misregistra-
tion of the HRV channel relative to the narrowband channels
of 0.36±0.11 km in East and 0.06±0.10 km in South direc-
tion is observed and corrected for, which should be negligible
for most applications.

Correspondence to:H. M. Deneke
(deneke@tropos.de)

1 Introduction

Accurate information on cloud properties is a prerequisite
for understanding the influence of clouds on the Earth radi-
ation budget and the global hydrological cycle. Due to their
dominant role as forcing of the surface energy budget, accu-
rate information on surface radiative fluxes in cloudy condi-
tions is of particular interest (Woods et al., 1984; Wielicki
et al., 1995). Passive meteorological satellite imagers pro-
vide important information for investigating cloud proper-
ties (Stephens and Kummerow, 2007), and for quantifying
their influence on solar (Deneke et al., 2005) and thermal
(Schmetz et al., 1990) radiation. Several projects generate
data records of cloud properties, including the International
Satellite Cloud Climatology Project (ISCCP,Rossow and
Schiffer, 1991), the Pathfinder Atmospheres project (PAT-
MOS,Jacobowitz et al., 2003), the MODIS project (Platnick
et al., 2003), and the Satellite Application Facility on Climate
Monitoring (CM-SAF,Schulz et al., 2009).

Geostationary imagers such as the Spinning Enhanced
VIsible Radiometer (SEVIRI,Schmetz et al., 2002) are
unique in their capability to fully resolve the diurnal cycle of
clouds (e.g.,Roebeling and van Meijgaard, 2008). However,
the nadir spatial sampling resolution of 3×3 km2 offered
by SEVIRI’s narrowband channels lags significantly behind
that of polar-orbiting satellite imagers (e.g., AVHRR with
1.1×1.1 km2 or MODIS down to 0.25×0.25 km2). While
SEVIRI does have a high-resolution visible channel (HRV)
with a nadir resolution of 1×1 km2, it covers only a subset of
the field of view of the narrowband channels, and its spectral
response ranges from 0.4 to 1.1µm, which is too broad for
many quantitative applications such as the accuracte estima-
tion of cloud properties or the early detection of convection.

Due to the highly nonlinear relationship between radiances
and cloud properties, differences in sensor resolution can
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cause large random and systematic differences in cloud prop-
erties such as optical thickness and liquid water path (Ore-
opoulos and Davies, 1998; Deneke et al., 2009b), and cause
uncertainties for the classification of cloud thermodynamic
phase (Wolters et al., 2010). In particular, the spatial resolu-
tion of SEVIRI’s narrowband channels is insufficient to re-
solve small cloud structures. As demonstrated byHeidinger
and Stephens(2001), unresolved spatial heterogeneity can
cause errors in retrieved cloud properties large enough to ren-
der them useless. To partly overcome this problem,Kl üser
et al. (2008) utilized the high-resolution broadband visible
channel (HRV) with a sampling resolution of 1×1 km2 at
nadir to study the lifecycle of shallow convective clouds.

In addition, the considered spatial (Greuell and Roebel-
ing, 2009; Schutgens and Roebeling, 2009) and temporal
(Deneke et al., 2009a) scales of variability have a strong im-
pact on the correspondence of satellite and ground observa-
tions, and thus the task of satellite product validation.Dürr
et al. (2010) conclude that the higher spatial resolution of-
fered by the HRV channel has a beneficial effect on the qual-
ity on retrievals of solar surface irradiance over the Alps due
to their complex terrain.

In this paper, we want to demonstrate that the HRV chan-
nel contains important additional information on small scale
variability which can be utilized together with SEVIRI’s 0.6
and 0.8 µm channels for quantitative analysis.Cros et al.
(2006) have demonstrated that the relationship between re-
flectances from these two channels and the MVIRI (Meteosat
Visible and InfraRed Imager) broadband visible channel on-
board Meteosat-7 (Meteosat First Generation) is highly lin-
ear and stable in time, due to the spectral overlap of these
channels. Since the MVIRI channel of Meteosat First Gener-
ation and the HRV channel of Meteosat Second Generation
have very similar spectral responses (Schmetz et al., 2002),
their finding should also hold for the HRV channel, and in-
dicates that the variations observed in the HRV reflectances
will be strongly correlated to those observed in the 0.6 and
0.8 µm channel.

The goal ofCros et al.(2006) was to predict the broad-
band channel reflectance from the narrowband channels so
as to generate input for legacy applications based on MVIRI.
In contrast, the purpose of this paper is to introduce a novel
algorithm to estimate the reflectances of the 0.6 and 0.8 µm
channels at the threefold higher spatial resolution of the HRV
channel, by utilizing the HRV reflectances as predictor. As
constraint, the statistical properties of the narrowband re-
flectances should be preserved at their native channel reso-
lution. Such methods are referred to as downscaling (Liu
and Pu, 2008) in climate research or disaggregation (Walker
and Mallawaarachchi, 1998) in geostatistics. FollowingCros
et al. (2006), we have decided to use image-wide linear
models for simplicity, and neglect any scene-type dependen-
cies. Other SEVIRI narrowband channels apart from 0.6 and
0.8 µm are ignored at the moment. This work nevertheless
constitutes a first step towards producing higher spatial reso-

lution products from SEVIRI such as cloud water path (e.g.,
Roebeling et al., 2008) and solar surface irradiance (e.g.,
Deneke et al., 2008; Müller et al., 2009) over Europe.

In this paper, special attention is paid to some technical
details which might affect the quality of our proposed algo-
rithm. First, the spatial response of the SEVIRI channels
does not correspond to the idealized form of a rectangular
function, and the radiance field is significantly oversampled,
as has been pointed out bySchmetz et al.(2002). This causes
radiance contributions from a region significantly larger than
the 3×3 km2 sampling resolution (referred to as LRES in the
following) of the narrowband channels, and the 1×1 km2 res-
olution of the HRV channel (referred to as HRES). Thus, it
is insufficient to use simple arithmetic averages of 3×3 km2

pixels to reduce the resolution of the HRV images to that of
the narrowband channels, and the true sensor spatial response
should be used instead. In addition, an accurate coregistra-
tion of the LRES channels with the HRV channel is cru-
cial for the quality of our downscaling scheme. Our algo-
rithm uses frequency-domain methods based on the discrete
Fourier transform for modeling the spatial response function
of SEVIRI’s detectors (Markham, 1985) and to determine the
image coregistration (Anuta, 1970). These methods have the
advantage of being both mathematically elegant and compu-
tationally efficient.

This paper is structured as follows. In Sect.2, the in-
strumental dataset is described. An outline of the proposed
downscaling algorithm is given in Sect.3, with some general
background provided as Appendices. In Sect.4, examples of
results obtained with these methods are reported, and the ac-
curacy of our method is demonstrated and discussed. Finally,
conclusions and an outlook are given in Sect.5.

2 Instrumental data

Meteosat Second Generation is the current series of Euro-
pean geostationary satellites, which began operational data
acquisition in January 2004 and is described in detail by
Schmetz et al.(2002). Its Meteosat-8 and 9 satellites carry
the SEVIRI imager as primary instrument, and are positioned
above the equator at longitudes of 9.6◦ E and 0.0◦ W, respec-
tively, at the time of writing. In operational service, the
SEVIRI imager scans the complete disk of the earth with
a 15 min repeat cycle. Meteosat-9 is currently the opera-
tional satellite, while Meteosat-8 is used as hot stand-by, and
scans a subregion with a 5 min repeat cycle in Rapid Scan
Mode. SEVIRI has 3 narrowband solar channels (0.6, 0.8
and 1.6 µm), the broadband HRV channel (0.4–1.1 µm), and
8 thermal infrared channels (3.9, 6.2, 7.3, 8.7, 9.7, 10.8, 12.0
and 13.4 µm).

Only the 0.6 and 0.8 µm channels, and the HRV channel
are considered in this study. Their spectral response func-
tions are shown in Fig.1 for the Meteosat-9 instrument,
while parameters characterizing their spectral characteristics
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Table 1. Central wavelengthλ0, channel widthδλ (both in nm), and band-averaged extraterrestrial solar spectral irradianceφC (W/m2/µm)
at a sun-earth distance of 1 astronomical units for the SEVIRI radiometers onboard the Meteosat-8 to 10 satellites and for the 0.6 µm
(VIS006), 0.8µm (VIS008) and HRV channels, calculated from the spectral response functions provided byEUMETSAT (2006b) and the
solar spectrum ofGueymard(2004). The central wavelengthλ∗

0 and channel widthδλ∗ for the spectral response weighted by the solar
spectrum are also listed.

Meteosat VIS006 VIS008 HRV

λ0 δλ φC λ0 δλ φC λ0 δλ φC

8 640.2 74.5 1594.8 809.3 57.3 1106.8 708.2 421.3 1395.6
9 640.3 73.4 1594.4 808.2 57.3 1109.6 706.4 422.2 1400.1
10 638.2 70.9 1601.3 808.2 57.0 1109.5 707.0 428.7 1398.9

λ∗
0 δλ∗ - λ∗

0 δλ∗ - λ∗
0 δλ∗ -

8 639.0 73.7 – 808.6 54.6 – 669.7 388.6 –
9 639.1 72.5 – 807.4 55.1 – 668.0 387.5 –
10 637.0 70.3 – 807.5 54.4 – 668.2 385.0 –
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Fig. 1. Spectral response functions of the Meteosat-9 SEVIRI ra-
diometer for the 0.6 µm (red), 0.8 µm (green) and HRV channel
(black) (EUMETSAT, 2006b). The central wavelength of each
channel is marked by a thick colored line, and the spectral region
covered by the channel width has been shaded. The response of
the Meteosat-7 MVIRI solar channel is also included for compari-
son (blue). The normalized spectral response functions are plotted
in (a), while the spectral response functions weighted by the solar
spectrum ofGueymard(2004) are displayed in(b). The solar spec-
trum is added as dotted line to both plots.

are listed in Table1 for Meteosat-8 to 10. The SEVIRI
imager acquires pixels at sampling resolutions of 1×1 km2

and 3×3 km2 for the high-resolution visible channel (HRV)
and the narrowband channels, respectively. It has to be re-
alized, however, that SEVIRI has a lower optical resolution
and oversamples the reflectance field by a factor of about 1.6
at both LRES and HRES resolution (Schmetz et al., 2002).
Thus, the effective area contributing to an individual pixel
radiance is significantly larger than the sampling resolution.
This is illustrated in Fig.2b, which displays the response of
the SEVIRI detectors to a unit pulse of radiance as function
of distance from the pixel center, and shows significant con-
tributions from regions outside the nominal sampling resolu-
tion. Its calculation is explained in Sect.3.3

3 Methodology

This section presents our proposed downscaling algorithm.
In overview, it consists of the following sequence of steps:

1. coregistration of the HRV and the narrowband images
to ensure an optimal alignment of the satellite images;

2. Filtering of the HRV image with the spatial response
function of the LRES detectors, to separate the image
into low-frequency variability resolved at LRES scale,
and unresolved high-frequency variability;

3. Determination of a least-squares linear model based
on LRES reflectances to link the HRV, 0.6 and 0.8 µm
channels as proposed byCros et al.(2006);

4. Inversion of the linear model found in step 3 to deter-
mine estimates of the high-frequency variations in the
0.6 and 0.8 µm images using the HRV high-frequency
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variability from step 2 as predictor; least-squares esti-
mators are used to overcome the underconstrained na-
ture of this inversion;

5. trigonometric interpolation of the 0.6 and 0.8 µm chan-
nels to obtain images at HRES resolution, but lacking
high-frequency variability;

6. addition of high-frequency variability found in step 4 to
the 0.6 and 0.8 µm HRES images as estimate of the true
HRES image;

More details about these steps are described in the follow-
ing. A brief summary of the Fourier Transform is given first.
Then, its application to the tasks of image coregistration, and
to the separation of low- and high-frequency spatial varia-
tions is described. Next, the determination of a linear model
for linking the 0.6 and 0.8 µm with the HRV radiances, and
for inverting this model is outlined, in order to estimate the
unresolved variability in the narrowband channels. Finally,
some implementation details are noted.

3.1 The Fourier transform

A 2-D imagefx,y consisting ofNx×Ny discrete digital sam-
ples is considered here. The sampling frequency limits the
maximum frequency which can be captured by the image.
This limit is equal to half the sampling frequency, and is
called the Nyquist frequency.

The discrete Fourier transform̂fk,l of the 2D image con-
sists ofNx ×Ny samples, and projects the image onto an
orthonormal basis set of sinusoidal waves with circular fre-
quencies ofωk =

2πk
Nx

, k ∈ 0...(Nx−1) and ωl =
2πl
Ny

, l ∈

0...(Ny−1). Vectorsω andx can be used to compactly rep-
resent the 2-dimensional case of the Fourier transform.

Fourier analysis implicitly treats signals as periodic. To
avoid the influence of resulting discontinuities at the edges,
it is common practice to subtract the mean and to use a win-
dow function to reduce the deviations from zero at the edges
of the image prior to the Fourier transform. Here, the Tukey
window with a transition width of 25 percent along both di-
mension is used. A detailed discussion of window functions
and their relevance for Fourier analysis can be found inHar-
ris (1978).

3.2 Image coregistration

Our approach for image coregistration relies on the so-called
Fourier shift theorem: the Fourier transform of a function
f ′(x) ≡ f (x −x0) shifted by an offsetx0 versus the original
functionf is given by

f̂ ′(ω)=f̂ (ω)exp[iωx0] . (1)

Thus, the translation of a function changes only the complex
phase of its Fourier transform, while leaving its amplitude

invariant. To align a satellite imageg relative to an imagef ,
a functionh is defined as follows:

h ≡ ĝ f̂ ∗
=‖ĝ‖‖f̂ ‖exp

[
i(arg(ĝ)−arg(f̂ ))

]
. (2)

Here, the arg operator determines the phase of a complex
number. Ifg(x) = f (x−x0), arg(h) will only depend on the

shift x0 =

(
x0
y0

)
according to:

arg(h)=arg(f̂ )+ωx0−arg(f̂ )=2π

[
k

Nx

x0+
l

Ny

y0

]
. (3)

In our case, the complex phase ofh is calculated from the
Fourier transforms of the HRV and the narrowband images
for individual SEVIRI scenes. A linear combination of the
0.6 and 0.8 image is used for this purpose, as is explained in
Sect.3.4. Fourier coefficients of the HRV image beyond the
Nyquist frequency of the LRES images are ignored. Theoret-
ically, Eq. (3) suggests a perfect linear relation. In practice,
deviations from this equation are expected due to image dif-
ferences and the discrete sampling. A 2-dimensional linear
least-square regression of Eq. (3) nevertheless provides a re-
liable and accurate estimate of the image shiftsx0 andy0.
As noise introduces larger phase errors for complex numbers
with small modulus, a weighted linear regression is used here
with the modulus used as weight. Once the shift has been
found, the HRV image is aligned to the narrowband images
by multiplying its Fourier transform with the complex factor
exp[−iωx0]. It should be noted that this method is thus able
to correct even for a fractional shift of the pixel resolution.

3.3 Spatial response of a detector

To separate high-frequency variability not resolved at LRES
scale from low-frequency variability in the HRV channel, the
effects of the spatial response function of the LRES detectors
need to be considered.

We assume that the signalS of an individual SEVIRI pixel
can be determined by spatial integration of the radianceL(x)

reflected from the earth surface at locationx, weighted by a
functionw(x −x0) which characterizes the spatial response
of the detector:

S(x0) =

∫
A

w(x −x0)L(x)dx

= (w∗L)(x0). (4)

Here,x0 is the displacement from the center of the detec-
tor’s field of view. The weighting functionw is commonly
referred to as point spread function. We requirew to be non-
zero only in a finite regionA around the pixel center, and to
be normalized to the area of this region. The latter condi-
tion ensures thatS corresponds to a spatially weighted mean
of the radiance. Equation (4) neglects internal feedbacks in
the detector, and characterizes its output as a class of dig-
ital filters known as finite-impulse response (FIR) filters in
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signal processing. In principle, it is possible to determinew

by moving a point source of unit radiance across the detec-
tor field of view. In the second line of Eq. (4), the symbol
∗ denotes the convolution of two functions. To evaluate this
convolution efficiently, the Fourier convolution theorem can
be used, which states that the convolution in spatial domain
is equivalent to a multiplication in frequency domain. Hence,
the impact of a detector’s spatial response on scene sampling
can be accounted for by a simple multiplication of the Fourier
transforms ofL andw.

The modulus of the Fourier transform ofw is called the
modulation transfer function (MTF), and describes the ratio
of the amplitudes of a sinusoidal wave before and after pass-
ing through an optical system. The MTF is thus a commonly
used quantity to characterize the spatial resolution of optical
systems. Figure2a displays the average MTFs of Meteosat-9
SEVIRI’s 0.6, 0.8 µm and HRV channels as reported byEU-
METSAT (2006a). As the MTF of the narrowband channels
differ only slightly, they have been averaged, and any devia-
tions between the two channels and individual detectors are
neglected. The figure also illustrates the difference in spatial
response in North-South and East-West direction. In Fig.2b,
the point spread functionw is shown, which has been calcu-
lated from the MTF by the inverse Fourier transform. Even
symmetry about the origin has been assumed forw to ensure
that bothw itself and its Fourier transform are real functions.
This makesw a zero-phase FIR filter, a property which im-
plies that the original and the filtered image remain unshifted
relative to each other.

It has to be realized that the MTFs and point spread func-
tions shown in Fig.2 are in fact determined by the angu-
lar resolution of the individual SEVIRI detectors. The spa-
tial scales and frequencies specified in this paper refer to the
spatial resolution at nadir, and a reduction in resolution for
off-nadir viewing geometries needs to be accounted for sepa-
rately. As the angular resolution of the HRV and narrowband
channels remains constant over the entire SEVIRI disk, the
change in viewing geometry does not affect our downscaling
algorithm.

In our downscaling algorithm, the HRV image is filtered
with a low-pass filter to simulate an LRES image. This filter-
ing operation is carried out in the frequency domain by mul-
tiplication of the Fourier transform with an effective MTF.
This is obtained from the average MTF of the 0.6 and 0.8 µm
detectors, divided by the HRV MTF. The division is done to
account for the fact that the HRV image is already smoothed
due to its imperfect spatial response, and avoids a separate
de-convolution step.

3.4 Linear relation of channel radiances

Our paper builds upon the study ofCros et al. (2006).
Based on collocated satellite images from Meteosat-7 and
Meteosat-8, they have demonstrated that SEVIRI’s 0.6 and
0.8 µm channel radiances can be used in a linear model to
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Fig. 2. (a) Modulation transfer function (MTF) of the 3×3 km2

low-resolution(LRES) 0.6 and 0.8 µm channels and the 1×1 km2

high-resolution visible channel (HRES) for Meteosat-9 in North-
South (NS) and East-West (EW) directions (EUMETSAT, 2006a).
The Nyquist frequencies corresponding to the sampling resolution
are shown in grey, with values of16 km−1 (LRES) and 1

2 km−1

(HRES).(b) Point spread function of the SEVIRI detectors recon-
structed from the MTFs (see text for details), as a function of dis-
tance from the pixel center. In grey, a perfect step response at LRES
and HRES sampling resolution is also shown.

predict the broadband solar channel of the MVIRI instru-
ment onboard Meteosat-7 with high accuracy. They motivate
this assumption with the overlap of the narrowband channels
and the MVIRI broadband channel. As the spectral response
of SEVIRI’s HRV channel is similar to the MVIRI broad-
band solar channel (Schmetz et al., 2002), we also adopt
this assumption. Instead of radiances, however, the LRES
reflectances of the 0.6 µm (r06), 0.8 µm (r08), and the HRV
(rH ) channels are used here in the linear model:

rH =ar06+br08. (5)

In this equation,a andb are fit coefficients determined by
least -squares linear regression. Choosing reflectances in-
stead of radiances only alters the fit coefficients as reflectance
and radiance co-vary linearly for a given solar zenith angle.
No offset is incorporated into the linear model, as it has been
found to cause only a negligible improvement in model qual-
ity.

For a formal look at the arguments ofCros et al.(2006),
the channel center and width, as well as similar quantities
weighted by the extraterrestrial solar spectrum are defined
in AppendixA to characterize the spectral response function

www.atmos-chem-phys.net/10/9761/2010/ Atmos. Chem. Phys., 10, 9761–9772, 2010



9766 H. M. Deneke and R. A. Roebeling: SEVIRI downscaling

Fig. 3. Region of the SEVIRI field of view used for this paper,
consisting of 1024×512 pixels. Also shown are contours of latitude
and longitude in blue, and of the amplitude of the window function
used for Fourier analysis in red. The subregion shown in Fig.4 is
marked by a black shaded rectangle.

η of a satellite detector. Figure1 graphically displays these
quantities for the SEVIRI instrument on Meteosat-9, while
numerical values as reported by (EUMETSAT, 2006b) are
listed in Table1 for Meteosat-8, 9 and 10. Both narrow-
band channels lie completely within the range of the HRV
channel. Weighting by the solar spectrum reduces the width
of all channels, and shifts the channel centers towards the
maximum of the solar spectrum. Both effects are most pro-
nounced for the HRV channel due to its large width.

These numbers also reveal that both narrowband channels
cover less than a third of the solar energy contained in the
spectral range of the HRV channel. Hence, channel overlap
is only a partial explanation of the high accuracy of the lin-
ear model reported byCros et al.(2006). A high degree of
autocorrelation of the reflectances across the spectral region
of the HRV channel is thus also required. This spectral au-
tocorrelation also ensures that the results presented here are
relatively insensitive to the width of the narrowband chan-
nels of the SEVIRI instrument, and motivates our choice of
reflectance instead of radiance as variables in Eq. (5).

3.5 Estimation of unresolved variability

In contrast toCros et al.(2006), our aim is to estimate high-
frequency variations in both narrowband channels from cor-
responding HRV variations, by inversion of Eq. (5). Mathe-
matically, it is impossible to determine two unknowns from
one linear equation, as this is an underconstrained problem.
Due to a strong correlation of the 0.6 and the 0.8 µm channel,

accurate estimates can nevertheless be obtained using stan-
dard least-squares estimators. The goal is to find the optimal
slopesS(r06) and S(r08) for linking high frequency varia-
tions1r in the HRV and the narrowband channels in a linear
model:

1r06/08= S(r06/08)×1rH . (6)

In AppendixB, general expressions for calculating the slopes
S(r06/07) which minimize the least-squares deviations are de-
rived, based on bivariate statistics. Also, the expected frac-
tion of explained variance for this linear model is given in
Eq. (B8). Both formulae depend only on the coefficients
a and b from Eq. (5), the correlation between the 0.6 and
0.8 µm reflectance, and the ratio of the variances of both
channels. It has to be recognized, however, that these pa-
rameters might vary with the spatial scale of variability, and
that we require their values at HRES scale here, which is
not available from SEVIRI. To still obtain an estimate of
their value, and to minimize errors caused by scale mismatch,
both parameters are calculated considering the smallest re-
solved scale of variability present in the LRES images. For
the purpose of parameter estimation, we thus use difference
images obtained by subtracting a shifted from an unshifted
image, with shifts of 1 pixel applied in both the North-South
and East-West direction. This procedure corresponds to a
highpass filter, with maximum filter response at the Nyquist
frequency of the LRES images, which is half the sampling
frequency, and thus the maximum frequency captured in the
LRES images.

3.6 Implementation details

At the beginning of this section, the sequence of steps com-
prising the downscaling algorithm has been listed. In prac-
tise, the individual steps of our implementation are not inde-
pendent as suggested by that list. As first step, the HRV im-
age is shifted relative to the narrowband channels to account
for misregistration. As reference, the linear combination of
the 0.6 and 0.8 µm channel given by Eq. (5) is used. The re-
quired coefficients are only found in step 3, however. In ad-
dition, if the HRV pixel shift exceeds half a pixel, the subre-
gion of the HRV is changed to minimize the phase shift used
for the Fourier-based image alignment. Therefore, mean val-
ues of the linear weights and pixel shifts are used initially,
and steps 1 to 3 are carried out iteratively until the remaining
image misregistration is smaller than half a HRV pixel size.
Most of the time, this condition is met already by the first
iteration.

4 Results and discussion

In this section, results of the proposed downscaling algorithm
are presented, and several aspects relevant to the accuracy of
the algorithm are discussed.
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Table 2. Annually averaged parameters (Mean) and their standard deviation (SDev) obtained by the downscaling algorithm. This includes:
the slopesa andb of Eq. (5), and the explained variance EV (Eq.5) of the underlying linear equation; the slopesS(r06) andS(r08) used to
scale high-frequency variations in the HRV channel to estimate unresolved variability in the 0.6 and 0.8 µm reflectance (based on Eq.B6); the
explained variance EV(r06), EV(r08) of these estimates; and the correlation coefficient between variations in the 0.6 and 0.8µm reflectance.
Explained variances (EV) are listed in units of percent.

a b EV, Eq. (5) S(r06) S(r08) EV(r06) EV(r08) Cor(r06,r08)

Mean 0.667 0.368 99.7 0.949 1.000 98.5 95.6 0.945
SDev 0.025 0.020 0.1 0.036 0.041 0.5 1.6 0.020

A sub-region containing 1024×512 LRES pixels from
SEVIRI’s field of view has been selected for our study, which
is shown in Fig.3. It covers Northern Africa, the Mediter-
ranean Sea, and a large part of Europe. A smaller number of
pixels in North-South than in East-West direction is used to
limit the change in pixel resolution caused by the increase of
satellite viewing angle away from the equator. The Tukey
window function applied to the data prior to the Fourier
transform is also shown by red contours, which corresponds
to a cosine-shaped transition from 0 to 1 over 64 LRES pix-
els at the Northern and Southern edges, and 128 LRES pix-
els at the Eastern and Western edge, respectively. One year’s
worth of satellite scenes acquired at 12:00 UTC during 2008
has been analyzed. Due to Meteosat-9’s sub-satellite point
at 0.0deg W, the time slot corresponds to the maximum so-
lar top-of-atmosphere irradiance for the entire SEVIRI field
of view. This yields a total number of 345 scenes from
Meteosat-9, and 10 scenes acquired by Meteosat-8 operat-
ing as backup during satellite anomalies of Meteosat-9. The
remaining 10 scenes are missing or corrupted in KNMI’s
archive.

Figure4 shows the English channel and the Benelux states
as example output in a SEVIRI scene acquired at 12:00 UTC
on 26 June 2008. This subregion is marked in Fig.3 by a
black shaded rectangle. Panel (a) displays this scene in grey
scales as observed by the HRV channel. Panel (b) shows the
same scene using theday natural colorfalse-color composite
described in detail byLensky and Rosenfeld(2008) at LRES
resolution. This scheme uses the 1.6, 0.8 and 0.6 µm spectral
channels as red, green, and blue signals, respectively, and fa-
cilitates the physical interpretation of the image, as it allows
to easily distinguish different surface types, as well as ice and
water clouds. Panel (c) shows this scene once more using the
color scheme of (b), but based on the downscaled 0.6 and 0.8
µm spectral channels (the resolution of the 1.6 µm channel
has been increased to HRES by sinc interpolation).

During that day, a high pressure ridge extended from the
Azores over France and Germany with moderate summer
temperatures and relatively dry air, and temporarily replaced
hot and humid air masses. A low pressure system was lo-
cated to the North of the British Isles. The satellite scene
shows scattered fair-weather cumuli over South-Eastern Eng-

Fig. 4. Example output of the downscaling algorithm in compar-
ison to standard SEVIRI images, based on a scene from 36 June
2008 of England, the British channel, north-eastern France, Bel-
gium and the Netherlands. Panel(a) shows the HRV reflectance in
grey levels, while(b) shows theday natural colorsRGB compos-
ite of Lensky and Rosenfeld(2008) at standard SEVIRI resolution.
Panel(c) is based on the downscaled 0.6 and 0.8 µm reflectances at
HRV channel resolution, combined with an 1.6 µm image obtained
by trigonometric interpolation.

land and mainland Europe. A large cirrus cloud over the
North Sea can be recognized by its typical blue color, which
is due to the low reflectance in the 1.6 µm channel caused by
ice absorption (Knap et al., 2002). While the LRES day nat-
ural color composite in panel (b) misses a lot of the spatial
structures visible in the HRV image, it allows a much easier
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Table 3. Effect of image coregistration and spatial averaging meth-
ods on the explained variance (EV) and its standard deviation
(SDev) for the linear model of HRV, 0.6 and 0.8 µm reflectance ex-
pressed by Eq. (5) and given in percent. For a description of the
different methods, see the text.

Ref LP48 3×3 1×1 5×5 NoCoReg

EV 99.68 99.08 99.04 96.83 94.60 99.61
SDev 0.11 0.28 0.27 0.94 2.32 0.14

interpretation of the image due to its use of multi-spectral
information. Visually, panel (c) clearly demonstrates that
our downscaling scheme is able to combine the advantage
offered by the day natural color composite with the higher
spatial resolution of the HRV channel. It could therefore be-
come a valuable tool for assessing the synoptic situation in
operational weather forecasting environments.

While these qualitative results are encouraging, a proper
uncertainty analysis is required to judge the suitability of the
downscaled reflectances as input for quantitative satellite re-
trievals. For this purpose, two separate sources of uncertainty
are considered, which are assumed to be statistically inde-
pendent. The first source results from deviations from the
linear model between the 0.6, 0.8 µm and HRV reflectance
given by Eq. (5). The second source of uncertainty lies in the
underconstrained nature of the downscaling problem, which
has been discussed in Sect.3.5and is quantified by Eq. (B8).
Average values of the required parameters have been calcu-
lated for the entire dataset and are listed in Table3.5.

As measure of uncertainty, the fraction of unexplained
varianceUV is considered, which is related to the explained
varianceEV by UV = 1−EV . Assuming independent error
propagation, the combined fraction of unexplained variance
is given as the sum of the two individual fractions of unex-
plained variance. Calculating the total unresolved variability
based on the values given in Table3.5, values of 1.8% and
4.7% are found, with corresponding values of total explained
variance of 98.2% and 95.3% for the 0.6 and 0.8 µm chan-
nels, respectively. Looking at the relative contributions to the
uncertainty, fractions of 80.6% and 91.6% are attributable to
the inversion carried out by Eq. (B6), and identifies it as the
dominating source of uncertainty. The uncertainty is larger
for the 0.8 µm than for the 0.6 µm channel, as its influence on
the HRV channel is smaller, as is indicated by the value ofb

being smaller thana in Eq. (5).
Figure 5a displays the annual time series of the slopes

S(r06) andS(r08) calculated for individual satellite scenes.
To relate the fraction of unexplained variance to an estimate
of the absolute accuracy of the downscaling algorithm, the
increase in variance going from LRES to HRES resolution
is needed. It is expressed as standard deviation by use of
the square root of the variance here. Figure5b shows annual
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Fig. 5. Annual time series of(a) the linear regression slopes found
to link variations in the HRV channel to unresolved variations in the
0.6 (VIS006, red) and 0.8 µm (VIS008, green) channel;(b) the es-
timated standard deviation of the difference between 1×1 (HRES)
and 3×3 km2 (LRES) images for the three spectral channels; and of
(c) the estimated residual standard deviation of the proposed down-
scaling algorithm. Periods when Meteosat-8 replaced Meteosat-9 as
operational satellite due to spacecraft anomalies have been shaded
in grey.

time series for the 0.6, 0.8 µm and HRV channels. The 0.6
and 0.8 µm values are estimated from the HRV values using
the slopesS(r06) andS(r08), and applying the general prop-
erty of the variance thatVar(ax)= a2Var(x) for a constanta
and a random variablex. Panel Fig.5c plots the time series
of the expected residual standard deviation of the downscaled
and true HRES images, based on the estimate of unresolved
variability outlined in the previous paragraph.

Panel a of Fig.5 shows that on average, the narrowband re-
flectances of a HRES pixel within the 3×3 km2 sampling res-
olution of a LRES pixel deviates from the LRES reflectance
by absolute amounts of 0.049 and 0.051 for the 0.6 and
0.8 µm images, respectively. This variability is not taken into
account if only the LRES images are used. By applying our
downscaling algorithm, we are able to reduce these devia-
tions to values of only 0.007 and 0.011.

In the introduction, we have argued that the effects of
sensor spatial response and image misregistration will affect
the accuracy of the proposed downscaling scheme. To sup-
port this argument, the resulting improvements reflected in
the mean value of explained variance for the linear model
Eq. (5) are reported in Table3. As reference, the value ob-
tained by our proposed algorithm as described in Sect.3.4
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Fig. 6. Histogram of the shifts of the HRV image relative to the
0.6 and 0.8 µm channel in Northern and Eastern direction, obtained
for 345 Meteosat-9 scenes from 2008. The shift of the images is
expressed as distance at the nadir point of the satellite in kilometers
(km).

is used. Four alternative filtering strategies have been tested
to obtain LRES images from the HRV channel. Denoted by
LP48, all Fourier coefficients above the Nyquist frequency
(1

2×4.8−1 km−1) were set to zero in the filtering process, cor-
responding to a perfect lowpass filter for the 4.8×4.8 km2

resolution reported bySchmetz et al.(2002). An alternative
is the use of arithmetic averaging of a neighborhood of pix-
els. Here, square regions consisting of 1×1, 3×3 pixels and
5×5 pixels were considered. The values given in the table
support that accounting for the functional form of the MTF
does achieve the highest values of explained variance by a
margin of at least 0.5%. The Fourier method used by the al-
gorithm for image coregistration is able to detect and correct
for shifts of the HRV images relative to the LRES images,
and is not limited to integer multiples of the pixel resolution.
Figure6 shows histograms of the individual shift found, hav-
ing a mean value of 0.06±0.10 in South and 0.36±0.11 km in
East direction. These values indicate the good coregistration
accuracy of the satellite images after EUMETSAT’s image
rectification procedure. In consequence, not correcting for
image misregistration reduces the correlation reported in Ta-
ble 3 only slightly (NoCoReg). It can thus be argued that
the additional complexity of coregistering the images is not
worth the extra effort. For extreme cases, however, the shift
can vary by more than half a HRV pixel, and the coregistra-
tion procedure can then prevent a degradation of accuracy.

5 Conclusions and outlook

In this paper, a downscaling algorithm is presented to en-
hance the spatial resolution of Meteosat SEVIRI 0.6 and
0.8 µm narrowband images by a factor of 3. Our algorithm
utilizes the broadband HRV channel in a linear model to re-
solve the high-frequency spatial variability for the lower spa-
tial resolution narrowband channels. In addition, the spatial
response functions of the SEVIRI channels are accounted for
by an explicit convolution with the sensor modulation trans-
fer function and the Fourier shift theorem is used to coregis-
ter the HRV broadband channel to the narrowband channels.

The results of our uncertainty analysis reveal that our ap-
proach resolves high-frequency variability in the narrowband
channels with an explained variance of 98.2% and 95.3%
in the 0.6 and 0.8 µm channels, respectively, corresponding
to residual standard deviations of 0.007 and 0.011 for the
downscaled narrowband reflectances. In comparison, aver-
age values of 0.049 and 0.052 are expected as standard de-
viation between the reflectance of a HRES and an enclosing
LRES pixel, variability which is completely neglected in the
lower resolution narrowband images. These numbers support
that the algorithm is able to provide physically consistent 0.6
and 0.8 µm reflectance images at the spatial resolution of the
HRV channel.

Two sources of uncertainty of the proposed algorithm have
been identified. First, it is assumed that the reflectance of
the HRV channel is a linear combination of the 0.6 and the
0.8 µm reflectance. Second, the accuracy of the inversion of
this linear relation relies on the correlation between the 0.6
and 0.8 µm channel reflectance, and the ratio of their vari-
ance. The latter uncertainty has been found to dominate, and
is larger for the 0.8µm channel, as its contribution to the
HRV reflectance is less than that of the 0.6 µm channel. This
fact is also reflected by the lower value of explained variance
of the downscaled 0.8 µm channel given above.

Two aspects relevant to the accuracy of the downscaling
algorithm have been studied in this paper. First, the cor-
respondence of spatial variations between the narrowband
and downsampled HRV channels improves significantly if
the modulation transfer function of the SEVIRI sensors is
explicitly used in the downsampling procedure. Second,
the coregistration of the HRV and narrowband channels has
been quantified, and only a minor shift has been found of
0.06±0.10 and 0.36±0.11 km in South and East direction,
respectively. Methods based on the discrete Fourier trans-
form have been introduced to address both aspects.

During daylight hours, the presented downscaling algo-
rithm provides important additional information for the nar-
rowband observations that fall within the field of view of the
HRV channel. In the future, we intend to apply this algo-
rithm to reduce the resolution mismatch between cloud prod-
ucts estimated from geostationary and polar-orbiting satel-
lite platforms, which introduces biases in retrievals of cloud
properties (Deneke et al., 2009b), as well as cloud radiative
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forcing (Oreopoulos et al., 2009). Other applications, such
as the early detection of convective activity and the retrieval
of land surface properties, can likely also benefit from the
enhanced spatial resolution of the narrowband channels.

The main limitation of the approach in its current form
is the fact that only a single linear model is used to down-
scale the entire SEVIRI scene. Since clouds dominate the
spatial variations in reflectance (Deneke et al., 2009a) they
also dominate the spectral variations and correlations in re-
flectance, and thus the applicability of the linear model. The
relationship between narrowband and broadband radiances
is known to be dependent on scene type (Li and Leighton,
1992). The use of scene-dependent linear models, using a
previous pixel classification, could be a promising algorithm
extension. Another promising extension could be the use of
external sources of information within the downscaling pro-
cess. For example, MODIS products could provide some of
the required statistical parameters at high-resolution, such as
the correlation between the 0.6 and 0.8 µm channel.

The algorithm presented in this paper is a physical down-
scaling method, which exploits the availability of higher spa-
tial resolution information from the HRV channel as predic-
tor (seeLiu and Pu(2008) for the distinction between statis-
tical and physical downscaling methods). The combination
with statistical techniques could help extend the downscaling
to additional SEVIRI spectral channels. It also needs consid-
eration that the HRV channel is only available for part of the
disk of the earth observed by SEVIRI, and that it still has a
lower resolution than comparable polar-orbiting satellite im-
agers. Moreover,Deneke et al.(2009b) showed that biases
in satellite-estimated cloud climatologies can also be reduced
by using estimates of the unresolved variance. Alternatively
or complementary, these biases may also be reduced by us-
ing approaches that simulate realistic surrogate variability at
sub-pixel scale (see e.g.,Venema et al., 2010; Schutgens and
Roebeling, 2009).

Finally, our results demonstrate the potential of combining
satellite images with different spatial and spectral resolution,
to benefit from their individual strengths. This point will be-
come even more important in the future for Meteosat Third
Generation, which will acquire images with several different
spatial resolutions.

Appendix A

Spectral channel characteristics

The following quantities are introduced to characterize the
spectral response functionη of a satellite detector.η is as-
sumed to be normalized to a maximum value of unity here.
The spectral widthδλ of a channel is given by

δλ=

∫
∞

0
η(λ)dλ. (A1)

Then, the central wavelengthλC can be defined as

λC =
1

δλ

∫
∞

0
λη(λ)dλ. (A2)

The band-averaged extraterrestrial solar spectral irradiance
φC of a channel is finally calculated by

φC =
1

δλ

∫
∞

0
φ(λ)η(λ)dλ. (A3)

Here,φ is the extraterrestrial solar spectrum at a sun-earth
distance of 1 astronomical units.

The quantitiesλC andδλ are well-suited to determine bulk
optical properties of a medium illuminated by a spectrally
constant source of irradiance. In case of the earth’s atmo-
sphere, however, the incident solar irradiance varies strongly
with wavelength. It is therefore more appropriate to use the
productη∗

=ηφ of spectral response and solar spectrum in-
stead ofη to weight the reflection and transmission properties
of the earth’s atmosphere and surface for a spectral interval.
Replacingη with η∗ in Eq. (A1) and Eq. (A2), analoguous
quantitiesλ∗

C andδλ∗ can be obtained.

Appendix B

Statistical inversion

This appendix presents general statistical relations used by
this paper, and applies them in order to invert Eq. (5). First,
we consider a random variabley which is assumed to be lin-
early related to an independent variablesx by

y=ax +b. (B1)

Here,a denotes the slope andb the offset of the linear model.
Using standard definitions of variance and covariance, an es-
timateâ of the slope of the linear relation is given by

â=
Cov(x,y)

Var(x)
= Cor(x,y)

√
Var(y)

Var(x)
, (B2)

which minimizes the sum of the squared deviations ofy from
the linear equation. In the second equality, the linear correla-
tion coefficient has been used, which is related to the covari-
ance through

Cor(x,y)=
Cov(x,y)

√
Var(x)Var(y)

. (B3)

The standard deviationσy of the difference between modeled
and observed values can be calculated by

σy =

√
Var(y)

[
1−Cor(x,y)2

]
. (B4)

This equation also motivates the nameexplained variance

EV (x,y) for the square ofCor(x,y), as σ2
x

Var(y)
specifies the

fraction of variance not explained by the linear model.
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We now consider the downscaling problem discussed in
this paper. Here,y depends linearly on two random and cor-
related variablesx1 andx2 without any offset

y=ax1+bx2. (B5)

We are interested in the inversion of this linear model, to
estimatex1 andx2 from y. Eq. (B2) can provide the slope
S(x1) of the least-squares solution for predictingx1 from y.
Inserting Eq. (B5) into Eq. (B2), and simplyfing with general
properties of covariance and variance, we obtain:

S(x1) =
Cov(x1,y)

Var(y)

=
1+kCor(x1,x2)

a
[
1+k2+2kCor(x1,x2)

] , (B6)

with k given by

k=

√
a2Var(x2)

b2Var(x1)
. (B7)

As measure of the accuracy of this linear model, the ex-
plained varianceEV (x1,y) of x1 giveny is used. We obtain

EV(y,x1) =
Cov(y,x1)

2

Var(y)Var(x1)

=
[1+kCor(x1,x2)]

2

1+k2+2kCor(x1,x2)
. (B8)

These results show that both the slope and the explained vari-
ance of the inversion depend only on the correlation ofx1 and
x2, the slopesa andb, as well as the ratio of the variances of
x1 andx2. To apply these general results to the purposes of
this paper,a, b, x1 andx2 have to be chosen appropriately.
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