Atmos. Chem. Phys., 10, 7409–7414, 2010 www.atmos-chem-phys.net/10/7409/2010/doi:10.5194/acp-10-7409-2010 © Author(s) 2010. CC Attribution 3.0 License. # Sensitivity of a global model to the uptake of N_2O_5 by tropospheric aerosol # H. L. Macintyre and M. J. Evans Institute for Climate and Atmospheric Science, School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK Received: 18 May 2010 – Published in Atmos. Chem. Phys. Discuss.: 28 May 2010 Revised: 25 July 2010 – Accepted: 26 July 2010 – Published: 9 August 2010 The uptake of N₂O₅ on aerosol impacts atmospheric concentrations of NO_x and so O₃, OH, and hence CH₄. Laboratory studies show significant variation in the rate of uptake, with a general decline in the value of $\gamma_{N_2O_5}$ over the last decade as increasingly relevant tropospheric proxies have been studied. In order to understand the implication of this decline for tropospheric composition, a global model of tropospheric chemistry and transport (GEOS-Chem) is run with differing values of $\gamma_{N_2O_5}$ (0.0, 10^{-6} , 10^{-4} , 10^{-3} , 5×10^{-3} , 10^{-2} , 2×10^{-2} , 0.1, 0.2, 0.5, and 1.0). We identify three regimes in the model response. At low values of $\gamma_{N_2O_5}$, the model shows reduced sensitivity to the value of $\gamma_{N_2O_5}$ as heterogeneous uptake of N_2O_5 does not provide a significant pathway to perturb NO_x burdens. At high values of $\gamma_{N_2O_5}$ the model again shows reduced sensitivity to the value of $\gamma_{N_2O_5}$, as NO_x loss through heterogeneous removal of N₂O₅ is limited by the rate of production of NO₃, rather than the rate of heterogeneous uptake. At intermediate values of $\gamma_{N_2O_5}$ the model shows significant sensitivity to the value of $\gamma_{N_2O_5}$. We find regional differences in the model's response to changing $\gamma_{N_2O_5}$. Regions with high aerosol surface area and low temperatures show NO₃ production becoming rate limiting at lower $\gamma_{N_2O_5}$ values than regions with lower aerosol surface area and higher temperatures. The northern extra-tropics show significant sensitivity to the value of $\gamma_{N_2O_5}$ at values consistent with current literature (0.001–0.02), thus an accurate description of $\gamma_{N_2O_5}$ is required for adequate simulation of O₃ burdens and longrange transport of pollutants in this region. Our model simulations also provide insight into the sensitivity of coupled chemistry-aerosol simulations to the choice of $\gamma_{N_2O_5}$. We find little change in the global sensitivity of NO_x, O₃ and OH to $\gamma_{N_2O_5}$ in the range 0.05 to 1.0, but a Correspondence to: H. L. Macintyre (h.macintyre@see.leeds.ac.uk) significant drop in sensitivity below this range. Thus simulations of the coupled impact of both chemistry and aerosol changes through time will be sensitive to the choice of $\gamma_{N_2O_5}$. #### 1 Introduction Aerosols provide a significant source of uncertainty in our understanding of climate (Solomon et al., 2007). As well as affecting climate through direct and indirect radiative forcings (Lohmann and Feichter, 2005), they can impact photochemistry and thus the concentration of climate relevant gases such as methane (CH₄) and ozone (O₃). This impact is achieved both by changing the photolysis rate of species (Wild et al., 2000; Martin et al., 2003) and by providing a surface upon which heterogeneous reactions can occur (Dentener and Crutzen, 1993; Jacob, 2000). The dominant heterogeneous reaction in the troposphere is the reactive uptake of N₂O₅ (Tie et al., 2001; Martin et al., 2003; Liao et al., 2003) producing nitric acid (HNO₃), thus removing oxides of nitrogen from the atmosphere. Laboratory studies show the rate of reactive uptake of N2O5 varies with aerosol composition, temperature and relative humidity, with more recent studies tending to give lower values (Hanson and Ravishankara, 1991; Kane et al., 2001; Hallquist et al., 2003; Thornton et al., 2003; Badger et al., 2006; Brown et al., 2009; Bertram et al., 2009). In this paper the sensitivity of a global composition transport model to the uptake of N₂O₅ is investigated to gauge the impact of this downward trend. Tropospheric NO_x (=NO+NO₂) sources are dominated by anthropogenic combustion processes, with significant natural sources including lightning and soils (Solomon et al., 2007). The conversion of NO_x to HNO_3 is the most significant sink for NO_x . During the day this is achieved by the reaction of NO_2 with OH (Reaction R1). At night NO_2 can react with O_3 to produce NO_3 , and then NO_3 can react with NO_2 to produce N_2O_5 , which subsequently reacts on aerosol (Reactions R2–R4) to produce aerosol nitrate. This channel is only significant at night as NO₃ concentrations are low during the day due to its photolysis. $$NO_2 + OH \rightarrow HNO_3$$ (R1) $$NO_2 + O_3 \rightarrow NO_3 + O_2 \tag{R2}$$ $$NO_3 + NO_2 \rightarrow N_2O_5 \tag{R3}$$ $$N_2O_5 \xrightarrow{aerosol} 2HNO_3$$ (R4) The significance of N_2O_5 uptake as a NO_x sink is shown both by modelling studies (Dentener and Crutzen, 1993; Tie et al., 2001; Evans and Jacob, 2005), and field evidence, (Platt et al., 1984; Munger et al., 1998; Brown et al., 2006). NO_x concentrations impact the production of O_3 and thus the concentration of OH, one of the most important tropospheric oxidants (Logan et al., 1981). Thus understanding the sources and sinks of NO_x is important for climate, as they impact the global O_3 and CH_4 burdens (the dominant sink for CH_4 is reaction with OH), and hence radiative forcing. Model representation of the heterogeneous process is achieved by an uptake parameter, gamma (γ) , defined as the probability that a molecule impacting the surface of an aerosol undergoes irreversible reaction (Schwartz, 1986; Dentener and Crutzen, 1993). Initial laboratory studies to determine $\gamma_{N_2O_5}$ were performed on cold sulfuric acid aerosol as a proxy for stratospheric conditions (Mozurkewich and Calvert, 1988; Hanson and Ravishankara, 1991; Van Doren et al., 1991; Fried et al., 1994). Relatively high values of $\gamma_{\rm N_2O_5}$ (~0.1) were found. Given the lack of measurements of $\gamma_{\rm N_2O_5}$ for tropospherically-relevant temperatures, humidities and aerosol compositions, this value was adopted for global tropospheric modelling. Dentener and Crutzen (1993) included reactive uptake in a global chemistry-transport model with a $\gamma_{N_2O_5}$ value of 0.1, and found a global reduction in NO_x of 49%, with a corresponding drop in O₃ and OH of 9% each (examining only the winter Northern Hemisphere yields a reduction in NO_x of 75%, with corresponding drops in O₃ and OH of 20% and 25%, respectively). Other modelling studies examining the effect of aerosol on tropospheric oxidants found surface reductions in NO_x and O₃ of 80% and 10–30%, respectively, for winter northern latitudes (Tie et al., 2001, 2003; Liao et al., 2003). As laboratory studies were performed for more tropospherically relevant aerosol, it was apparent that the value of $\gamma_{N_2O_5}$ from the early lab studies (\sim 0.1) was too high for the troposphere. Evans and Jacob (2005) used more appropriate laboratory studies to develop a new scheme for uptake more suited to the troposphere. This used data from studies on single component aerosol (neutralised sulfate, dust, organics and sea-salt). A global average $\gamma_{N_2O_5}$ of 0.02 was calculated, increasing the mass weighted global NO_x , O_3 and OH burdens by 7%, 4% and 8%, respectively, compared to values simulated using the previous $\gamma_{N_2O_5}$ value of 0.1. Recent studies suggest that $\gamma_{N_2O_5}$ values may be smaller still than those used in Evans and Jacob (2005). Brown et al. (2009) estimate the value on ambient aerosol to be in the range 5×10^{-4} - 6×10^{-3} , and Bertram et al. (2009) in the range 3×10^{-3} – 9×10^{-3} , both roughly a factor of ten lower than the mean value of 0.02 found by Evans and Jacob (2005). Both studies also characterise the aerosol and find up to 60% (Brown et al., 2009) and 75% (Bertram et al., 2009) consists of organic material. Throughout the troposphere, organic material makes up a significant and sometimes dominant fraction of aerosol mass (Zhang et al., 2007). Evidence from both field and lab studies suggests this organic material may form a coating (Pósfai et al., 1998; Tervahattu et al., 2002; Vaden et al., 2010). It has been shown that additional organic material can significantly reduce the uptake coefficient on sulfate aerosol, in some cases by several orders of magnitude (Folkers et al., 2003; Badger et al., 2006; Anttila et al., 2006; Brown et al., 2009), and that this coating need not be complete to suppress $\gamma_{N_2O_5}$ (Cosman and Bertram, 2008). Therefore the estimates for ambient aerosol from single-component studies made by Evans and Jacob (2005) may be too large. A study by Alexander et al. (2009) looked at modelled and observed $\Delta^{17}O$ to constrain nitrate formation pathways, and found that the model overestimated production through N₂O₅ hydrolysis at winter northern latitudes, lending further support to the fact that $\gamma_{N_2O_5}$ may be lower than previously thought. Recent studies have shown that $ClNO_2$ may also be produced by reaction of N_2O_5 on chloride-containing aerosol (Osthoff et al., 2008; Roberts et al., 2009). This would act to reduce the nitrate source from the heterogeneous reaction, as well as reducing the NO_x sink ($ClNO_2$ may photolyse producing NO_2 and a Cl radical). This could also be viewed as a lowering of the $\gamma_{N_2O_5}$ value for Reaction R4, as it similarly results in a smaller NO_x sink and lower nitrate production. Thus, heterogeneous uptake of N_2O_5 is a significant driver of tropospheric composition. However there are a wide range of $\gamma_{N_2O_5}$ within the literature (10^{-4} to >0.1), with recent assessments using real atmospheric aerosols suggesting even lower values than previously considered. Conceptually, below some value of $\gamma_{N_2O_5}$, the heterogeneous uptake of N_2O_5 becomes an insignificant process for the loss of NO_x and therefore an precise definition of $\gamma_{N_2O_5}$ is not necessary. In this paper we investigate the sensitivity of a model of tropospheric chemistry and transport to a wide range of $\gamma_{N_2O_5}$ in order to investigate model response to different values of $\gamma_{N_2O_5}$. #### 2 Model simulations We use the GEOS-Chem global chemical-transport model version v8-01-04 (http://acmg.seas.harvard.edu/geos/) (Bey et al., 2001), driven by assimilated meteorological fields from the Goddard Earth Observing System (GEOS) of the NASA Global Modelling Assimilation Office (GMAO). For computational expedience, simulations are run at 4° latitude by 5° longitude, with 30 vertical layers. The model carries five externally-mixed aerosol types (sulfate, black carbon, organic carbon, dust, and sea-salt), with a relative humidity dependent size distribution based on Martin et al. (2003) and references therein. The model contains a detailed representation of NO_x-O_x-hydrocarbon chemistry, including reactions of NO₃ with the organic compounds isoprene, propene, dimethyl sulfide, formaldehyde, acetaldehyde, C>4 alkanes, C>2 aldehydes, C>3 ketones, glyoxal, methylglyoxal, methylvinylketone, methacrolein and ethane, and their subsequent degradation chemistry. In order to simplify the analysis, the value of $\gamma_{N_2O_5}$ is set to a single value across all aerosol types and ambient conditions for each simulation. $\gamma_{N_2O_5}$ values of 0.0, 10^{-6} , 10^{-4} , 10^{-3} , 5×10^{-3} , 10^{-2} , 2×10^{-2} , 0.1, 0.2, 0.5, and 1.0 are chosen to fill the range of possible values. First order loss rate coefficients are calculated using the equation of Schwartz (1986), and the heterogeneous reaction is assumed to proceed via Reaction R4. Each simulation is run for two years. The analysis is performed on the second year of output, and the first year discarded as spin-up. The GEOS-Chem model has been extensively used and has previously been evaluated against observations for many locations (Bey et al., 2001; Martin et al., 2003; Evans and Jacob, 2005; Zhang et al., 2008; Nassar et al., 2009). At the resolution used here, correlations between tracers, (e.g. aerosol and NO_x) in plumes, may not be fully resolved, with subsequent impacts on chemistry. #### 3 Impact on concentrations Figure 1 shows the impact that changing $\gamma_{N_2O_5}$ has on the monthly mean mass averaged burden of tropospheric NO_x in various latitude bands, integrated up to the tropopause. The greatest impact is seen on concentrations in the northern extra-tropics during the winter months. This can be explained by the large NO_x and aerosol sources in this region, coupled to the longer nights during the Northern Hemisphere winter. The low solar insolation in the northern extratropics winter leads to lower OH concentrations, and hence reduced rates of OH loss through the reaction of NO₂ with OH (Reaction R1). The long nights enhance NO₃ persistence and hence NO_x loss through N₂O₅ hydrolysis. Tropical regions do not exhibit this strong seasonality, but rather show a steady shift from the baseline concentration, due to the more consistent solar insolation year round. Considerable aerosol loadings in the tropical regions, mainly from biomass and biogenic sources, provide a potentially large sink for NO_x. However, the persistence of NO₃ is inhibited by its photolysis (and also its reaction with abundant organic compounds) causing a much smaller overall impact on NO_x concentrations compared to the winter northern extratropics. Despite the long nights in the southern extra-tropics, aerosol and NO_x loadings are low here, hence little impact is **Fig. 1.** Impact of $\gamma_{\rm N_2O_5}$ on the NO_x burden in the northern extratropics (90° N–30° N, red lines), southern extra-tropics, (30° S–90° S, black), and tropics (30° N–30° S, green) for five of the simulations. Different $\gamma_{\rm N_2O_5}$ values are represented by the line-style as follows: Dotted γ =0.0; dot-dash γ =0.001; dashes γ =0.02; long dashes γ =0.1; solid γ =1.0. seen. It is noted that for the region which displays the highest sensitivity (i.e. winter northern latitudes), there exist very few appropriate lab or field determinations of $\gamma_{N_2O_5}$. It is likely that additional organic material in the aerosol (which lowers $\gamma_{N_2O_5}$) may not be as prevalent during this time (due to low productivity), therefore further determinations of the true value of $\gamma_{N_2O_5}$ for aerosol types that dominate this region would be beneficial. Figure 2 shows the mean annual tropospheric burdens of NO_x , O_3 and OH as a function of $\gamma_{N_2O_5}$ (shown on a log scale), for the northern extra-tropics, southern extra-tropics, tropical regions, and the whole globe. Examining the NO_x burden in the northern extra-tropics, there are three obvious regimes. At high and low values of $\gamma_{N_2O_5}$ the model shows reduced sensitivity to the value of $\gamma_{N_2O_5}$ (perturbations in $\gamma_{N_2O_5}$ lead to very small changes in burdens) with a transitional regime where changes in $\gamma_{N_2O_5}$ lead to significant changes in the simulated burdens. The other regions and species show a similar response but shifted towards higher values of $\gamma_{N_2O_5}$. At low values of $\gamma_{N_2O_5}$ the heterogeneous uptake of N₂O₅ plays a negligible role in determining the NO_x budget, thus in this regime, changes in $\gamma_{N_2O_5}$ have a small impact on burdens. At high values of $\gamma_{N_2O_5}$, the rate limiting step for NO_x loss switches from the heterogeneous uptake step (Reaction R4) to the production of NO₃ (Reaction R2) (which goes on to form N₂O₅). Thus the model is again insensitive to the value of $\gamma_{N_2O_5}$. It is only in the intermediate regime that the model shows sensitivity to the value of $\gamma_{N_2O_5}$. The differing regional response is due to the aerosol loading being much higher in the northern extratropics, and temperatures are lower so the NO₃ production limitation occurs at lower values of $\gamma_{N_2O_5}$. Fig. 2. Impact of $\gamma_{N_2O_5}$ on mean annual burdens of NO_x , O_3 , and OH. The curves are plotted using an error function fit to the points, which are taken from the mass weighted annual mean model diagnostics. Northern extra-tropics (90° N–30° N) are in red, tropics (30° N–30° S) are in green, southern extra-tropics (30° S–90° S) are in black, and global values are shown in blue. The vertical bar indicates the point of maximum gradient on the curve (the vertical black bar is not visible on the O_3 plot as it is overlain exactly by the green bar). Globally the peak sensitivity for NO_x is at a $\gamma_{N_2O_5}$ of 0.013, not far from the value of 0.02 found by Evans and Jacob (2005), whereas the peak sensitivities for O_3 and OH are at much higher $\gamma_{N_2O_5}$ of 0.16 and 0.2, respectively. Within the northern mid-latitudes the peak sensitivity lies at $\gamma_{N_2O_5}$ of 0.002 for NO_x and at 0.03 for O_3 and OH. The differing responses of the tropics, extra-tropics and globally leads to different conclusions about the importance of a precise description of $\gamma_{N_2O_5}$. If we assume the true atmospheric value lies between 0.02 and 0.001 (as found by Evans and Jacob, 2005 and Brown et al., 2009; Bertram et al., 2009) we find that the northern extra-tropics show a significant sensitivity to our choice of $\gamma_{N_2O_5}$. Moving from 0.02 to 0.001 leads to NO_x , O_3 and OH burdens in this region increasing by 29%, 7% and 8%, respectively. Thus, having a good definition of $\gamma_{N_2O_5}$ is important for defining the composition in this region. Globally the model is less sensitive with a change in $\gamma_{N_2O_5}$ from 0.02 to 0.001 leading to NO_x , O_3 and OH burden changes of 11%, 3% and 4%, respectively. From our simulations we conclude that although an accurate defi- **Fig. 3.** Impact of a 10% reduction in the product $\gamma_{N_2O_5} \times A$ (derived from the fits to the curves shown in Fig. 2) on mean annual burdens of NO_x, O₃, and OH for various $\gamma_{N_2O_5}$ values (shown on a log scale). Northern extra-tropics (90° N–30° N) are the red crosses, tropics (30° N–30° S) are green stars, southern extra-tropics (30° S–90° S) are black triangles, and global values are shown in blue circles. nition of $\gamma_{N_2O_5}$ is significant for determining climate relevant parameters such as the global O_3 and OH burdens, it plays a much more significant role for the northern extra-tropics than the tropical regions. Thus for issues such as the long range transport of pollution, which is mostly a mid-latitude issue, conclusions drawn will be significantly impacted by the description of $\gamma_{N_2O_5}$ used. ## 4 Impact of aerosol loading on heterogeneous NO_x loss To a good approximation the rate of N_2O_5 uptake is described by $k = \frac{A\omega\gamma}{4}$, where A is the aerosol surface area concentration, and ω is mean molecular speed. Therefore, the response of the model to a fractional perturbation in surface area, A, will be the same as a fractional perturbation in γ . Thus, our simulations provide insight into the impact of the choices of $\gamma_{N_2O_5}$ on model simulations where aerosol loading is changed (such as that between the pre-industrial and the present day). Figure 3 shows the percent change in burdens of NO_x , O_3 and OH for a 10% reduction in aerosol surface area, (represented here by a 10% reduction in $\gamma_{N_2O_5}$) at different values of $\gamma_{N_2O_5}$, calculated from the error function fit to the simulations from Fig. 2. Globally from our simulations we find very little variation in model sensitivity to aerosol perturbations in the range of $\gamma_{N_2O_5}$ 1.0 down to 0.05, with sensitivity then dropping significantly below this value. At a $\gamma_{N_2O_5}$ of 0.001 as suggested by some studies, global O₃ and OH are significantly (an order of magnitude) less sensitive to perturbation in aerosol surface area than is the case at $\gamma_{N_2O_5}$ of 0.1. At a global scale, NO_x appears to change by at most a factor 2 over this range in $\gamma_{N_2O_5}$. This smaller sensitivity is due to the competing effect of increased sensitivity in the northern extra-tropics (by a factor of 3), and decreased sensitivity in the tropics and southern extra-tropics (an order of magnitude less). The northern extra-tropics again show a significantly different behaviour with peak sensitivity to an aerosol perturbation at around 0.05 for O₃ and OH. Thus for studies investigating the coupled impact of aerosol and chemistry changes (e.g., Bell et al., 2005; Lamarque et al., 2005; Liao et al., 2009), the conclusions are likely to be sensitive to the choice of $\gamma_{N_2O_5}$. ## 5 Conclusions Our model simulations show a non-linear tropospheric response to changes in $\gamma_{\rm N_2O_5}$ with very small sensitivity at low values, and significant sensitivity at moderate values of $\gamma_{\rm N_2O_5}$ (0.001–0.02). This response is regional due to differing aerosol loadings, temperature and photolysis. Within the likely range of $\gamma_{\rm N_2O_5}$ (0.02 to 0.001) the northern extratropics show significant and enhanced sensitivity to the value of $\gamma_{\rm N_2O_5}$ compared to the tropics and southern extra-tropics. Models that use high values of $\gamma_{N_2O_5}$ (\sim 0.1) will overestimate the impact of changing aerosol loadings on composition through heterogeneous uptake. Thus a better understanding of the value of $\gamma_{N_2O_5}$ is needed to both understand current composition but also the combined impact of changing gasand aerosol-phase composition. Acknowledgements. The authors wish to acknowledge funding from NERC studentship NER/S/C/2006/14266 as well as support from the GEOS-Chem team at Harvard. Edited by: B. N. Duncan ## References - Alexander, B., Hastings, M. G., Allman, D. J., Dachs, J., Thornton, J. A., and Kunasek, S. A.: Quantifying atmospheric nitrate formation pathways based on a global model of the oxygen isotopic composition (Δ^{17} O) of atmospheric nitrate, Atmos. Chem. Phys., 9, 5043–5056, doi:10.5194/acp-9-5043-2009, 2009. - Anttila, T., Kiendler-Scharr, A., Tillmann, R., and Mentel, T. F.: On the Reactive Uptake of Gaseous Compounds by Organic-Coated Aqueous Aerosols: Theoretical Analysis and Application to the - Heterogeneous Hydrolysis of N_2O_5 , J. Phys. Chem. A., 110, 10435-10443, 2006. - Badger, C. L., Griffiths, P. T., George, I., Abbatt, J. P. D., and Cox, R. A.: Reactive Uptake of N₂O₅ by Aerosol Particles Containing Mixtures of Humic Acid and Ammonium Sulfate, J. Phys. Chem. A., 110, 6986–6994, 2006. - Bell, N., Koch, D., and Shindell, D. T.: Impacts of chemistryaerosol coupling on tropospheric ozone and sulfate simulations in a general circulation model, J. Geophys. Res., 110, D14305, doi:10.1029/2004JD005538, 2005. - Bertram, T. H., Thornton, J. A., Riedel, T. P., Middlebrook, A. M., Bahreini, R., Bates, T. S., Quinn, P. K., and Coffman, D. J.: Direct observations of N₂O₅ reactivity on ambient aerosol particles, Geophys. Res. Lett., 36, L19803, doi:10.1029/2009GL040248, 2009. - Bey, I., Jacob, D. J., Yantosca, R. M., Logan, J. A., Field, B. D., Fiore, A. M., Li, Q., Liu, H. Y., Mickley, L. J., and Schultz, M. G.: Global modeling of tropospheric chemistry with assimilated meteorology: Model description and evaluation, J. Geophys. Res., 106, 23073–23095, 2001. - Brown, S. S., Ryerson, T. B., Wollny, A. G., Brock, C. A., Peltier, R., Sullivan, A. P., Weber, R. J., Dubé, W. P., Trainer, M., Meagher, J. F., Fehsenfeld, F. C., and Ravishankara, A. R.: Variability in Nocturnal Nitrogen Oxide Processing and Its Role in Regional Air Quality, Science, 311, 67–70, 2006. - Brown, S. S., Dubé, W. P., Fuchs, H., Ryerson, T. B., Wollny, A. G., Brock, C. A., Bahreini, R., Middlebrook, A. M., Neuman, J. A., Atlas, E., Roberts, J. M., Osthoff, H. D., Trainer, M., Fehsenfeld, F. C., and Ravishankara, A. R.: Reactive uptake coefficients for N₂O₅ determined from aircraft measurements during the Second Texas Air Quality Study: Comparison to current model parameterizations, J. Geophys. Res., 114, D00F10, doi:10.1029/2008JD011679, 2009. - Cosman, L. M. and Bertram, A. K.: Reactive Uptake of N_2O_5 on Aqueous H_2SO_4 Solutions Coated with 1-Component and 2-Component Monolayers, J. Phys. Chem. A., 112, 4625–4635, 2008. - Dentener, F. and Crutzen, P.: Reaction of N_2O_5 on Tropospheric Aerosols: Impact on the Global Distributions of NO_x , O_3 , and OH, J. Geophys. Res., 98, 7149–7163, 1993. - Evans, M. J. and Jacob, D. J.: Impact of new laboratory studies of N₂O₅ hydrolysis on global model budgets of tropospheric nitrogen oxides, ozone, and OH, Geophys. Res. Lett., 32, D00F10, doi:10.1029/2005GL022469, 2005. - Folkers, M., Mentel, T. F., and Wahner, A.: Influence of an organic coating on the reactivity of aqueous aerosols probed by the heterogeneous hydrolysis of N_2O_5 , Geophys. Res. Lett., 30, 1644, doi:10.1029/2003GL017 168, 2003. - Fried, A., Henry, B. E., Calvert, J. G., and Mozurkewich, M.: The reaction probability of N_2O_5 with sulfuric acid aerosols at stratospheric temperatures and compositions, J. Geophys. Res., 99, 3517–3532, 1994. - Hallquist, M., Stewart, D. J., Stephenson, S. K., and Cox, R. A.: Hydrolysis of N₂O₅ on sub-micron sulfate aerosols, Phys. Chem. Chem. Phys., 5, 3453–3463, 2003. - Hanson, D. R. and Ravishankara, A. R.: The reaction probabilities of ClONO₂ and N₂O₅ on 40 to 75% sulfuric acid solutions, J. Geophys. Res., 96, 17307–17314, 1991. - Jacob, D. J.: Heterogeneous chemistry and tropospheric - ozone, Atmos. Environ., 34, 2131–2159, doi:10.1016/S1352-2310(99)00462-8, 2000. - Kane, S. M., Caloz, F., and Leu, M.-T.: Heterogeneous Uptake of Gaseous N₂O₅ by (NH₄)₂SO₄, NH₄HSO₄, and H₂SO₄ Aerosols, J. Phys. Chem., 105, 6465–6470, 2001. - Lamarque, J.-F., Kiehl, J. T., Hess, P. G., Collins, W. D., Emmons, L. K., Ginoux, P., Luo, C., and Tie, X. X.: Response of a coupled chemistry-climate model to changes in aerosol emissions: Global impact on the hydrlogical cycle and the tropospheric burdens of OH, ozone, and NO_x, Geophys. Res. Lett., 32, L16809, doi:10.1029/2005GL023419, 2005. - Liao, H., Adams, P. J., Chung, S. H., Seinfeld, J. H., Mickley, L. J., and Jacob, D. J.: Interactions between tropospheric chemistry and aerosols in a unified general circulation model, J. Geophys. Res., 108, 4001, doi:10.1029/2001JD001260, 2003. - Liao, H., Zhang, Y., Chen, W.-T., Raes, F., and Seinfeld, J. H.: Effect of chemistry-aerosol-climate coupling on predictions of future climate and future levels of tropospheric ozone and aerosols, J. Geophys. Res., 114, D10306, doi:10.1029/2008JD010984, 2009. - Logan, J. A., Prather, M. J., Wofsy, S. C., and McElroy, M. B.: Tropospheric Chemistry: A Global Perspective, J. Geophys. Res., 86, 7210–7254, 1981. - Lohmann, U. and Feichter, J.: Global indirect aerosol effects: A review, Atmos. Chem. Phys., 5, 715–737, doi:10.5194/acp-5-715-2005, 2005. - Martin, R. V., Jacob, D. J., and Yantosca, R. M.: Global and regional decreases in tropospheric oxidants from photochemical effects of aerosols, J. Geophys. Res., 108, 4097, doi:10.1029/2002JD002622, 2003. - Mozurkewich, M. and Calvert, J. G.: Reaction probability of N₂O₅ on aqueous aerosols, J. Geophys. Res., 93, 15,889–15,896, 1988. - Munger, J. W., Fan, S.-M., Bakwin, P. S., Goulden, M. L., Goldstein, A. H., Colman, A. S., and Wofsy, S. C.: Regional budgets for nitrogen oxides from continental sources: Variations of rates for oxidation and deposition with season and distance from source region, J. Geophys. Res., 103, 8355–8368, 1998. - Nassar, R., Logan, J. A., Megretskaia, I. A., Murray, L. T., Zhang, L., and Jones, D. B. A.: Analysis of tropical tropospheric ozone, carbon monoxide, and water vapour during the 2006 El Niño using TES observations and the GEOS-Chem model, J. Geophys. Res., 114, D17304, doi:10.1029/2009JD011760, 2009. - Osthoff, H. D., Roberts, J. M., Ravishankara, A. R., Williams, E. J., Lerner, B. M., Sommariva, R., Bates, T. S., Coffman, D., Quinn, P. K., Dibb, J, E., Stark, H., Burkholder, J. B., Talukdar, R. K., Meagher, J., Fehsenfeld, F. C., and Brown, S. S.: High levels of nitryl chloride in the polluted subtropical marine boundary layer, Nature Geosci., 1, 324–328, doi:10.1038/ngeo177, 2008. - Platt, U., Winer, A. M., Biermann, H. W., Atkinson, R., and Pitts, J. N.: Measurement of nitrate radical concentrations in continental air, Envir. Sci. Technol., 18, 365–369, 1984. - Pósfai, M., Xu, H. F., Anderson, J. R., and Buseck, P. R.: Wet and dry sizes of atmospheric aerosol particles: an AFM-TFM study, Geophys. Res. Lett., 25, 1907–1910, doi:10.1029/98GL01416, 1998. - Roberts, J. R., Osthoff, H. D., Brown, S. S., Ravishankara, A. R., Coffman, D., Quinn, P., and Bates, T.: Laboratory studies of products of N₂O₅ uptake on Cl⁻ containing substrates, Geophys. Res. Lett., 36, L20808, doi:10.1029/2009GL0404448, 2009. - Schwartz, S.: Mass-transport considerations pertinent to aqueous phase reactions of gases in liquid-water clouds, in: Chemistry of Multiphase Atmospheric Systems, edited by Jaeschke, J., vol. G6 of *NATO ASI Series*, Springer, Berlin, 415–471, 1986. - Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K., Tignor, M., and Miller, H. L., eds.: IPCC, 2007: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 996 pp., 2007. - Tervahattu, H., Hartonen, K., Kerminen, V. M., Kupiainen, K., Aarnio, P., Koskentalo, T., Tuck, A. F., and Vaida, V.: New evidence of an organic layer on marine aerosols, J. Geophys. Res., 107, 4053, doi:10.1029/2000JD000282, 2002. - Thornton, J. A., Braban, C. F., and Abbatt, J. P. D.: N₂O₅ hydrolysis on sub-micron organic aerosols: the effect of relative humidity, particle phase, and particle size, Phys. Chem. Chem. Phys., 5, 4593–4603, 2003. - Tie, X., Brasseur, G., and Emmons, L.: Effects of aerosols on tropospheric oxidants: A global model study, J. Geophys. Res., 106, 22931–22964, 2001. - Tie, X., Emmons, L., Horowitz, L., Brasseur, G., Ridley, B., Atlas, E., Stround, C., Hess, P., Klonecki, A., Madronich, S., Talbot, R., and Dibb, J.: Effect of sulfate aerosol on tropospheric NO_x and ozone budgets: Model simulations and TOPSE evidence, J. Geophys. Res., 108, 8364, doi:10.1029/2001JD001508, 2003. - Vaden, T. D., Song, C., Zaveri, R. A., Imre, D., and Zelenyuk, A.: Morphology of mixed primary and secondary organic particles and the adsorption of spectator organic gases during aerosol formation, P. Natl. Acad. Sci., 107, 6658–6663, 2010. - Van Doren, J. M., Watson, L. R., Davidovits, P., Worsnop, D. R., Zahniser, M. S., and Kolb, C. E.: Uptake of N₂O₅ and HNO₃ by Aqueous Sulfuric Acid Droplets, J. Phys. Chem., 95, 1684–1689, 1991. - Wild, O., Zhu, X., and Prather, M. J.: Fast-J: Accurate Simulations of In- and Below-Cloud Photolysis in Tropospheric Chemistry Models, J. Atmos. Chem., 37, 245–282, 2000. - Zhang, Q., Jimenez, J. L., Canagaratna, M. R., Allan, J. D., Coe, H., Ulbrich, I., Alfarra, M. R., Takami, A., Middlebrook, A. M., Sun, Y. L., Dzepina, K., Dunlea, E., Docherty, K., De-Carlo, P. F., Salcedo, D., Onasch, T., Jayne, J. T., Miyoshi, T., Shimono, A., Hatakeyama, S., Takegawa, N., Kondo, Y., Schneider, J., Drewnick, F., Borrmann, S., Weimer, S., Demerjian, K., Williams, P., Bower, K., Bahreini, R., Cottrell, L., Griffin, R. J., Rautiainen, J., Sun, J. Y. Zhang, Y. M., and Worsnop, D. R.: Ubiquity and dominance of oxygenated species in organic aerosols in anthropogenically-influenced Northern Hemisphere midlatitudes, Geophys. Res. Lett., 134, L13801, doi:10.1029/2007GL029979, 2007. - Zhang, L., Jacob, D. J., Boersma, K. F., Jaffe, D. A., Olson, J. R., Bowman, K. W., Worden, J. R., Thompson, A. M., Avery, M. A., Cohen, R. C., Dibb, J. E., Flock, F. M., Fuelberg, H. E., Huey, L. G., McMillan, W. W., Singh, H. B., and Weinheimer, A. J.: Transpacific transport of ozone pollution and the effect of recent Asian emission increases on air quality in North America: an integrated analysis using satellite, aircraft, ozonesonde, and surface observations, Atmos. Chem. Phys., 8, 6117–6136, doi:10.5194/acp-8-6117-2008, 2008.