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Abstract. Secondary organic aerosol (SOA) formation in
the atmosphere is currently often modeled using a multiple
lumped “two-product” (N · 2p) approach. TheN · 2p ap-
proach neglects: 1) variation of activity coefficient (ζi) val-
ues and mean molecular weightMW in the particulate mat-
ter (PM) phase; 2) water uptake into the PM; and 3) the
possibility of phase separation in the PM. This study con-
siders these effects by adopting an (N ·2p)ζpMW,θ approach
(θ is a phase index). Specific chemical structures are as-
signed to 25 lumped SOA compounds and to 15 represen-
tative primary organic aerosol (POA) compounds to allow
calculation ofζi and MW values. The SOA structure as-
signments are based on chamber-derived 2p gas/particle par-
tition coefficient values coupled with known effects of struc-
ture on vapor pressurepo

L,i (atm). To facilitate adoption

of the (N · 2p)ζpMW,θ approach in large-scale models, this
study also develops CP-Wilson.1 (Chang-Pankow-Wilson.1),
a group-contributionζi-prediction method that is more com-
putationally economical than the UNIFAC model of Fre-
denslund et al. (1975). Group parameter values required
by CP-Wilson.1 are obtained by fittingζi values to predic-
tions from UNIFAC. The (N · 2p)ζpMW,θ approach is ap-
plied (using CP-Wilson.1) to several realα-pinene/O3 cham-
ber cases for high reacted hydrocarbon levels (1HC≈400
to 1000 µg m−3) when relative humidity (RH)≈50%. Good
agreement between the chamber and predicted results is ob-
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tained using both the (N ·2p)ζpMW,θ andN ·2p approaches,
indicating relatively small water effects under these con-
ditions. However, for a hypotheticalα-pinene/O3 case at
1HC=30 µg m−3 and RH=50%, the (N ·2p)ζpMW,θ approach
predicts that water uptake will lead to an organic PM level
that is more double that predicted by theN · 2p approach.
Adoption of the (N · 2p)ζpMW,θ approach using reasonable
lumped structures for SOA and POA compounds is recom-
mended for ambient PM modeling.

1 Introduction

A significant fraction of the fine particulate matter (PM) in
the atmosphere can be organic in nature, and so that frac-
tion is of interest for visibility, health effect, and climate
effect reasons (Mazurek et al., 1997; Pope, 2000; Bates et
al., 2006). Organic PM (OPM) is always a complex mix-
ture, and usually contains compounds loosely categorized as
primary organic aerosol (POA) compounds and secondary
organic aerosol (SOA) compounds. OPM can also contain
compounds that have been formed by a variety of accre-
tion reactions in which reactive SOA and POA compounds
combine to yield products of appreciable molecular weight
and low vapor pressure (Kalberer et al., 2004; Barsanti and
Pankow, 2004, 2005, 2006).

Absorptive gas/particle (G/P) partitioning may be param-
eterized according to the model of Pankow (1994a). In the
case of one absorbing phase within the PM, for compoundi
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the equilibrium partitioning constantKp,i (m3 µg−1) is given
by

Kp,i =
cp,i

cg,i

=
RT f

106MWζi po
L,i

(1)

where: cp,i (ng µg−1) = P-phase concentration; cg,i

(ng m−3) = G-phase concentration;R is the gas con-
stant (=8.2×10−5 m3 atm mol−1 K−1); T (K) = temperature;
f is the weight fraction of the PM that is the absorbing
phase (often taken to be unity for OPM calculations);
MW(g mol−1) = mean molecular weight of the absorbing
phase; po

L,i (atm) = vapor pressure ofi; and ζi = mole-
fraction-based activity coefficient ofi. Kp,i values generally
depend strongly onT becausepo

L,i is usually a strong
function ofT . Significant temporal and spatial variations in
Kp,i values can also be caused by variations inζi andMW
due to changes in the types and levels of the compounds
(including water) in the P-phase mixture.

Many of the applications of the Pankow (1994a, b) model
for predicting secondary OPM formation in the atmosphere
have been based on the “two-product” simplification of
Odum et al. (1996). This implementation acknowledges that
a parent hydrocarbon (HC, e.g. toluene,α-pinene, etc.) will
be oxidized to a range of secondary products, but assumes
that the mix of products can be represented using up to two
hypothetical “lumped” surrogate compounds. For each par-
ent HC, yield and compound characteristics for two lumped
compounds are obtained by fitting chamber yield data to
four-parameters: two stoichiometric formationαi factors and
two Kp,i values. (With one lumped product, oneαi and
one Kp,i value are invoked.) With1HC (µg m−3) giving
the amount of reacted HC, for each of the lumped products,
the total (G+P) amount formed is assumed to be given by
Ti = αi1HC (µg m−3).

Many two-product parameters obtained have been ac-
quired in a chamber at a single temperature and under “dry”
conditions (i.e., very low relative humidity (RH)). Extrap-
olations of Kp,i values for a given OPM composition to
another temperature under dry conditions have proceeded
using the Clausius-Clapeyron equation with an estimate of
the enthalpy of vaporization (1Hvap,i) for each hypotheti-
cal lumped product (Sheehan and Bowman, 2001). Utilizing
chamber data in a theoretical consideration of the effects of
RH is more difficult, and is a topic of this work.

In a chamber study of the oxidation of a mix of parent
HCs, Odum et al. (1997) sought to predict the amount of
OPM formed by using the collection of two-productαi and
Kp,i values measured for oxidation of the individual parent
HCs. This approach implicitly assumes similarity in both
the MW and the polarity characteristics of all the various
two-product compounds so that in the OPM formed from
all mixes of parent HCs,MW remains approximately con-
stant and allζi ≈ 1. Pankow and Barsanti (2009) have des-
ignated this the “N · 2p approach”; its range of applicabil-
ity in the atmosphere remains uncertain, but nevertheless the

N ·2p approach has been widely utilized in the prediction of
secondary OPM levels in the ambient atmosphere (e.g., Hoff-
man et al., 1997; Kanakidou et al., 2000; Pun et al., 2001;Tsi-
garidis and Kanakidou, 2003).

The computational advantage of theN ·2p approach in 3-
D air quality models (e.g., as in MADRID 1 as described by
Pun et al., 2001) may be understood as follows. Any multi-
component G/P model requires an iterative solution to deter-
mine the PM composition and level at each point in space and
time. TheN ·2p approach assumes a limited number of sec-
ondary products, and provides a fixedKp,i value for eachi
for each iteration cycle at theT of interest. In contrast, if the
Kp,i values were allowed to vary because of dependence of
theζi andMW on PM composition, then each solution within
the series of solutions performed during each iteration cycle
would require added computation time to estimate theζi and
MW for the PM phase. Bowman and Melton (2004) compare
the computational requirements of a number ofζi prediction
methods, including the UNIFAC method of Fredenslund et
al. (1975); UNIFAC was found to have the highest computa-
tional requirement.

Parent HCs considered in the MADRID 1 model are
known to produce oxidation products with a range of polari-
ties. For example,α-pinene quickly leads to products like hy-
droxyacids and diacids that contain moderate polarity, while
humulene initially leads to products of considerably lower
polarity. The current assumption within MADRID 1 that all
ζi=1 for the OPM from all mixes of parent HCs is thus prob-
lematic. Bowman and Melton (2004) have concluded that
assuming allζi=1 for a diesel soot partitioning system can
result inKp,i values that are 30 times higher than those mea-
sured experimentally. Moreover, the assumption that the or-
ganic portion of the PM formed is essentially free of water
will certainly be in error whenever a significant portion of
the PM is comprised of relatively high polarity compounds,
and the RH is not low. In such circumstances, RH-driven
water uptake into the PM phase can occur, further affecting
ζi values (especially of the lower polarity products), and the
value ofMW. (A consideration of the potential magnitude of
the effects of changing RH on PM levels at high1HC val-
ues (244 to 501 µg m−3) is provided by Seinfeld et al. (2001)
for the ozone oxidation of several different biogenic HCs as
well as cyclohexene.) Also, increasing RH levels will in-
crease the likelihood of phase separation in the PM, espe-
cially whenever the OPM contains significant mass fractions
of both SOA and POA compounds: the generally significant
polarities of the former contrast with the generally low polar-
ities of the latter. When phase separation does occur, a phase
index θ is needed, withθ = α referring to a relatively more
polar, hydrophilic phase (α mnemonically suggesting “aque-
ous”), andθ=β referring to the relatively less polar, less hy-
drophilic phase (Erdakos and Pankow, 2004). When the pos-
sibility of variation in theζi andMW and the possibility of
phase separation are added to theN ·2p approach, the result
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is referred to as the (N ·2p)ζpMW,θ approach or simply the
N ·2p approach (Pankow and Barsanti, 2009).

With a superscript * also (coincidentally) used to denote a
value determined under particular chamber conditions with a
specific parent HC, Bowman and Karamalegos (2002) em-
ploy Eq. (1) to extrapolate aK∗

p,i to different conditions.
In the 2p view, the OPM formed from a given parent HC
could be composed of significant amounts of both lumped
compounds. Thus, given the level of approximation already
allowed in that view, it may be reasonable to assume that
ζ ∗

i ≈ 1 for both products in that OPM. For partitioning to a
significantly different type of OPM, however, it may be that
ζi 6= 1. Thus, withMW andT also subject to variation, aK∗

p,i

value may be extrapolated using the ratios: a)ζ ∗

i /ζi ≈ 1/ζi ;

b) MW
∗
/MW; c) T /T ∗; and d)po

L,i(T
∗)/po

L,i(T ). Assuming
that1Hvap,i is constant over the temperature interval of in-
terest (i.e., fromT ∗ to T ), correction for the effect ofT on
po

L,i occurs according to the integrated Clausius-Clapeyron
equation which givespo

L,i(T
∗)/po

L,i(T )=exp[1Hvap,i(1/T −

1/T ∗)]. Assuming thatf =1, the overall result is (Bowman
and Karamalegos, 2002)

Kp,i(T ,xi,x2,x3, ...xn)

= K∗

p,i

(
MW

∗

MW

)(
1

ζi

)(
T

T ∗

)
exp

[
1Hvap,i

R

(
1

T
−

1

T ∗

)]
(2)

where Kp,i(T ,xi,x2,x3, ...xn) here denotes thatKp,i de-
pends onT and on the PM composition, the latter being char-
acterized by the set of mole fraction valuesxj . Equation (2)
has been applied in global modeling of SOA in the tropo-
sphere by Tsigaridis and Kanakidou (2003), with the needed
ζi values estimated using the Wilson (1964) equation. How-
ever, while Tsigaridis and Kanakidou (2003) demonstrate the
computational practicality of using Eq. (2) in a large-scale
3-D model with the Wilson equation used for theζi correc-
tions, the Wilson equation parameters were assigned without
regard to probable compound structure and functionality.

This work has four goals: 1) assign reasonable, specific
surrogate structures to 25 lumped secondary compounds per-
taining to a range of parent HCs of interest, and to 15 sur-
rogate primary OPM compounds; 2) develop and imple-
ment a Wilson-equation-based group contribution method
for prediction of ζi values for use with the 40 surrogate
compounds that is computationally more economical than
UNIFAC; 3) relax four key assumptions of theN · 2p ap-
proach (allζi=1; no RH effects;MW=constant; and a sin-
gle OPM phase) thereby permitting use of the (N ·2p)ζpMW,θ

approach; then 4) use the (N ·2p)ζpMW,θ approach to calcu-
late OPM formation in selected cases using: a) experimen-
tally determined or estimated values of theK∗

p,i ; b) Eq. (2);
c) the assigned chemical structures; and d) theζi prediction
method developed here. For comparison, calculations were
also made using theN ·2p approach.

2 Methods

2.1 Partitioning SOA compounds

A total of 25 lumped secondary products were considered to
arise from a total of 14 HC oxidation processes. Based on
Odum et al. (1996), Griffin et al. (1999), Pun et al. (2003),
Henze et al. (2006), and R. J. Griffin (personal communi-
cation, 2007), 11 of the processes assume two lumped prod-
ucts, and three of the processes (β-pinene reacting with NO3
radical, humulene reacting with OH radical, and ann-alkane
(C16) reacting with OH radical) assume one lumped product
each. Reaction (13) (a 2-ring polycyclic aromatic hydrocar-
bon (PAH) with OH) and Reaction (14) (C16 n-alkane with
OH) were included as representative secondary reactions in-
volving intermediate volatility parent HC compounds. Ta-
ble 1 summarizes the information on the final set of the
40 surrogate compounds considered (25 lumped secondary
products and 15 primary compounds).

As noted above, ifζi values are to be estimated in a mix-
ture of interest, specific structural information is required
for the compounds in the mixture. R. J. Griffin (personal
communication, 2007) and this study considered known gas
phase reaction mechanisms and kinetics (Griffin et al., 1999,
2002a, b, 2003; Surratt et al., 2006) to obtain the assign-
ments for each lumped secondary product used in Table 1
for: 1) number of carbon atomsνC,i ; 2) whether cyclic or
acyclic; 3) whether aromatic; and 4) retention (or not) of
a double bond found in the parent HC. As summarized in
Eq. (5) below, a corresponding initial estimate of MWi was
then assigned herein for each lumped product compound.
Then, as summarized in Eq. (6) below, an initial estimate
of MW

∗
was computed as the mean of the MWi estimates

for the lumped products (two or one) from a given HC oxi-
dation reaction (for two lumped products, this is equivalent
to assuming that the OPM can be approximated as a 1:1
molar mixture of the two products). An initial estimate of
each log10p

o
L,i(T

∗)chamberwas then obtained as summarized
in Eq. (7) below, i.e., as based on Eq. (1) andK∗

p,i(T
∗) at

T ∗ using theMW
∗

estimate and assumingζ ∗

i ≈ 1 for each
lumped product (see discussion preceding Eq. 2).

With the task denoted in Eq. (7) below completed, an ap-
proximation of the specific functionality was needed for each
of the 25 surrogate secondary compounds (ultimately, for use
as input to theζi prediction method). The approach taken
was to utilize known relationships betweenpo

L,i values and
structure. For organic compounds,po

L,i values decrease as
νC,i increases, and as compound polarity increases. In SIM-
POL.1, which is a simple group-contribution model for pre-
diction ofpo

L,i (atm) values, Pankow and Asher (2008) write

log10p
o
L,i(T ) =

∑
k
νk,ibk(T ) k = 0,1,2,3, etc. (3)

where:νk,i is the number of groups of typek in compoundi;
bk(T ) is theT -dependent contribution to log10p

o
L,i(T ) from
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Table 1. Assumed properties of 25 SOA and 15 POA surrogate compounds, and water.

SOA compounds chamber-derived parameters other parameters
compound reaction parent HC oxidantT ∗ K∗

p,i
(T ∗) αi ref. MW

∗ a
MWb

i
CP-Wilson.1 1Hvap (303)e po

L(T ∗)e

(K) (g mol−1) (g mol−1) parameterCd
i

(kJ mol−1) (atm)

S1
1 α-pinene OH 310

0.171 0.038
A

189 188 70.90 99.1 7.38 E−10
S2 0.004 0.326 189 190 59.07 85.7 3.82 E−08
S3

2 α-pinene O3 310
0.088 0.125

A
194 214 41.76 74.3 1.34 E−09

S4 0.0788 0.102 194 174 69.75 89.7 1.52 E−09
S5

3 β-pinene OH 310
0.044 0.13

A
179 186 56.44 100.6 3.63 E−09

S6 0.0049 0.041 179 172 52.63 78.6 2.75 E−08
S7

4 β-pinene O3 310
0.195 0.026

A
188 202 56.92 103.9 7.32 E−10

S8 0.003 0.485 188 174 64.41 77.1 4.18 E−08
S9 5 β-pinene NO3 310 0.0163 1.000 A 245 245 69.29 80.3 7.61 E−09
S10

6 isoprene OH 295
0.0086 0.232

B
177 136 52.68 90.3 1.36 E−08

S11 1.62 0.029 177 218 76.27 87.5 8.68 E−11
S12

7 limonene OH 310
0.055 0.239

A
195 188 51.90 79.8 2.33 E−09

S13 0.0053 0.363 195 202 43.32 90.0 2.57 E−08
S14

8 ocimene OH 310
0.174 0.045

A
152 146 32.46 105.5 1.06 E−09

S15 0.0041 0.149 152 158 37.15 90.2 3.36 E−08
S16

9 terpinene OH 310
0.081 0.091

A
174 202 62.45 111.3 1.46 E−09

S17 0.0046 0.367 174 146 24.88 79.7 3.52 E−08
S18

10 toluene OH 310
0.053 0.071

C,D
173 148 38.63 95.6 2.54 E−09

S19 0.0019 0.138 173 197 48.12 81.4 8.21 E−08
S20

11 xylene OH 310
0.042 0.038

C,D
187 176 31.03 87.5 2.64 E−09

S21 0.0014 0.167 187 197 48.12 81.4 8.21 E−08
S22 12 humulene OH 310 0.0501 1.000 A 270 270 72.94 73.9 1.80 E−09
S23

13 2-ring PAH OH 298
0.015 1.000

E
175 186 68.19 94.5 8.14 E−09

S24 0.002 1.000 175 164 47.75 81.5 7.05 E−08
S25 14 C16 n-alkane OH 298 0.0229 1.000 E 301 301 94.58 100.9 3.28 E−09

POA compounds

Compound K∗
p,i

(293)c MWi CP-Wilson.1 1Hvap (303)e po
L(293)e

(g mol−1) parameterCi
d (kJ mol−1) (atm)

P1 2,6-naphthalene diacid 101.7 216 69.62 118.9 1.09 E−12
P2 benzo[ghi]perylene 43.83 276 119.40 112.7 1.99 E−12
P3 butanedioic acid 0.0025 118 26.59 84.0 8.31 E−08
P4 17(α)H-21(β)H-hopane 72.83 412 172.24 123.1 8.01 E−13
P5 n-nonacosane 33.62 409 166.96 149.2 1.75 E−12
P6 octadecanoic 1.142 284 107.03 123.4 7.41 E−11
P7 phthalic acid 0.4801 166 47.60 101.4 3.01 E−10
P8 UCM2 (unresolved complex mixture 2) 10.45 390 162.46 132.4 5.90 E−12
P9 monoglyceride 434.0 330 123.00 138.8 1.68 E−13
P10 triglyceride 1.72 E+17 860 299.04 280.0 1.63 E−28
P11 levoglucosan 0.1670 162 57.14 94.4 8.88 E−10
P12 UCM1 (unresolved complex mixture 1)f 1.42 E−05 210 87.12 79.2 8.07 E−06
P13 UCM3 (unresolved complex mixture 3) 1.64 E+05 487 202.35 158.2 3.01 E−15
P14 hexadecanoic acid 0.1427 256 95.49 114.3 6.58 E−10
P15 glycerol 0.0005 92 39.10 78.0 5.02 E−07

Water H2O 18 7.15 g g

Footnotes:a Calculated as the mean of the inferred MWi values;b Inferred based on chamber data using iterative process outlined in Eqs. (5–
10). c Although theseKp,i values were not determined in chamber experiments, the asterisk is maintained for clarity regarding usage in

Eq. (2). dCalculated based on Eq. (13).e Calculated based on parameters given in Pankow and Asher (2007).f Included for the sake of
completeness, even though itsK∗

p,i
(293) value is so low that it will not contribute significantly to OPM levels.g Not required since all water

calculations were made based on specified RH values.
References: A. Griffin et al. (1999); B. Henze and Seinfeld (2006); C. Odum et al. (1997); D. Pun et al. (2003); E. Estimated by CACM and
MPMPO (Griffin. 2007).
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one group of typek. Equation (3) provides a means to as-
semble the aggregate effects of structure onpo

L,i(T ). SIM-
POL.1 utilizes a zeroeth group (k=0), withν0,i=1 for all i and
b0(293.15)=1.99. Thek=1 group pertains to molecular car-
bon; e.g., for hexane,ν1,i ≡ νC,i=6. Becauseb1(293.15) ≡

bC(293.15) = −0.47, within any given compound class,po
L,i

values decrease by∼ 1/2 order of magnitude for every unit in-
crease in carbon number. And,po

L,i can also be decreased for
a given carbon skeleton by adding polar functional groups.
Equation (3) may thus be re-written as

log10p
o
L,i(T ) = ν0,ib0(T )+νc,ibc(T )+ωi(T ) (4)

wherein all the structural aspects beyond carbon number are
placed in the termωi(T ). With ν0,i=1 and using the as-
sumed value ofνC,i , thenpo

L,i(T
∗)chamberallows an estimate

of ωi(T
∗)chamber (see also Eq. 8 below). Four groups are

of special interest: hydroxyl (b7(293.15) ≡ bOH(293.15)=-
2.29); aldehyde (b8(293.15) ≡ bCHO(293.15)=−1.06); ke-
tone (b9(293.15) ≡ bCO(293.15)=-0.99); and carboxylic acid
(b10(293.15) ≡ bCOOH(293.15) = −3.59). Thus, for exam-
ple, the conversion of cyclohexene to adipic acid is ac-
companied by about a seven order of magnitude drop in
log10p

o
L,i(293.15).

Compound-to-compound differences in polarity are the
primary drivers of differences among theζi values in a mix-
ture. Considering the groups that contribute significantly to
ωi(T ) by adding polarity to a molecule (e.g., the four groups
noted above, nitrate (ONO2), nitrite (NO2)), as well as other
structural groups assumed to be retained from the parent HC
(e.g., rings), the goal was to manually vary theνk,i to obtain
an estimate ofωi(T

∗)fitted that would matchωi(T
∗)chamber

(see Eq. 9). The goal was to thereby derive a reasonable ap-
proximation of the overall polarity for each surrogate lumped
secondary product for subsequent use inζi prediction . Each
resulting newνk,i set (includingνC,i) implied a new MWi

for the lumped product. When executed in concert with the
other lumped product (if it exists) from each particular par-
ent HC, as summarized in Eq. (10) below the process led to
updated estimates of the MWi andMW

∗
. Consequently, the

approach used led naturally to an iterative process producing
a possible best-fitνk,i set for each lumped product.

The overall scheme by which the values of eachνk,i set
were assigned is summarized below. (The character “→”
should be read as “gives”.)

νC,i → MWi (5)

MWi → MW
∗

estimated as the simple mean of the MWi

values from Eq. (5) (6)

MW
∗

with K∗

p,i(T
∗) → estimate ofpo

L,i(T
∗)chamber

by Eq. (1), with ζ ∗

i = 1 (7)

po
L,i(T

∗)chamberwith ν0,i and νC,i → ωi(T
∗)chamber

by Eq. (4) (8)

ωi(T
∗)chamber

→ fittedνk,i set → ωi(T
∗)fitted

by inverse application of Eq. (4) (9)

fittedνk,i set (including νC,i ) → MWi (10)

Boxed values represent quantities that were held fixed dur-
ing the iteration. A set of preliminary structures for the
25 SOA surrogate compounds obtained prior to full con-
vergence of the process is given in the Supplementary
Materials (http://www.atmos-chem-phys.net/10/5475/2010/
acp-10-5475-2010-supplement.zip). At the end of the pro-
cess, for every surrogate SOA product, the iteration yielded
two converged values ofωi(T ), namelyωi(T

∗)chamberand
ωi(T

∗)fitted: the agreement was within a few percent in ev-
ery case. Even though binary mixtures of different com-
pounds will not in general reflect ideality, theN ·2p assump-
tion of ζi=1 was maintained throughout the iteration (see
Eq. 7). However, because aζi prediction method such as CP-
Wilson.1 will not in general yieldζi=1 in any OPM mixture,
after the fitting, results obtained for one parent HC using the
(N ·2p)ζpMW,θ approach will not collapse at RH = 0% to the
corresponding 2p results if that parent HC is considered to
lead to two products.

The final assumed structures for the surrogate SOA prod-
ucts are given in Fig. 1; corresponding inferred molecular
parameters are given in Table 1. While there is some arbi-
trariness in the selection of each finalνk,iset and the corre-
sponding structure(including the insertion of ether linkages
to fine tune theωi(T ) fit), this is not considered problematic
given the considerable approximations that are already built
into the 2p model: simply finding a structure that matches
the value ofωi(T ) derived using Eq.(4) provides meaningful
insight regarding aggregate compound polarity that can be
used to predictζi effects in OPM systems.

2.2 Partitioning POA compounds

15 POA surrogate compounds (P1–P15) were selected to
cover a broad range of source types; all 15 compounds were
considered subject to G/P partitioning (Fig. 1). Structures for
P1–P8 were obtained from Griffin et al. (2003) for mobile
(P1–4, P7), mobile/natural (P5), and general cooking (P6)
sources. P9, P10, and P15 were selected based on Nolte et
al. (1999) as being relevant for meat cooking sources. Lev-
oglucosan (P11) was selected as relevant for biomass burn-
ing (Simoneit et al., 2000; Fraser et al. 2002; Zhao et al.,
2007). P8, P12, and P13 were selected as representatives
of unresolved complex mixture (UCM) materials found in
primary mobile emissions. P8 was considered by Griffin et
al. (2003). P12 and P13 were included here to expand the
volatility range of UCM related materials considered.
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(a) (b)

(c) (d)

Fig. 1. Molecular structures of lumped SOA products and surrogate POA compounds.‡R1=C15 alkyl chain; R2=C17 alkyl chain; R3=C17
alkyl chain with one double bond. For some structures, ether linkages have been included to fine tune the estimated polarity, even when such
linkages may be unlikely consequences of the relevant oxidation reactions.

2.3 Chang-Pankow-Wilson (CP-Wilson) activity coeffi-
cient method

2.3.1 Equations

The approach developed here to calculateζi values is based
on the equation of Wilson (1964), with modifications intro-
duced for use in a group-contribution manner and for con-
sideration ofT effects by application of a 1/T factor as sug-
gested by the Scatchard-Hildebrand equation (Flory, 1953).
For each neutral compoundi in a mixture of other such com-
pounds, each group is therefore assumed here to contribute
additively toζi according to

lnζi =

∑
k (−nk,i ln0k)−Ci

T/300
(11)

where:nk,i is the number of groups of typek in i; 0k is the
activity coefficient of groupk; andCi is a compound specific

constant that functions as a reference-state correction term.
While k is again used as the group index for the summation,
the set of groups used for the CP-Wilson method with coeffi-
cientsnk,i is not synonymous with the set used by Asher and
Pankow (2007) with coefficientsνk,i .

The equation for0k is assumed here to take the same form
as that originally proposed by Wilson (1964) so that

ln0k = −ln(
∑

j
xj3kj )+1−

∑
l

xl3l k∑
j xj3lj

(12)

The summations occur over all groups in the mixture
wherein:j andl providing indexing through the groups;xj is
the group mole fraction; and3kj is the interaction parameter
between groupsk andj . For each compoundi, the constant
Ci is evaluated according to

Ci =

∑
k
nk,i ln0

(i)
k (13)
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where0
(i)
k is the activity coefficient of groupk in purei and

is evaluated using Eq. (12). Equations (11–13) compose the
CP-Wilson method. Values ofCi for the compound struc-
tures considered here are given Table 1.

In its original form, the Wilson equation is less gen-
eral than the CP-Wilson method because it is not a group-
contribution method. Rather, it handles each compound in
the mixture as a full chemical entity, and so its implemen-
tation requires specific chemical property information for
all the compounds in the mixture. This poses an obvious
problem for atmospheric applications: even if the compo-
sition of a given atmospheric OPM sample could be accu-
rately characterized, the property information needed for use
with the Wilson equation would not be available, not even
for some appropriate list of lumped/surrogate compounds.
The group contribution approach utilized in the CP-Wilson
method overcomes this problem: this method only requires
parameter information for the constituent groups, and not
property data for all compounds of interest. In general, the
CP-Wilson method will be significantly faster than UNIFAC
because it requires fewer logarithm and double summation
operations, and because the empirical treatment for theT de-
pendence in Eq. (11) allows theCi to be computed once, and
thereafter acquired from a look-up table.

2.3.2 Parameter fitting for CP-Wilson.1

The parameter values needed for a group contribution
method are generally obtained by a fitting that minimizes
some measure of the difference, for the parameter of in-
terest, between: a) the group-contribution predicted values;
vs. b) corresponding experimental values. The particular
fitting parameters obtained here combined with the govern-
ing equations compose version CP-Wilson.1. Ideally, the
fit carried out here would utilize experimentalζi values ob-
tained for mixtures involving compounds similar to those
of interest. Since such experimental data are not currently
available, UNIFAC-generated values (i.e.,ζU

i values) were
used as the best, readily available substitute. TheζU

i val-
ues were obtained for mixtures involving compounds with
the mix of functionalities and structures of interest, plus wa-
ter. For SOA compounds, the preliminary structures given in
the Supplementary Materials (http://www.atmos-chem-phys.
net/10/5475/2010/acp-10-5475-2010-supplement.zip) were
used; for the POA compounds, the structures in Fig. 1 were
used. While the nitrate (ONO2) group is an SOA functional-
ity of interest here, it is not currently a UNIFAC group, and
needed experimental thermodynamic data do not exist. The
UNIFAC group CHNO2was therefore substituted for nitrate
during the fitting. The predictions based on CP-Wilson.1 are
thus probably least reliable for the lumped SOA compounds
that contain the nitrate group. Overall, fitting toζU

i values
was considered adequate given the high general merits of the
UNIFAC method, and because use of the 2p model and the
assumed structures for the SOA compounds (Fig. 1) already

represents a significant degree of approximation. At some
future point, the CP-Wilson method could be re-fit using the
extensive experimentalζi data set used by Fredenslund et
al. (1975) to fit the UNIFAC method, and using new data
for organic nitrate compounds (see above), the result perhaps
designated as version CP-Wilson.2.

A total of 13 338ζU
i values were generated for various bi-

nary mixtures of the 41 compounds (40 organic compounds
and water) over the mole fraction range 0.2 to 0.8 within
the temperature range−10 to 50◦C. Although some of these
mixtures are not stable (i.e., would exhibit phase separation),
that did not affect the inherent utility of the associatedζU

i

values. Parameter optimization was performed on the to-
tal of 4413kj parameters describing interactions among the
21 constituent groups. The fitting (optimization) occurred
by use of the Levenberg-Marquardt algorithm (Levenberg,

1944) to minimize the functionχ2
=

n∑
1

(
1−ζCPW.1

i /ζU
i

)2
whereinn=13 338.

The optimization was performed in three stages. In the
first stage, a subset containing 4446ζU

i values for mixtures
at 20◦C was extracted from the entire pool to perform a
preliminary optimization. Seven different sets of initial val-
ues for the3k were involved in the fitting: all3kj =250, all
3kj =500; all 3kj =1000; all3kj =3000; all3kj =5000; all
3kj =7000; and all3kj =10 000. During the fitting runs, the
3kj were restricted within 0< 3kj < 10000. (Due to the
presence of the natural logarithm term in Eq. (12), it is re-
quired that each3kj > 0.) The mean and standard deviation
of the sevenχ2 were 228 and 205. The best fit yieldedχ2=24
and 0< 3kj < 6000. The set of3kj yielding χ2=24 was
further refined by performing 10 additional optimizations in
which the initial3kj were varied randomly within±30%,
but still so that 0< 3kj < 6000. The resulting best fit yielded
χ2=22.8. Consideration of other initial3kj sets outside the
±30% range did not improveχ2. In the second fitting stage,
an optimization involving the entire set of 13 338ζU

i values
was performed five times using the best preliminary3kj fit,
but randomly varying the values within±30% (but still so
that 0< 3kj < 6000). The resultingχ2 range was 124 to
127. The3kj set givingχ2=124 was then used as input for
a final optimization during which the step size was reduced
three times. The resulting3kj set gaveχ2 =120; further re-
duction of the step size did not reduceχ2.

2.4 (N ·2p)ζpMW ,θ approach implementation

2.4.1 Phase separation considerations

Some of the surrogate compounds considered possess sub-
stantial polarity (e.g., the SOA products of isoprene with
OH radical), and some are completely non-polar (e.g., the
POA compoundn-nonacosane). A liquid PM mixture con-
taining significant proportions of both types of compounds
will be unstable relative to phase separation (Erdakos and
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Pankow, 2004). At constantP andT in a one-phase liquid
system, phase separation will tend to occur when the liquid
can find a lower Gibbs free energy by separating into two
phases. Similarly, in a gas+liquid system (also at constantP

andT ) that is initially at equilibrium between the gas and a
single-phase liquid, phase separation in the liquid will tend
to occur when the overall system can find a lower Gibbs free
energy by transformation into a three-phase system (a gas
phase and two liquid phases); the transformation is likely to
be accompanied by some net exchange with the gas phase of
the partitioning compounds. All of the surrogate compounds
considered here are hydrocarbons with varying degrees and
types of added oxygen functionality. For systems comprised
of such compounds, the maximum number of liquid phases
is two. Following Erdakos and Pankow (2004), when two
liquid phases exist, thenθ=α andβ (see above).Kθ

p,i val-
ues were calculated by means of Eq. (2) usingK∗

p,i values.
For most of the SOA surrogate compounds, actual chamber-
derivedK∗

p,i andαi values were used. For three SOA sur-
rogate compounds (S23, S24, and S25), because the exper-
imental data were not available, the Caltech Atmospheric
Chemistry Mechanism (Griffin et al., 2002) and the Model to
Predict the Multi-phase Partitioning of Organics (MPMPO)
(Griffin et al., 2003) were used to predict a yield versus or-
ganic PM mass concentration (Mo) curve so thatK∗

p,i andαi

values could be predicted. For the POA surrogate compounds
(P1 – P15), chamber-derivedK∗

p,i do not exist, soK∗

p,i values
were calculated directly by means of Eq. (1) assumingζi=1
andMW=MW i and using the SIMPOL.1 method of Pankow
and Asher (2008) to estimatepo

L,i(T
∗

= 293 K) based on
structure.

2.4.2 PM mass calculations

All 40 lumped surrogate compounds and water were assumed
subject to G/P partitioning.Fi (µg m−3) represents the PM-
associated level ofi. (The related parameterFi (ng m−3) has
been used in prior work from this group.) If two PM phases
are present, then

Fi = F α
i + F

β
i (14)

Ti (=Ai +Fi) is the sum of the G- and total P-phase con-
centrations. At equilibrium the G-phase concentrationAi

(µg m−3) can be calculated based on the value ofKp,i and
Fi . In the case of phase separation,

Ti =
F θ

i

Mθ
TPM Kθ

p,i

+Fi (15)

wherein the first term on the RHS representsAi , as based on
equilibrium with either liquid phase (θ = α or β), whichever
is more convenient.Mθ

TPM (µg m−3) represents the total mass
concentration of theθ phase. In this work, a constant RH
was assumed in each case considered. At equilibrium, the

statement of equality of water activity between the gas and
particle phases is

RH/100=ζ θ
wxθ

w (16)

which is thermodynamically equivalent to Eq. (1). As with
Eq. (15),θ=α or β, and in the absence of phase separation,
theθ is dropped.

Iterational solutions of the overall G/P distribution prob-
lem represented by Eqs. (14–16) were obtained by applying
a liquid-liquid-equilibrium (LLE) flash calculation in each it-
eration as described by Chang and Pankow (2006). Using the
indexθ as needed, relationships used in consideration of the
results are:

Mθ
o =

∑
organici

F θ
i (17)

Mo = Mα
o +Mβ

o (18)

Mw = Mα
w +Mβ

w (19)

MTPM = Mo+Mw = Mα
TPM+M

β
TPM (20)

where:Mθ
o (µg m−3) is total organic mass concentration as-

sociated with phaseθ ; Mo (µg m−3) is the total organic mass
concentration over all PM phases;Mα

w andM
β
w (µg m−3) are

the water mass concentrations associated with theα andβ

phases;Mw (µg m−3) is the total water mass concentration
over all PM phases; andMTPM (µg m−3) is the total PM mass
concentration. As noted in Eq. (20), for the systems consid-
ered here,MTPM (µg m−3) is considered to be comprised of
organic compounds and water (and no salt), and a maximum
of two phases.

2.5 Cases

2.5.1 Computational efficiency (CE) test case (liquid
phase only)

For a given group-contributionζi prediction method, PM
properties that affect the computation time are the num-
ber of constituent groups and the number of compounds.
Thus, a one-phase liquid mixture atT =300 K was in-
voked containing water and 40 organic compounds (the 25
preliminary surrogate SOA compounds in the Supplemen-
tary Materials: http://www.atmos-chem-phys.net/10/5475/
2010/acp-10-5475-2010-supplement.zip) and the 15 surro-
gate POA compounds in Fig. 1), all atxi=1/41. The fact
that such a system would not remain a single phase at equi-
librium at 300 K was not a problem because the only is-
sue was the speed of theζi calculations. The speed of the
calculations was compared for CP-Wilson.1 vs. five exist-
ing ζi estimation methods, namely UNIFAC, NRTL (Renon
and Prausnitz, 1968), TK-Wilson (Tsuboka and Katayama,
1975), UNIQUAC (Abram and Prausnitz, 1975), and the un-
modified Wilson equation. For each method, the CPU time
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Table 2. Results for chamber-based (CB) cases withα-pinene/O3 as measured by Cocker et al. (2001) and as predicted using the approach
and using the approach with the CP-Wilson.1 method for prediction ofζi values.

Measured Predictions Predictions
case T 1HC RH MTPM Mo Mw MTPM errora in Mo Mw MTPM errora in

(K) (µg m−3) (%) (µg m−3) (µg m−3) (µg m−3) (µg m−3) MTPM (µg m−3) (µg m−3) (µg m−3) MTPM

CB.1 301.8 386.3 41.0 86 82 0b 82 −5% 83 6 89 +3%
CB.2 301.8 675.0 57.7 177 148 0b 148 −16% 150 18 168 −5%
CB.3 302.7 986.5 37.3 281 218 0b 218 −22% 219 13 232 −17%

Footnotes:a error based on measured value of Cocker et al. (2001).b by definition

Table 3. Total mass concentrationTi values for the hypothetical
SOA+POA cases.

SOA compounds

Rxn. Parent Oxidant CompoundTi (µg m−3)

1 α-pinene OH
S1 0.104
S2 0.896

2 α-pinene O3
S3 0.551
S4 0.449

3 β-pinene OH
S5 0.380
S6 0.120

4 β-pinene O3
S7 0.025
S8 0.475

5 β-pinene NO3 S9 0.500

6 isoprene OH
S10 0.111
S11 0.014

7 limonene OH
S12 0.397
S13 0.603

8 ocimene OH
S14 0.029
S15 0.096

9 terpinene OH
S16 0.025
S17 0.100

10 toluene OH
S18 0.849
S19 1.650

11 xylene OH
S20 0.324
S21 1.430

12 humulene OH S22 0.125

13 2-ring PAH OH
S23 0.125
S24 0.125

14 C16 n-alkane OH S25 0.500

required to compute theζi values for 41 components in the
mixture was obtained 100 000 different times and then aver-
aged, the large number allowing an averaging of the fluctua-
tions in the CPU operation due to temporal variations in the
system resource availability.

Table 3. Continued.

POA compounds Ti (µg m−3)

2,6-naphthalene diacid P1 0.083
benzo-ghi-perylene P2 0.083
butanedioic acid P3 0.083
17(α)H-21(β)H-hopane P4 0.083
n-nonacosane P5 0.083
octadecanoic acid P6 0.083
phthalic acid P7 0.083
UCM2 P8 3.000
monoglyceride P9 0.083
triglyceride P10 0.083
levoglucosan P11 0.083
UCM1 P12 3.000
UCM3 P13 3.000
hexadecanoic acid P14 0.083
glycerol P15 0.083

2.5.2 Performance evaluation (PE) case forζi

prediction

A performance evaluation (PE) aerosol case atT =298 K for
consideration of CP-Wilson.1 and UNIFAC in PM calcula-
tions with the (N · 2p)ζpMW,θ approach was selected to in-
volve all 40 final surrogate compounds in Table 1 (and Fig. 1)
each atTi=0.3 µg m−3, plus water at RH=50%.

2.5.3 Chamber based (CB) cases with RH=41 to 58%,
1HC=386 to 986 µg m−3

Cases CB.1 to CB.3 involveα-pinene/O3 at RH values in
the range 41 to 58% (Table 2), and were studied experimen-
tally in the chamber study of Cocker et al. (2001). With
α-pinene as the only parent HC, only two surrogate prod-
uct compounds from Table 1 (and Fig. 1) were considered,
namely S3 and S4. The goal here was to allow a comparison
of observed chamber PM levels with predictions based on:
a) the(N ·2p)ζpMW,θ approach using the structures in Fig. 1
with CP-Wilson.1 for theζi calculations; and b) the conven-
tionalN ·2p approach.

www.atmos-chem-phys.net/10/5475/2010/ Atmos. Chem. Phys., 10, 5475–5490, 2010
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Fig. 2. ζi calculated by CP-Wilson.1 vs.ζi calculated by UNIFAC
for 13 338 points used in the fitting of CP-Wilson.1 to UNIFAC.

2.5.4 Hypothetical varying humidity cases

To investigate RH effects at a lower1HC than in the
CB cases, anα-pinene/O3 series was considered assuming
1HC=30 µg m−3 with RH=20 to 80% atT =301 K. Also, a
hypothetical mixed SOA+POA series was developed with
T =301 K and two values of RH (5 and 80%); all compounds
were considered subject to G/P partitioning. The individual
Ti values for the SOA+POA series are given in Table 3 with∑
SOA

Ti=10 µg m−3 and
∑

POA
Ti=10 µg m−3.

3 Results

3.1 Fit quality for CP-Wilson.1 relative to UNIFAC

Table 4 gives the best-fit values for the 4413kj parameters
for CP-Wilson.1. The averaged unsigned percentage error
for ζi relative to UNIFAC was calculated based on the 13 338
pairs of predictedζCPW.1

i andζU
i values according to:

σFIT(%) = 100%×

13 338∑ ∣∣∣∣∣ζCPW.1
i −ζU

i

ζU
i

∣∣∣∣∣/13 338 (21)

The overall fit quality was very good (σFIT=6%). Figure 2
provides a plot of the 13 338 points forζCPW.1

i vs.ζU
i . When

ζU
i < 1000, where>99% of the points are located, the val-

ues are in good agreement. (The good quality of the fit is
masked to a considerable extent by the fact that many of the
13 338 points are near the 1:1 line, and plot essentially on top
of one another.) ForζU

i > 1000, the agreement is still within
a factor of∼2. Moreover, contributions to prediction errors
for the mass totals given by Eqs. (17–20) are not likely to be
caused simply by incorrectly estimating a largeζi value. In-
deed, when there is one liquid phase, such an error can only
be significant if the correspondingxi is also of a significant

Table 5. Comparison of relative computer processing time required
for six ζi prediction methods.

ζi method Method Number of groups Relative computer
type or compounds processing time

CP-Wilson.1 group 21 0.1
Wilson compound 41 0.6

UNIQUAC compound 41 0.6
TK-Wilson compound 41 0.7

NRTL compound 41 0.8
UNIFAC compound 21 1.0

magnitude. However, in that case, largexi with correspond-
ing largeζi would lead to a high Gibbs free energy so that
the phase would very likely be unstable relative to phase sep-
aration, in which case thei-related prediction error for the
mass total would become small because most of thei would
retreat into the new, second phase in whichζi would be rela-
tively close to 1 and thus reliably estimated.

3.2 CP-Wilson.1 vs. other methods for the computa-
tional efficiency (CE) case

Table 5 compares the CPU requirements of CP-Wilson.1
with five otherζi methods for the CE case. CP-Wilson.1 gave
the best result. The economy of this method is achieved by
the combination of its group contribution nature (21 groups
for the CE case instead of 41 compounds), and its relatively
small need for logarithm and double summation operations.
While not implemented here, the computational efficiency of
a CP-Wilson.1 code can be assisted by utilizing a lookup ta-
ble to evaluate the logarithm term in Eq. (12).

3.3 CP-Wilson.1 vs. UNIFAC for performance evalua-
tion (PE) case

When CP-Wilson.1 is used in the(N ·2p)ζpMW,θ approach
to predict ζi in the liquid PM formed in the PE case (all
Ti=0.3 µg m−3 for the organic components, and RH=50%),
two phases are revealed as being present in the PM at equi-
librium; use of UNIFAC leads to the same result. For each
phaseθ , relative to UNIFAC, the unsigned prediction differ-
ence (%) forxθ

i is defined

δθ
x,i =

x
θ,CPW.1
i −x

θ,U
i

x
θ,U
i

×100% (22)

where the superscripts onxi denote the phase andζi method.
For theα phase, a plot ofδα

x,i vs. log10x
α,U
i is given in Fig. 3a

for the 40 compounds and water. A corresponding plot for
theβ phase is given in Fig. 3b. Consistent with the results in
Fig. 2,δα

x,i is small whenxα,U
i > 0.01, and the corresponding

δ
β
x,i are small whenxβ,U

i > 0.01.
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Fig. 3. Unsigned percentage difference between the values ofxθ
i

as predicted using CP-Wilson.1 and UNIFAC plotted vs. logx
θ,U
i

(U=UNIFAC) for θ = α and forθ = β in the performance evaluation (PE) case.

Fig. 4. Unsigned difference between the values ofF θ
i

as predicted using CP-Wilson.1 and UNIFAC expressed as a percentage of (MTPM)U

vs. logx
θ,U
i

(U=UNIFAC) for θ = α and forθ = β in the performance evaluation (PE) case.

Table 6. Comparison of predictions for the performance evaluation
(PE) case by the approach using the CP-Wilson.1 method and the
UNIFAC method (T =298 K, RH=50%).

ζi Method
Result CP-Wilson.1 UNIFAC

Number of PM phases 2 2

Mα
o , M

β
o (µg m−3) 3.63, 1.79 3.62, 1.79

Mo = Mα
o +M

β
o (µg m−3) 5.42 5.41

Mα
w, M

β
w (µg m−3) 0.29, 0.001 0.29, 0.0005

Mw = Mα
w +M

β
w (µg m−3) 0.29 0.29

Mα
TPM (µg m−3) 3.92 3.92

M
β
TPM (µg m−3) 1.79 1.79

MTPM (µg m−3) 5.71 5.71

Table 6 provides observed and predicted results forMo,
Mw, andMTPM for the PE case. While UNIFAC does not
provide perfect estimates ofζi , the similarity of the predicted

results as obtained using CP-Wilson.1 vs. UNIFAC supports
the view discussed above that errors associated with large
ζ θ
i are not likely to have significant effects on the quality of

predictions for gross parameters such asMo, Mw, andMTPM
(=Mo+Mw).

The extent to which an error in a givenxθ
i value translates

into an error inMTPM depends on the magnitude ofxθ
i and

on the size of theθ phase. For UNIFAC-based predictions,
the fraction (%) of the total PM phase identified withi in the
θ-phase equalsF θ,U

i ×100%/MU
TPM. While UNIFAC is cer-

tainly also subject to increasing prediction error as any given
ζi increases, it is again perhaps the best available benchmark
for evaluating the results obtained using CP-Wilson.1. Thus,
as an means to evaluate the implications of incorrectly pre-
dictingF θ

i we define

εθ
i = |(F

θ,CPW.1
i −F

θ,U
i )/(MTPM)U

|×100% (23)

If εθ
i is small, eitherF θ,CPW.1

i ≈ F
θ,U
i , or both are small

relative to MTPM. Figure 4a and b provides plots ofεθ
i

vs. log10x
θ,U
i for the PE case. For bothθ = α, andθ = β,

Atmos. Chem. Phys., 10, 5475–5490, 2010 www.atmos-chem-phys.net/10/5475/2010/
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Table 7. Results for the hypothetical SOA+POA cases at 300 K as predicted using theN ·2p approach and using the (N ·2p)ζMW,θ approach
with the CP-Wilson.1 method for prediction ofζi values (see Table 3 for allTi values).

N ·2p prediction (N ·2p)ζMW,θ prediction

RH Mo Mw MTPM PM phases Mo Mw MTPM PM phases phase mass distribution

(%) (µg m−3) (µg m−3) (µg m−3) (µg m−3) (µg m−3) (µg m−3) Mα
TPM/M

β
TPM

5 9.23 0a 9.23 1a 6.48 0.001 6.48 2 0.19/6.29
80 9.23 0a 9.23 1a 10.00 1.28 11.28 2 5.02/6.26

a by definition

εθ
i becomes small as log10x

θ,U
i increases. This is a conse-

quence of the fact that when phase separation occurs, ifζα
i is

large (and thus subject to some error regardless of the predic-
tion method used), thenζ β

i is relatively close to 1 (and vice
versa), the overall result being a thermodynamically driven
minimization of the mass amount ofi in the less-hospitable
phase whereζi is more difficult to predict (see discussion
above). This type of hyperbolic behavior in log10ζ

α
i vs.

log10ζ
β
i is clearly evident in Fig. 5. For compounds that fall

in the middle of the hydrophobicity↔hydrophilicity scale,
both ζα

i andζ
β
i are neither near 1 nor very large. E.g., for

P6, bothζα
i andζ

β
i are of order 10 because P6 is not partic-

ularly “comfortable” in either phase.

3.4 Predictions for chamber based (CB) and hypotheti-
cal cases

3.4.1 CB cases forα-Pinene/O3 with RH=41 to 58%

Table 2 providesMTPM values measured by Cocker et
al. (2001) along with the predicted values ofMo, Mw, and
MTPM using the(N ·2p)ζpMW,θ approach with CP-Wilson.1
and the assumed structures for products S3 and S4. For all
three CB cases, use of CP-Wilson.1 indicates a single PM
phase. (In this and all other respects for these cases, UNI-
FAC gives similar results.) At these moderate RH values,
water uptake is low andζS3 and ζS4 values are∼1.3, i.e.,
relatively close to unity. The prediction errors forMTPM as
compared to the chamber experiments ranged from−17 to
3% for the three cases. Table 2 also providesMo as pre-
dicted using then ·2p approach for which, as has been noted,
all ζi ≡ 1, Mo ≡ MTPM, andMW ≡constant. The prediction
errors for theN ·2p approach ranged from−22 to−5%. The
two approaches give nearly the same results because the as-
sumed structures for S3 and S4 have similar polarities and
MWi values, and the water uptake is relatively low. Also,
the good agreement under these conditions between the ex-
perimental results of Cocker et al. (2001) and the predictions
based on theN ·2p approach indicate good consistency be-
tween the Cocker et al. (2001) yield results and theKp,i and
αi values given in Table 1 forα-pinene/O3.

Fig. 5. Hyperbolic relationship between log10ζ
α
i

vs. log10ζ
β
i

as cal-
culated in the performance evaluation (PE) case by the CP-Wilson.1
method.

3.4.2 Hypotheticalα-pinene/O3 series

Results based on theN ·2p and (N ·2p)ζpMW,θ approaches for
theα-pinene/O3 series are given in Fig. 6. As with the CB
cases, use of CP-Wilson.1 in the(N · 2p)ζpMW,θ approach
indicates a single PM phase for the entire RH range (20 to
80%). However, the difference in theMo predictions ob-
tained using theN ·2p approach with no water uptake and
(N ·2p)ζpMW,θ with water uptake is much greater in the Fig. 6
series than in the CB cases:Mo by the (N ·2p)ζpMW,θ ap-
proach in Fig. 6 increases by more than 3× as RH increases
from 20 to 80%. The increase inMo by the(N ·2p)ζpMW,θ

approach is driven mostly by the decreasingMW brought
about by water absorption (MW=151 g mol−1 at RH=20%,
and 64 g mol−1 at RH=80%), but is also compounded some-
what by the behavior ofζS3, which changes from 1.6 at
RH=20%, to 1.1 at RH=80% (ζS4 remains essentially un-
changed at 1.3).

For mono-phasic PM, based on Liang and Pankow (1996),
the fraction ofi in the particle phase is given by

fp,i =
Kp,iMTPM

1+Kp,iMTPM
(24)

www.atmos-chem-phys.net/10/5475/2010/ Atmos. Chem. Phys., 10, 5475–5490, 2010
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Fig. 6. Mo , Mw , and MTPM by the (N.2p)ζ, MW,θ approach
using the CP-Wilson.1 method for the activity coefficients for
theα-pinene/O3 products, with1HC=30 µg m−3; for comparison,
Mo=MTPM by theN ·2p approach is also given.

(Donahue et al. (2006) denotefp,i asξi .) WhenKp,iMTPM
is large relative to 1,fp,i ≈ 1, and the contribution thati
makes toMTPM is relatively insensitive to changes inKp,i

that may be caused by changes in RH,T , and other fac-
tors. However, asfp,i decreases away from 1, that sensi-
tivity increases. Thus, as compared to the CB cases and as
compared to the monoterpene cases considered by Seinfeld
et al. (2001),MTPM in the series in Fig. 6 is much lower, and
Mo is thus much more sensitive to RH. Pankow and Chang
(2008) provide additional perspective on why the sensitivity
of Mo andMTPM predictions will tend to increase as the lev-
els of condensable compounds decrease.

3.4.3 SOA+POA system

Table 7 provides predicted results assuming the Table 3 levels
of SOA+POA compounds atT =301 K for RH=5% and 80%.
In each of these two cases, the(N ·2p)ζpMW,θ approach us-
ing CP-Wilson.1 predicts two liquid phases in the PM, with
the α phase containing mostly SOA compounds and water,
and theβ phase containing mostly POA compounds and lit-
tle water. At RH=5%, for the major components in each PM
phase,ζ θ

i ≈ 1. Because of the considerable mutual exclu-
sion of the SOA and POA compounds, the effective size of
the PM compartment at RH=5% is significantly lower than
is predicted using theN · 2p approach:Mw andMo based
on the(N · 2p)ζpMW,θ approach are 0.001 and 6.5 µg m−3.
By theN ·2p approach, the corresponding values are 0 and
9.2 µg m−3. For the RH=80% case, significant mutual exclu-
sion of the SOA and POA compounds still operates. How-
ever, significant water uptake into theα phase is now pre-
dicted. This tends to increase thefp,i values of the more po-
lar compounds becauseMα

TPM is relatively larger andMW
α

relatively smaller than at RH=5%. Moreover, because of the
resulting increasedMα

w value, several of the rather polar com-

pounds take on significantly reducedζα
i values (for S8, 10,

12, 14, 20 and P11, the range forζα
i is 0.2 to 0.6). The

overall result is that at RH=80%,Mw andMo based on the
(N ·2p)ζpMW,θ approach are 1.3 and 10.0 µg m−3 vs. 0 and
9.2 µg m−3 by theN ·2p approach.

4 Conclusions

The approximations for the particulate matter (PM) phase
incorporated in the multiple lumped “two-product” (N ·2p)
approach for SOA PM (i.e., allζi=1, MW is constant, and
no water uptake occurs at ambient RH levels) will become
increasingly problematic asMo levels decrease. Also, the
approximation of a single-absorbing phase as utilized in the
N ·2p approach can become invalid when RH levels are high,
and/or when significant levels of both SOA and POA com-
pounds are present. The structures proposed here for parti-
tioning SOA and POA compounds will allow first stage us-
age of the(N · 2p)ζpMW,θ approach for ambient PM mod-
eling; the CP-Wilson.1ζi-prediction method developed here
allows consideration of computationally intensive space-time
domains.
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