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Abstract. As part of the Fire Lab at Missoula Experiments
(FLAME) in 2006–2007, we examined hygroscopic proper-
ties of particles emitted from open combustion of 33 select
biomass fuels. Measurements of humidification growth fac-
tors for subsaturated water relative humidity (RH) conditions
were made with a hygroscopic tandem differential mobil-
ity analyzer (HTDMA) for dry particle sizes of 50, 100 and
250 nm. Results were then fit to a single-parameter model to
obtain the hygroscopicity parameter,κ. Particles in freshly
emitted biomass smoke exhibited a wide range of hygro-
scopicity (individual modes with 0< κ < 1.0), spanning a
range from the hygroscopicity of fresh diesel soot emissions
to that of pure inorganic salts commonly found in the ambient
aerosol. Smoke aerosols dominated by carbonaceous species
typically had a unimodal growth factor with corresponding
meanκ = 0.1 (range of 0< κ < 0.4). Those with a substan-
tial inorganic mass fraction typically separated into less- and
more-hygroscopic modes at high RH, the latter with mean
κ = 0.4 (range of 0.1< κ < 1). The bimodalκ distributions
were indicative of smoke chemical heterogeneity at a sin-
gle particle size, whereas heterogeneity as a function of size
was indicated by typically decreasingκ values with increas-
ing dry particle diameters. Hygroscopicity varied strongly
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with biomass fuel type and, to a lesser extent, with combus-
tion conditions. Among the most hygroscopic smokes were
those from palmetto, rice straw, and sawgrass, while smoke
particles from coniferous species such as spruces, firs, pines,
and duffs were among the least hygroscopic. Overall, hygro-
scopicity decreased with increasing ratios of total carbon to
inorganic ions as measured in PM2.5 filter samples. Despite
aerosol heterogeneity, reconstructions ofκ using PM2.5 bulk
chemical composition data fell along a 1:1 line with mea-
sured ensembleκ values.

1 Introduction

Open biomass burning is a globally- and regionally-
important source of greenhouse gases and atmospheric fine
particulate matter (PM2.5). Deforestation fires, a subset of
all burning emissions, have contributed∼19% of the global
postindustrial CO2 radiative forcing (Bowman et al., 2009).
Although North American biomass burning emissions repre-
sent a relatively small fraction of the global total, it is recog-
nized that they can play a significant role in the degradation
of US urban and regional air quality. For example, Spracklen
et al. (2007) concluded that summer wildfires were the most
important driver of interannual variability in observed total
carbonaceous particulate matter (PM) across the continen-
tal US. The modeling study of Park et al. (2007) attributed
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50% of US annual mean particulate carbon concentrations to
biomass burning. Visibility over large regions can be affected
by such emissions (McMeeking et al., 2006), and biomass
burning PM has been associated with significant impacts on
human health (Naeher et al., 2007) and climate on a range of
spatial and temporal scales (Ramanathan et al., 2001).

The magnitude of visibility and climate effects is linked,
in part, to the hygroscopic properties of the smoke (Kreiden-
weis et al., 2001), which control water uptake by the particles
and depend on the aerosol chemical composition. The mass
fractions of various chemical species in accumulation mode
smoke aerosols (those most important to light extinction and
cloud interactions) are generally apportioned as∼80% or-
ganic carbon,∼12–15% inorganic compounds, and∼5–8%
black carbon (Reid et al., 2005). Single particle electron mi-
croscopy (SEM) shows that these principal components are
unevenly distributed over particle size distributions, with tar
balls, pure organic particles, organic-inorganic mixed par-
ticles, and sooty agglomerates being the principle particle
types (Chakrabarty et al., 2006).

As a consequence of the heterogeneity of smoke emis-
sions, the hygroscopic responses of biomass smoke to chang-
ing environmental relative humidities (RH) are complex. En-
vironmental SEM observations of individual particles on a
filter show that sooty particles do not take up water for
RH<100% while the mixed organic/inorganic particles grow
hygroscopically, primarily dependent on the inorganic con-
tent (Semeniuk et al., 2007). The hygroscopic properties of
tar balls are difficult to categorize. Semeniuk et al. (2007)
reported small morphology changes at RH>60% but other-
wise their data suggested that tar balls from fresh smoke are
hydrophobic. In contrast, Hand et al. (2005) showed irre-
versible dissolution of tar balls at RH>83%. The total hy-
groscopic response of PM generated from fires, as observed
by comparing the humidified and dry scattering efficiencies
of a population of particles, depends on the fuel and its com-
bustion conditions (Day et al., 2006; Hand et al., 2010).

Particle hygroscopicity and the particle size distribution
serve as inputs to models that calculate which particles form
cloud drops and which remain as interstitial aerosol in the
cloud. Formation of pyrocumulus clouds is supported by the
fire-induced convection and simultaneous water vapor emis-
sions from the combustion process. Determining the intersti-
tial fraction of the aerosol is important because those parti-
cles are not readily removed by precipitation processes and
are thus likely to survive to be injected into the upper tropo-
sphere, where they can undergo long-range transport. Reutter
et al. (2009) modeled pyrocumulus cloud formation, assum-
ing constant hygroscopicity over the entire size distribution.
Although this assumption was clearly inconsistent with cur-
rent understanding of smoke composition, the authors had
little choice because particle size-resolved hygroscopicity in-
ventories for open biomass combustion were not yet avail-
able.

In order to address gaps in the current understanding of
biomass burning-derived PM interactions with water vapor,
we have conducted laboratory investigations of the hygro-
scopic properties of fresh smoke from open biomass com-
bustion. We examine the importance of fuel type and PM2.5
chemical composition on hygroscopic properties as a func-
tion of particle size. Smoke properties undoubtedly evolve
after emission as ambient smoke is transported from source
regions, ages and mixes with other aerosol types. Fresh
smoke emissions, however, are important in source regions
and as the starting point for predicting the evolution of smoke
properties.

2 Experimental overview

The Fire Lab at Missoula Experiments (FLAME 1 and 2)
examined the physico-chemical properties of emissions gen-
erated in the open combustion of biomass fuels (McMeek-
ing et al., 2009). The studies were conducted in 2006 and
2007 at the U.S. Department of Agriculture/US Forest Ser-
vice Fire Science Laboratory in Missoula, Montana. We in-
vestigated 33 separate fuels and several fuel combinations,
with a focus on selecting fuels highly relevant to wildland fire
and prescribed burning in the US: montane species (western
US); boreal species (northwestern US and Alaska); range-
land species (western US); chaparral species (western US);
coastal plain species (southeastern US). We also selected sev-
eral additional fuels of tropical origin. The origin of and the
portion of the plant that was burned (e.g., leaves, needles, or
branches) are discussed in more detail in Petters et al. (2009a,
b). If a fuel had not dried sufficiently during shipment to
readily ignite, it was dried under gentle heating (T < 40◦C)
for up to 3 days, but the fuels were otherwise left untreated.
McMeeking et al. (2009) and Sullivan et al. (2008) present
details regarding the classification, moisture content, and C
and N contents of each fuel, as well as a compilation of gas-
and particulate-phase emissions from each burn conducted in
FLAME 1 and 2.

Fuel masses (25 g<mass<2500 g, typically∼200 g) were
arranged on a fuel bed platform located in the combustion
chamber of the laboratory, which measures approximately
12.5 m×12.5 m×22 m high and has a sampling and exhaust
stack exiting through the roof (Christian et al., 2003, 2004).
During FLAME 1 (2006), a propane torch was used to ignite
the fuel bed, whereas in FLAME 2 (2007) a grid of electrical
resistance heaters was placed under the fuel bed which was
coated with approximately 15 g of ethanol and ignited by re-
sistive heating. The ethanol-based ignition method resulted
in greater uniformity of ignition and lack of a defined flame
front moving through the fuel bed. Two types of experiments
were conducted, described as “stack burns” and “chamber
burns”. Stack burns involved positioning the fuel bed under
the stack and actively ventilating emissions with an exhaust
fan. During FLAME 2 emissions were sampled from the top
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of the sampling stack through a 0.025 m OD stainless steel
tube to fill a 200 liter stainless steel drum, from which hygro-
scopicity instruments sampled. During chamber burns (both
FLAME 1 and 2), the fuel bed was positioned away from the
stack inlet, all vents of the chamber were closed and emis-
sions were sampled directly from the chamber over a two to
three hour period (McMeeking et al., 2009).

For most of the burns, the samples were representative of
emissions over the entire burn, from ignition until the fuel
was consumed. For these burns we report fire-integrated
aerosol properties. However, several stack burn experiments
sampled only from either the initial or the final phase of
combustion (flaming or smoldering), as determined visually;
these special conditions are noted when data are presented.
Other variations on the basic experimental design used in a
few selected experiments included varying the mass of fuel
used, combining fuels, and varying the size of fuel elements
such as sticks/branches, as discussed further below.

3 Methods

Measurements of water sub-saturated aerosol hygroscopic
growth were conducted with a hygroscopic tandem differ-
ential mobility analyzer (HTDMA, Fig. 1) (Rader and Mc-
Murry, 1986), with the particular design of the instrument
described in detail in Carrico et al. (2008). The HTDMA
measured particle diameter growth factors (GF) as a func-
tion of subsaturated relative humidity (RH< 95%) (Brech-
tel and Kreidenweis, 2000; Prenni et al., 2003; Carrico et
al., 2005, 2008). The instrument selected a charge neutral-
ized, nearly monodisperse particle population with an elec-
trical mobility classifier; typically, dry diameters of 50, 100
and 250 nm were selected. Subsequently, this subpopulation
was humidity-conditioned before measuring the grown parti-
cle sizes with a second classifier interfaced to a condensation
particle counter. For the stack burn experiments, measure-
ments were conducted at a single RH set point of 90%±2%.
For the longer duration chamber burn experiments, eight RH
set points were selected over the range of 40%<RH<95%. A
sheath to sample flow ratio of 5:1 was used in both classifiers.
The HTDMA system was housed in a temperature-controlled
enclosed chamber maintained at 25±0.5◦C with isothermal
conditions maintained within±0.2◦C in the second clas-
sifier column. Due to laboratory air conditioning limita-
tions during FLAME 1, several experiments were conducted
at slightly warmer conditions (<28◦C), although equivalent
isothermal conditions were maintained through the instru-
ment. All measurements occurred near surface atmospheric
pressure (approximately 885 mbar). RH in the second clas-
sifier column was calculated using dew point temperature
measurements from a hygrometer (±0.2◦C) in combination
with mean dry bulb temperature from two thermistor probes
(±0.2◦C) (Carrico et al., 2008). Additionally, two capaci-
tive sensors measured RH and dry bulb temperature (±2%

at RH=90% and±0.2◦C) upstream of the second classi-
fier. A least squares regression of RH at all set points for
the hygrometer and thermistor combination vs. the capaci-
tive sensor and thermistor combination gives a slope=0.99, a
R2 value>0.99 and an offset of 0.5% in RH units.

Measured hygroscopic growth factors, GF(RH), were
computed as the ratio of the wet diameter (Dp(RH)) to the
dry particle diameterDd using the “TDMAFIT” method
(Stolzenburg and McMurry, 1988; Zhou et al., 2002), with
an estimated uncertainty (one standard deviation) of±0.02
in GF. This uncertainty in sizing includes uncertainty in flow
rates and in classifier voltages. Additional uncertainty is in-
troduced due to particle shape factor since the inversions as-
sume spherical particles; this uncertainty is not included in
our estimates here. All of the reported GF measurements
were taken along the humidification (deliquescence) branch,
that is, the particles were initially dry (RH<15%) when size-
selected in the first classifier, and were then exposed to the set
point humidity for a residence time of approximately 10 sec
before entering the second classifier. In most of the burns,
particles were sampled directly from the chamber without
additional drying or other processing before size selection.
However, the setup for the FLAME 2 stack burns was modi-
fied in an effort to collapse nonspherical structures into more
spherical particles before size-selecting (Lewis et al., 2009).
The polydisperse sample pulled from the stack was first con-
ditioned to high RH (RH>95%), and then the particles were
dried to RH<15% by passing them through a silica gel dif-
fusion drier (Petters et al., 2009b).

An example of raw humidified distributions for two smoke
samples is shown in Fig. 2. The Zhou et al. (2002) TD-
MAFIT algorithm assumes a Gaussian distribution of growth
factors and predicts the humidified size distribution by ac-
counting for the instrument transfer function and charging
probability. In some cases aerosol growth was not charac-
terized by a single, larger humidified mode that could be as-
signed a single GF, but rather the chosen dry diameter yielded
two subpopulations with different mean diameters after ex-
posure to elevated RH, termed ‘more’ and “less” hygroscopic
modes (Swietlicki et al., 2000). If the peaks were large
enough and separated enough, these subpopulations were re-
solved by TDMAFIT. For each growth factor mode, three fit-
ted parameters, the arithmetic mean diameter GF, the diame-
ter growth dispersion factor, and the number fraction, define
the GF probability density function. The growth factor dis-
persion factor gives a measure of particle chemical hetero-
geneity at a given size and it is discussed in relation to cloud
condensation nucleus activation in Petters et al. (2009a). For
burns with multiple modes we also computed the volume-
weighted average of the GF for the two modes, which we
term the ensemble hygroscopic growth factor (Carrico et al.,
2005). The ensemble GF uses the mean GF values from
each mode and converts the number fraction in the select
mode to volume fraction to determine a volume weighted
ensemble growth factor. All GF were also converted to the

www.atmos-chem-phys.net/10/5165/2010/ Atmos. Chem. Phys., 10, 5165–5178, 2010



5168 C. M. Carrico et al.: Water uptake and chemical composition of fresh aerosols

 

Copernicus Publications 
Bahnhofsallee 1e 
37081 Göttingen 
Germany 
 
Martin Rasmussen (Managing Director) 
Nadine Deisel (Head of Production/Promotion) 

Contact 
publications@copernicus.org 
http://publications.copernicus.org 
Phone +49-551-900339-50 
Fax +49-551-900339-70 

Legal Body  
Copernicus Gesellschaft mbH 
Based in Göttingen 
Registered in HRB 131 298 
County Court Göttingen 
Tax Office FA Göttingen 
USt-IdNr. DE216566440 

 

Page 1/1 

 

Fig. 1. Schematic of experimental apparatus for smoke aerosol hygroscopicity measurements.

equivalent hygroscopicity parameter,κ, (Petters and Krei-
denweis, 2007) using:

κ =
(GF3

−1)(1−aw)

aw
. (1)

where aw is computed from RH via:

aw = RH/exp

(
4σwMw

ρwRTDdGF(RH)

)
. (2)

In Eq. (2),σw, Mw andρw are the surface tension, molecu-
lar weight, and density of water, respectively,T is the ab-
solute temperature, andR is the ideal gas constant. The
hygroscopicity parameter was computed at RH=90±2% for
all samples. The HTDMA was calibrated using two dif-
ferent salts. Since potassium and chloride have been ob-
served as important components of biomass smoke (Li et al.,
2003; Chakrabarty et al., 2006), we measured growth factors
of atomized and dried pure potassium chloride aerosol (for
Dd=100 nm) for both the deliquescence (increasing RH) and
efflorescence (decreasing RH) branches. Our data compared
well with calculations that assume spherical dry and wet par-
ticles and that use water activity and density data for KCl
(potassium chloride) solutions from the literature (Fig. 3)
(Tang, 1997). Over the range 0.85< aw < 0.95, measured
hygroscopicity for pure KCl wasκ = 0.99±0.07 (n = 12).
Observed deliquescence and crystallization humidities for
KCl were approximately RH=83% and 52%, respectively,
consistent with 84% and 53% at 25◦C reported previously
(Tang and Munkelwitz, 1993; Tang, 1980). During the
FLAME field studies, frequent HTDMA calibrations were
conducted with atomized and dried pure (NH4)2SO4 (am-
monium sulfate) particles. For 22 measurements performed
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Figure 2. Example size distributions after humidification, for dry Dp = 50 nm.  A unimodal, 3 

relatively low hygroscopicity case (Alaskan duff core) is shown in comparison to a strongly 4 

hygroscopic and bimodal case (sawgrass). Values tabulated inside each distribution are the derived 5 

GF at 90% RH, the associated κ value, and the number fraction of particles assigned to each 6 

hygroscopicity mode. 7 

Fig. 2. Example size distributions after humidification, for
dry Dp=50 nm. A unimodal, relatively low hygroscopicity case
(Alaskan duff core) is shown in comparison to a strongly hygro-
scopic and bimodal case (sawgrass). Values tabulated inside each
distribution are the derived GF at 90% RH, the associatedκ value,
and the number fraction of particles assigned to each hygroscopicity
mode.

throughout the field study,κ = 0.54± 0.06 at RH∼90%,
agreeing with expectedκ=0.55 (Petters and Kreidenweis,
2007).

Smoke particles were collected onto filters by two IM-
PROVE sampling systems with PM2.5 and PM10 inlets
(chamber burns only). IMPROVE filter samples were an-
alyzed for inorganic ions using ion chromatography, for
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Figure 3. Comparison of HTDMA-measured growth curves with theory for pure KCl particles with 3 

Dd = 100 nm.  Both deliquescence and efflorescence branches were measured, as shown by the 4 

heavy black arrows. Estimated uncertainties in the measurements are shown as error bars. Predicted 5 

GF(RH) curves for various assumed values of the hygroscopicity parameter, κ, are also shown. 6 
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Fig. 3. Comparison of HTDMA-measured growth curves with the-
ory for pure KCl particles withDd=100 nm. Both deliquescence
and efflorescence branches were measured, as shown by the heavy
black arrows. Estimated uncertainties in the measurements are
shown as error bars. Predicted GF(RH) curves for various assumed
values of the hygroscopicity parameter,κ, are also shown.

organic and elemental carbon using the Transmission Opti-
cal Reflectance technique (Chow et al., 1993), and for el-
emental composition using x-ray fluorescence (Malm et al.,
2004). Appropriate values ofκ and density (ρ) for individual
chemical components identified by these methods are given
in Table 1, and four categories of compounds are considered
as listed at the end of Table 1. For the purposes of calculating
κ from composition data, inorganic ions are the sum of the
individual salts listed in Table 1. Organic mass is found from
OC multiplied by 1.55 to account for non-carbon constituents
of the organic species (Levin et al., 2010). Dust species are
calculated from the sum of CaO and Al2O3 from calcium
and aluminum determined from x-ray fluorescence obtained
from IMPROVE protocols. A full description of the compsi-
tion measurements, analytical methods, and results is found
in McMeeking et al. (2009) and Sullivan et al. (2008), and
the assumptions used to reconstruct smoke chemical compo-
sition are discussed in Levin et al. (2010).

4 Results

4.1 Hygroscopic diameter growth factors

HTDMA-measured, ensemble-averaged hygroscopic diame-
ter growth factors for 100 nm particles measured in FLAME
1 (n = 16) and FLAME 2 (n = 18) chamber burns are shown
in Fig. 4. We removed the Kelvin effect for all data using
Eq. (2) and present growth factors as a function of aw. Gen-

Table 1. Values of hygroscopic parameterκ and dry bulk densityρ
for compounds relevant to biomass smoke and used to approximate
values for four composition categories listed as the end of Table 1.
Unless noted,κ values are from Petters and Kreidenweis (2007) and
densities from Lide (2005).

Species κ ρ Reference

KCl 0.99 1.99 This work
K2SO4 0.52 2.66 (Kelly and Wexler, 2006)
KNO3 0.93 2.11 (Kelly et al., 2008)
NH4Cl 1.01 1.53
(NH4)2SO4 0.53 1.76
NaCl 1.12 2.16
Na2SO4 0.68 2.68
Al2O3 0 3.97
CaO 0 3.3
EC 0 1.8 (Bond and Bergstrom, 2006)
organic acids 0.2 1.4–1.9
HULIS 0.05 1.5
levoglucosan 0.165 1.64
Composition Category
inorganic salts 1 1.5
organic carbon 0.03 1
dust 0 3
elemental carbon 0 1.8

erally, measurable water uptake (GF>1.02) occurred for wa-
ter activity aw > 0.4. For the RH scans in Fig. 4, ensem-
ble GF measured ataw = 0.9 ranged from 1.04< GF< 1.70,
corresponding to aκ range of 0.02< κ < 0.55. Foraw >

0.7, deliquescence-type behavior occurred for some samples
(e.g., palmetto smoke in both studies), and the highest ob-
served GF curves approached those of pure salts such as
ammonium sulfate often found in atmospheric aerosols (Ta-
ble 1).

The most hygroscopic particles included those emitted
from the combustion of Asian rice straw, palmetto, sugar-
cane, sagebrush, and black needlerush, while the least hy-
groscopic smoke was derived from the combustion of (pow-
dered) lignin, a biopolymer found in many plants. Many
of the particles produced in the combustion of montane and
boreal fuels, including the pines, firs, duffs, and spruces,
demonstrated relatively low hygroscopicity (κ ∼ 0.1). Com-
bustion of these fuels was typically dominated by the smol-
dering phase, producing an aerosol having a large mass frac-
tion of organic carbon (McMeeking et al., 2009). Particles
emitted from combusting Western US rangeland species and
chaparral, with the exception of manzanita, generally had
largerκ values than did those from conifers and duffs. These
burns had a strongly flaming phase, likely supporting the
emission of more inorganic material at the higher tempera-
tures achieved during the combustion. Particles produced in
combustion of the Southeastern US coastal plain and tropical
fuels had the widest variance in ensemble-mean hygroscopic
response, spanning the approximate range of 0.05< κ < 0.6.
However, these groupings of fuels encompassed a broad
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Figure 4. Compilation of chamber burn ensemble GF as a function of aw for Dd = 100 nm particles 3 

during (a) FLAME 1 and (b) FLAME 2.  Error bars indicating the estimated uncertainties of the 4 

measurement are shown in panel (b) for sugarcane. (AK=Alaska, FLA=Florida, MS=Mississippi, 5 

MT=Montana,UT=Utah).6 

Fig. 4. Compilation of chamber burn ensemble GF as a func-
tion of aw for Dd=100 nm particles during(a) FLAME 1 and (b)
FLAME 2. Error bars indicating the estimated uncertainties of the
measurement are shown in panel (b) for sugarcane. (AK=Alaska,
FLA=Florida, MS=Mississippi, MT=Montana,UT=Utah).

range of plant types, including coniferous trees (e.g., long
leaf pine), deciduous trees (e.g., oak and hickory), grasses
(e.g., sawgrass), and agricultural waste (e.g., Asian rice
straw). The connection between fuel type and its combus-
tion conditions, described in detail in Hopkins et al. (2007),
ultimately relates to the hygroscopicity of the smoke which
is explored in more detail below.

4.2 Chemical heterogeneity and smoke hygroscopicity

Many of the smoke samples were externally mixed aerosols,
as apparent from the presence of multiple growth modes.
Figure 5 shows results for a common set of stack burns
from FLAME 2, for three dry diameters,Dd = 50, 100, and
250 nm (Fig. 5a, b, and c, respectively). Theκ represen-
tative of each distinct mode, as determined by TDMAFIT,
is plotted on the x-axis, with the areas of the bubbles pro-
portional to the number fraction in each mode. All of the
burns had some proportion of particles with 0< κ < 0.4, of-
ten the dominant number fraction. Approximately half of the
burns yielded aerosols with bimodal growth distributions for
the selected dry sizes, indicative of chemical heterogeneity
among particles of the selected dry size. For these cases,
a second more hygroscopic mode having 0.1< κ < 1.0 was
observed in addition to the less hygroscopic mode. Com-
parisons ofκ values forDd = 50, 100, and 250 nm particles
show that this chemical heterogeneity was a function of par-
ticle size. Generally, the number fraction of particles in the
more hygroscopic mode increased with decreasing particle
size. For example, 250 nm particles emitted in the Asian
charcoal burns (the uppermost case on all panels) were char-
acterized by a single hygroscopicity 0.1< κ < 0.2. A sec-
ond more hygroscopic mode with 0.6< κ < 0.9 emerged for
100 nm and 50 nm particles, with the 50 nm particle number
concentrations dominated by the more-hygroscopic particles.

4.3 Impacts of combustion conditions and fuels on
hygroscopicity

A summary of the observed hygroscopicities of smoke gen-
erated by the combustion of ponderosa pine for controlled
combustion conditions is shown in Fig. 6a–c. Experiments
included propagation of the flame front uphill (heading fires)
and downhill (backing fires), selecting emissions from only
the flaming or smoldering phases, fuel mass scaling experi-
ments (80 g< initial dry fuel mass< 2500 g), continuously
feeding fuel to the fire, and selectively combusting wood or
needle fuel components. In order to create heading or back-
ing conditions, the fuel bed was angled upward and the fire
started at the bottom or top of the fuel bed, respectively. A
relatively narrow range inκ was observed despite the large
variety of tested conditions. The largest excursions inκ were
related to dry particle size, as smaller particles were gener-
ally more hygroscopic. For all particle sizes and all pon-
derosa pine burns, a less-hygroscopic mode dominated, with
hygroscopicity in the range 0< κ < 0.17. A notable dif-
ference in comparing burns of ponderosa pine was a small
number fraction of hygroscopic particles with 0.4< κ < 0.6
observed in the backing burns forDp = 50 nm particles and
less strongly forDp = 100 nm. The largeκ values indicate
the presence of inorganic compounds. These burns featured
a slower, more continuous flame front propagating downhill,

Atmos. Chem. Phys., 10, 5165–5178, 2010 www.atmos-chem-phys.net/10/5165/2010/
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and these burn conditions may have resulted in less internal
mixing of emitted species.

A comparison among burns with Montana sagebrush is
shown in Fig. 6d–f. Sagebrush experiments included a stan-
dard combustion burn, heading burns with flaming and smol-
dering conditions, and experiments where the fuel was pre-
coated with a solution of (NH4)2SO4 or KCl. Two experi-
ments used sagebrush from a second location near Salt Lake
City, Utah, and it was burned under flaming conditions, with
and without pre-washing the fuel with deionized water. The
pre-washing and pre-coating experiments, and the collection
of the same fuel from two locations, were designed to help
clarify whether inorganic species present in the smoke orig-
inated from pollutant species deposited to the plant surface
before it was collected, or if they were present in the fuel
matrix itself and thus might depend on growing conditions
and location. Despite the wide range of parameters tested in
these sensitivity experiments, similar bimodalκ distributions
were found for all experiments, with less (0.14< κ < 0.39)
and more hygroscopic modes (0.25< κ < 0.72). Kappa for
particles emitted from Utah sagebrush had a dominant, more-
hygroscopic mode withκ = 0.6, compared withκ ∼ 0.2–0.3
for the more-hygroscopic mode of the uncoated Montana
sagebrush. These observations suggest a possible importance
to emitted PM composition based on fuel source location,
which in turn may be related to soil composition (Petters et
al., 2009a).

The results in Fig. 6d–f also suggest that atmospheric de-
position of hygroscopic salts onto the plants is not an im-
portant influence on smoke hygroscopicity. Although we
observe some enhancement in hygroscopicity with coating
the fuels with salt solutions as observed in Fig. 6d–f, we
do not observe a decrease in hygroscopicity with washing
the fuels as would happen with washing away surface de-
posited hygroscopic salts. Similarly, as shown previously in
Fig. 5, the fuel chamise showed little systematic difference
between experiments with washed and salt-coated fuels. The
differences between washed and unwashed fuels’ smoke for
a given size are similar to the experiment to experiment vari-
ability in smoke hygroscopicity with a given fuel as shown
in Figs. 5 and 6. Based on the relatively narrow range of
hygroscopic response with the variation in combustion con-
ditions as seen in Fig. 6 vs. the wide range shown in Fig. 5
as a function of fuel type, our experiments suggest that the
fuel combusted is the more important determinant of smoke
hygroscopic response. Although not shown here, we also
examined the impact of modified combustion efficiency on
hygroscopicity and observed little quantitative relationship
between the two.

4.4 Hygroscopicity of fresh biomass smoke vs. PM2.5
composition

PM2.5 composition measurements for FLAME 1 and 2 cham-
ber burns (Levin et al., 2010) from IMPROVE filter based

samplers were used to calculate the ratio of total carbon
(TC = organic carbon + elemental carbon, using no or-
ganic carbon multiplier) mass concentrations to the summed
mass concentrations of inorganic ions (INO). The ensemble
κ value for 100 nm particles for FLAME 1 and 2 chamber
burns is plotted versus this ratio in Fig. 7, which clearly in-
dicates an inverse relationship between these two quantities.
Some samples had TC/INO<1, including those formed in the
combustion of palmetto and Asian rice straw smokes, and
these were associated with largeκ values (0.4 < κ < 0.5).
For TC/INO>20 (highly carbon-dominated aerosol), 0.02<

κ < 0.08 was observed. All of these carbon-dominated
smokes (TC/INO>20) were unimodal in their hygroscopic
responses, indicating internal mixing. We suggest thatκ

for the carbonaceous component of fresh biomass burning
aerosol can be approximated from the mean and standard de-
viation of these cases,κ = 0.04±0.02.

Since direct measurements ofκ via HTDMA are typically
not feasible in many studies, particularly in long-term moni-
toring programs, we explored whetherκ could be computed
from speciated filter-based mass measurements using simpli-
fied assumptions about the aerosol composition. We recon-
structed aerosol hygroscopicity assuming only four chemical
constituent categories: inorganic species, organic carbon, el-
emental carbon, and dust / soil, as derived from IMPROVE
filter based chemical composition measurements (protocols
described inhttp://vista.cira.colostate.edu/improve/and in
Levin et al., 2010). The assumedκ andρ values for each
of these 4 constituents were guided by those of the individ-
ual species in the reconstructed mass calculation, as shown
in Table 1, and together with mass fractions of each con-
stituent based on composition, were used to reconstructκ of
the mixture assuming volume additivity (Petters and Krei-
denweis, 2007). Predictions ofκ from PM2.5 chemical com-
position for FLAME 1 and 2 chamber burns are compared
with HTDMA measured ensembleκ for Dd = 100 nm parti-
cles in Fig. 8. An ordinary least-squares regression gives a
slope = 0.89, intercept = 0.03, andR2

= 0.62 for the regres-
sion of measured vs. calculatedκ. Overall, 26 out of 32 data
points are within a factor of 2 inκ envelope shown in Fig. 8.
Based on estimated uncertainties in measured GF andaw,
error bars for measuredκ are shown in Fig. 8. With these un-
certainty bars, 19 of 32 data points overlap the 1:1 line. De-
spite the aerosol heterogeneity previously discussed and the
simplified 4-component model used for the reconstructions,
measured and predictedκ were in reasonable agreement as
shown in Fig. 8.

4.5 Comparison of smoke and plant extract hygroscopic
properties

Following the approach in studies of hygroscopicity of lab-
oratory filter extractions of smoke samples (Carrico et al.,
2008), we investigated the water uptake properties of aque-
ous extracts of several unburned fuels. We created particles

www.atmos-chem-phys.net/10/5165/2010/ Atmos. Chem. Phys., 10, 5165–5178, 2010
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Figure 7.  HTDMA-derived hygroscopicity parameter κ measured for 100 nm dry diameter 5 

particles vs. the ratio of total carbon (EC + OC) mass concentration to the sum of the mass 6 

concentration of inorganic ions (INO). Composition data were computed from IMPROVE 7 

data as discussed in the text.  Data are shown for each FLAME 1 and FLAME 2 chamber 8 

burn that has available composition data. 9 

Fig. 7. HTDMA-derived hygroscopicity parameterκ measured for
100 nm dry diameter particles vs. the ratio of total carbon (EC+OC)
mass concentration to the sum of the mass concentration of in-
organic ions (INO). Composition data were computed from IM-
PROVE data as discussed in the text. Data are shown for each
FLAME 1 and FLAME 2 chamber burn that has available com-
position data.

from the aqueous extracts of three fuels used in FLAME
2: Alaskan duff core, Asian rice straw, and coastal Florida
palmetto. The extraction process involved two 15 min
sonications of the fuels in ultrapure water. This was fol-
lowed by aerosolization of the extracts using a constant out-
put atomizer, and drying of the resulting droplets to produce
residue particles.

The measured GF of the extract-derived particles were re-
markably similar to the GF obtained for the emitted combus-
tion particles for that fuel during the FLAME 2 study (Fig. 9).
Alaskan duff core smoke was dominated by organic carbon
species (approximately 95% by mass) (Levin et al., 2010)
and both the smoke and the aqueous extract particles were
only weakly hygroscopic. The lowκ for the duff core sam-
ples suggests that some water-soluble organic species, with
relatively smallκ, were present in both the fuel itself and in
the smoke that it produced. Contrastingly, Florida palmetto
and Asian rice straw smoke both consisted of approximately
50% inorganic species by mass (Levin et al., 2010) with sec-
ondary contributions from elemental carbon (31%) for pal-
metto and organic carbon (40%) for Asian rice straw. The
palmetto and rice straw samples consistently show strong hy-
groscopic growth in both in situ smoke and the aqueous fuel
extract, suggestive of the presence of hygroscopic salts since
most organic species have lowerκ than observed in either the
extracts or the smoke (Table 1).
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Fig. 8. Comparison of HTDMA-derived ensembleκ with κ values
calculated from PM2.5 chemical composition from IMPROVE filter
samples for FLAME1 and 2 chamber burns. The solid line is 1:1
and the dashed lines represent± a factor of 2.

The hygroscopicity data for the water extracts, together
with the correspondence seen between ionic species content
and hygroscopicity, suggest that the water-soluble compo-
sition of the biomass fuel is likely to play a role in deter-
mining the hygroscopicity of the resultant smoke from its
combustion. Based on our studies, the relative fractions of
inorganic vs. carbonaceous material in the aerosol are the
primary driver of smoke hygroscopicity. Furthermore, lab-
oratory evidence from several studies has shown that the ox-
idation process with certain organic carbon compounds only
modestly increases the hygroscopic response (Petters et al.,
2006; George et al., 2007, 2008, 2009). A more comprehen-
sive study with many fuels and integrating chemical analyses
of both the smoke and fuel extracts would be necessary to at-
tribute a more general relationship between fuel and smoke
properties.

5 Discussion and conclusion

We report measurements of fresh biomass smoke hygro-
scopic growth and related chemical properties from the
FLAME laboratory experiments at the USDA/USFS Fire
Science Laboratory in Missoula, MT. Fresh biomass smoke
hygroscopic response for size-selected particles ranged from
almost hydrophobic (κ ∼ 0) to as hygroscopic as pure inor-
ganic salts such as ammonium sulfate and sodium chloride
(κ ∼ 1). Using aκ-mixing model and simplified descriptions
of smoke composition, the smoke hygroscopicities predicted
from bulk PM2.5 composition data were broadly consistent

Atmos. Chem. Phys., 10, 5165–5178, 2010 www.atmos-chem-phys.net/10/5165/2010/



C. M. Carrico et al.: Water uptake and chemical composition of fresh aerosols 5175

 29

0.8

1

1.2

1.4

1.6

1.8

2

2.2

0 0.2 0.4 0.6 0.8 1

D
ia

m
et

er
 G

ro
w

th
 F

ac
to

r, 
G

F

Water Activity, aw

Asian Rice Straw-In Situ Smoke
Asian Rice Straw-Unburnt Fuel Extracted in Water
Alaskan Duff Core-In Situ Smoke
Alaskan Duff Core-Unburnt Fuel Extracted in Water
Palmetto-In Situ Smoke
Palmetto-Unburnt Fuel Extracted in Water

κ=0.43

κ=0.05

 1 

 2 

Figure 9.  HTDMA-measured ensemble hygroscopic growth curves for in-situ smoke particles 3 

and for particles generated from aqueous extracts of unburned fuels, for three biomass fuels. 4 

In all cases, Dd =100 nm. 5 

 6 

 7 

Fig. 9. HTDMA-measured ensemble hygroscopic growth curves
for in-situ smoke particles and for particles generated from aqueous
extracts of unburned fuels, for three biomass fuels. In all cases,
Dd=100 nm.

with measured values. Variability in chemical composition
as a function of particle size is one likely contributor to dis-
crepancies between measuredκ and those calculated from
bulk PM2.5 chemical composition.

Biomass fuel characteristics, as well as the combustion
conditions (flaming or smoldering), were of great impor-
tance to the hygroscopic properties of the smoke. Overall,
pines, duffs, firs, and woods produced the least hygroscopic
smoke aerosols, while several chaparral species, grasses, and
tropical fuels such as palmetto and rice straw produced the
most hygroscopic smoke. We reiterate that our results ap-
ply to freshly emitted biomass burning aerosols, which is
only one important subset of all ambient aerosols. How-
ever, our findings are consistent with field observations re-
ported in the literature. For example, ambient measure-
ments of biomass smoke from the chaparral region of South-
ern California were also indicative of strong hygroscopic-
ity, at times exceedingκ = 0.6 (Cocker et al., 2001). Am-
bient aerosol sampled during the Yosemite Aerosol Charac-
terization Study (YACS) study was often impacted by aged
smoke from coniferous forest fires in the Northwest US and
secondary organic aerosol (∼70% of average PM2.5 mass
was carbonaceous) (McMeeking et al., 2006; Engling et
al., 2006). During YACS, hygroscopicity ranged between
0.10 < κ < 0.32 (Dd=100 nm), and was lowest during pe-
riods with the highest smoke influence (Carrico et al., 2005;
Malm et al., 2005). The FLAMEκ values for fresh pine and
duff smokes (0.02< κ < 0.14) overlap the lower end of this
range. Dinar et al. (2007) report hygroscopicity ranging from
0.07< κ < 0.10 for extracts of humic-like substances from

biomass burning samples, with larger values corresponding
to more aged aerosols. These values compare to the least
hygroscopic smokes we found in this study, i.e. those that
contain the highest fractions of carbonaceous material.

Generally, the number of hygroscopic modes and their re-
spectiveκ values were similar among varying burns of a
given fuel in the FLAME studies. Smoke chemical composi-
tion clearly drives its hygroscopic response. Smokes with to-
tal carbon contributions exceeding 90% of PM2.5 mass were
all weakly hygroscopic and unimodal withκ < 0.1, while
the most hygroscopic smokes were those that had substan-
tial contributions from inorganic species. These observa-
tions indicate that inorganic species were primary determi-
nants of smoke hygroscopicity, and the overall ratio of total
carbon to measured inorganic ionic mass was inversely re-
lated to smoke hygroscopicity. The importance of inorganic
components in driving ambient aerosol hygroscopicity has
been found in previous studies of ambient smoke-impacted
aerosols in North America (Carrico et al., 2005) and Africa
(Semeniuk et al., 2007). Also, several laboratory studies of
mixtures have found little influence of the speciation or func-
tionality of organic species in affecting the hygroscopicity
when mixed with inorganics (Garland et al., 2007; Moore
and Raymond, 2008). The general consistency of the fresh
smoke properties reported here with ambient observations is
important as it suggests that smoke hygroscopicity may be
modeled with some general relationships to fuels, combus-
tion conditions, and the smoke inorganic-to-organic compo-
sition ratio.

Many smokes demonstrated heterogeneity in terms of ex-
ternal mixing, evident from the separation of growth modes
into more and less hygroscopic populations at higher relative
humidity. Ambient studies of aerosols with strong smoke
influences in the western US and the Amazon have demon-
strated the occurrence of bimodal profiles (Carrico et al.,
2005; Rissler et al., 2006). Here our findings show that some
fresh biomass smokes are emitted (or develop very soon af-
ter emission) a bimodal hygroscopic response, before mixing
with aerosols from other sources.

It is generally accepted that different species are emit-
ted during the flaming and smoldering phases of combus-
tion, and thus combustion temperature and efficiency should
exert a strong influence on smoke aerosol hygroscopicity.
Our results suggest that the composition of the fuel also
plays a substantial role, as also observed by Hopkins et
al. (2007). Those authors observed variations in optical
properties (specifically, absorption) related to changes in the
graphitic nature of the emitted carbonaceous particles, but
some fuels that burned with a strongly flaming phase did not
produce particles with a high graphitic content. The presence
of inorganic salts in the fuel matrix, and their emission at
high temperatures, seem to also play a role. In part, the chem-
ical composition of the fuel relates to natural adaptations of
plant species to environmental stresses. Coniferous species
are known for producing resins used for wounds and insect
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defense (Lerdau et al., 1994). Additionally, many plants
control osmotic pressure by varying solute concentrations in
their tissues as a means of regulating hydraulic flow and thus
as a drought tolerance mechanism (Kozlowski and Pallardy,
2002). For a small subset of tested fuels in our study, the
hygroscopic response of the smoke was similar to that of the
particles generated from aqueous extracts of the fuel itself.
Chemical similarity of plant tissues and smoke produced has
been noted previously. For example, a study of species spe-
cific biomass tracers found unaltered and partially altered
biomass compounds (such as diterpenoids from conifers)
in the smoke, resulting from volatilization/condensation and
pyrolysis, respectively (Simoneit et al., 1993).

The type of fuel, combustion phase, smoke chemical com-
position and resultant aerosol hygroscopic properties are in-
tricately linked. Moreover, combustion products likely also
depend on fuel moisture content, though we did not study
that variable. Here we can state that the general trend ob-
served is that fuels that burned primarily in a smoldering
manner in our studies produced aerosols with a large organic
carbon mass fraction and lowκ values. More detailed ex-
amination of the influence of biomass chemical composition,
relationships of fuel composition to combustion temperatures
and emissions during various stages of combustion, and cor-
responding effects on the hygroscopic properties of smoke
are areas for further study.
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