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Abstract. Black carbon (BC) particles accumulated in the
Arctic troposphere and deposited on snow have been calcu-
lated to have significant effects on radiative forcing of the
Arctic regional climate. Applying cluster analysis technique
on 10-day backward trajectories, seven distinct transport
pathways (or clusters) affecting Alert (82.5◦ N, 62.5◦ W),
Nunavut in Canada are identified in this work. Transport
frequency associated with each pathway is obtained as the
fraction of trajectories in that cluster. Based on atmospheric
transport frequency and BC surface flux from surrounding
regions (i.e. North America, Europe, and former USSR), a
linear regression model is constructed to investigate the inter-
annual variations of BC observed at Alert in January and
April, representative of winter and spring respectively, be-
tween 1990 and 2005. Strong correlations are found between
BC concentrations predicted with the regression model and
measurements at Alert for both seasons (R2 equals 0.77 and
0.81 for winter and spring, respectively). Results imply that
atmospheric transport and BC emission are the major con-
tributors to the inter-annual variations in BC concentrations
observed at Alert in the cold seasons for the 16-year period.
Other factors, such as deposition, could also contribute to
the variability in BC concentrations but were not considered
in this analysis. Based on the regression model the relative
contributions of regional BC emissions affecting Alert are
attributed to the Eurasian sector, composed of the European
Union and the former USSR, and the North American sec-
tor. Considering both seasons, the model suggests that for-
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mer USSR is the major contributor to the near-surface BC
levels at the Canadian high Arctic site with an average con-
tribution of about 67% during the 16-year period, followed
by European Union (18%) and North America (15%). In
winter, the atmospheric transport of BC aerosols from Eura-
sia is found to be even more predominant with a multi-year
average of 94%. The model estimates smaller contribution
from the Eurasian sector in spring (70%) than that in win-
ter. It is also found that the inter-annual variation in Eurasian
contributions depends mainly on the reduction of emissions,
while the changes in both emission and atmospheric transport
contributed to the inter-annual variation of North American
contributions.

1 Introduction

Black carbon (BC) particles accumulated in the Arctic tro-
posphere and deposited on snow have been calculated to
have significant effects on radiative forcing of the Arctic re-
gional and the global climate (Flanner et al., 2007; Kristjans-
son et al., 2005; Jacobson, 2001; Hansen and Nazarenko,
2004). Absorbing both the direct and the reflected solar radi-
ation, BC in the atmosphere was suggested to be the sec-
ond strongest contributor to current global warming, after
carbon dioxide (Ramanathan and Carmichael, 2008; Chung
et al., 2005). Once deposited on snow and sea ice, BC
changes the surface albedo and contributes to melting of
Arctic sea ice (Koch and Hansen, 2005; Jacobson, 2004;
Flanner et al., 2007; Kim et al., 2005; Clarke and Noone,
1985). BC particles (along with sulphate and organic car-
bon) intensively accumulate in the Arctic troposphere during
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the winter and early spring, as a result of the Arctic haze
phenomenon (Barrie, 1986; Law and Stohl, 2007; Quinn
et al., 2007; Shaw, 1995). The anthropogenic emissions
from Europe and former USSR were recently identified to be
the major sources of the observed Arctic haze (Stohl, 2006;
Quinn et al., 2007; Shindell et al., 2008). However, locations
within the Arctic might be impacted differently by source re-
gions. Sharma et al. (2006), for example, showed that Alert
(82.5◦ N, 62.5◦ W), Nunavut was about two times more fre-
quently affected by the atmospheric transport of air mass
from North America than Point Barrow (71◦ N, 156.6◦ W),
Alaska from 1989 to 2003. Worthy et al. (1994) showed that
rapid air mass transport from western Russia in winter was
responsible for the highest concentrations of BC measured at
Alert.

Based on 13-year continuous observations at Alert,
Nunavut since 1989, a broad peak in BC concentration is
observed from January to April (Sharma et al., 2006), corre-
sponding to the haze season. For the haze season (January
to April), a marked monotonic decreasing trend of BC con-
centration at Alert during the 1990s, followed by signs of an
increase in the early 2000s, was revealed using a geometric
time variation model (Sharma et al., 2004, 2006). The impact
of emission variation on the observed BC concentrations was
highlighted in their study. For instance, the decreasing trend
in BC concentrations at Alert was associated with the reduc-
tion of BC emissions, particularly from the former USSR.
Additionally, the important influence of atmospheric trans-
port variability on the inter-annual changes of air pollution
levels in the Arctic troposphere was also revealed recently,
particularly the effect of North Atlantic Oscillation (NAO)
(Eckhardt et al., 2003). However, studies emphasizing the si-
multaneous effects of varying atmospheric transport and BC
emissions are still limited. More recently, the inter-annual
variation of BC was correlated with two atmospheric trans-
port indices derived from the 700 hPa geopotential heights
and regional BC emissions, but only 36 and 54% of the vari-
ations can be explained for January and April data (Gong et
al., 2010).

In this paper, an attempt is made to investigate the effect of
year-to-year changes in both emission and atmospheric trans-
port on the observed inter-annual variation of BC at Alert
from 1990 through 2005, and to further quantify the contri-
butions of BC emissions from Eurasia and North America
based on trajectory analysis technique. The annual BC emis-
sions used in this study are based on the BC inventory pre-
pared by Sharma et al. (2004, 2009). To better isolate the
effect of atmospheric transport in the cold seasons, 10-day
backward trajectories in January and April between 1990 and
2005 are used in this study. The use of January and April
data instead of DJF (for winter) and MAM (for spring) is to
minimize the seasonal transformation of atmospheric trans-
port patterns in the whole seasons of interest, and to empha-
size the inter-annual variation in atmospheric transport. Jan-
uary and April were considered representative of winter and

spring, respectively in characterizing the atmospheric circu-
lation affecting the Arctic (Serreze and Barry, 2005). Ap-
plying the cluster analysis technique, the transport pathways
affecting Alert are identified for both seasons. Based on the
obtained transport frequency from cluster analysis and the
estimated BC surface flux from surrounding regions, a lin-
ear regression model is constructed to reconstruct the year-
to-year changes in BC surface concentrations in winter and
spring.

2 Data and methods

2.1 Equivalent black carbon data

Continuous hourly measurements of aerosol light absorption
at Alert have been conducted since 1989. The attenuation
of light transmitted through particles collected on a quartz
fiber filter was measured using a commercial aethalometer,
along with the attenuation of a blank filter. Then the hourly
BC concentrations were calculated based on the difference
in attenuation, the filter area, the sample flow rate, and a
specific attenuation coefficient (19 m2/g). The later is de-
termined based upon calibrations during instrument develop-
ment and theoretical calculations. More detailed description
of the method and the determination of the specific attenua-
tion coefficient were documented by Sharma et al. (2004).

2.2 Trajectory data and transport frequency

Ten-day backward trajectories arriving at 500 m above
ground level (or a.g.l.) at Alert were initialized 12 times
daily (i.e., 00:00, 02:00, 04:00 . . . and 22:00 coordinated
universal time) for January and April between 1990 and
2005 using the HYSPLIT model (HYbrid Single-Particle La-
grangian Integrated Trajectory, version 4) (Lin et al., 2001).
Three-dimensional wind fields from NCEP/NCAR global
reanalysis data (Kalnay et al., 1996) were used to drive
HYSPLIT, which are available every 6 h on a 2.5 degree
latitude-longitude global grid with 18 vertical levels. The
arrival elevation of 500 m a.g.l. locates within the winter-
time Arctic inversion layer so that it is representative of the
air sampled at Alert. Worthy et al. (1994), for instance,
compared trajectories arriving 1000, 925, 850, and 700 hPa
above Alert and suggested that the 925 hPa level (about
540 m a.g.l.) was the most representative arriving height.
Ten-day backward trajectories are used in this study since
trajectories of a shorter duration are usually not long enough
to indicate possible distant source regions affecting the Arc-
tic (Harris and Kahl, 1990). Although longer trajectories
are generally subject to higher uncertainty, progressive ad-
vances in generating meteorological fields, computing tra-
jectories, and especially, the implementation of cluster anal-
ysis technique on a large set of trajectories in this study
may, to some extent, reduce the effects of individual errors
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(Kahl, 1990; Harris and Kahl, 1994). The clustering algo-
rithm described by Dorling et al. (1992) was modified (re-
fer to Supplementary Information: Modified Dorling’s algo-
rithm, seehttp://www.atmos-chem-phys.net/10/5065/2010/
acp-10-5065-2010-supplement.pdf) to effectively group tra-
jectories. Each group of trajectories represents a distinct
transport pathway bringing air masses into Alert. In this
study, the transport frequency (dimensionless) associated
with a pathway is defined as the percentage of trajectories
in that group.

2.3 Surface flux of BC

Analyzing the inter-annual variation in the Arctic BC re-
quired building annual BC emission inventories by coun-
try from 1990 through 2005. Wintertime black carbon in
the northern mid-latitudes is predominantly emitted from
incomplete fossil fuel combustion. Although neglected by
this study, BC emissions from biofuel combustion and open
biomass burning are expected to have only limited effects
on the surface measurements at Alert in January and April.
Based on the BC emission inventory for 1996 (Bond et al.,
2004), the overall emission of BC from fossil fuel combus-
tion is about 9 (4) times higher than that from biofuel for the
region north of 50◦ N (30◦ N). And the major biofuel emis-
sions are from South and East Asia. BC emissions from open
biomass burning do not occur during winter (or January) and
have significant impacts on BC concentrations mainly in the
free troposphere rather than the boundary layer in the Arctic
troposphere (Warneke et al., 2010).

The regional BC emissions used in this study were calcu-
lated from consumption and transaction amounts of 23 dif-
ferent fuel types compiled by the United Nations (United Na-
tions, 2007). The method implemented in this study to com-
pute emissions was initially developed by Cooke et al. (1999)
for 1970–1989. The period of the emission inventory was ex-
tended a first time to 1990–1998 by Sharma et al. (2004) and
through 2005 by Sharma et al. (2009). Global BC emissions
were also developed by Bond et al. (2004, 2007), but only
emissions every 5 years until 2000 are available to the pub-
lic on their web site (http://www.hiwater.org). Comparing
BC emissions used in this study with Bond’s estimations for
the year 2000, we determined global emissions of 7200 Gg,
while they totalized 4537 Gg, i.e. 37% less. For 1990, the
difference calculated is similar, which is well within their es-
timated emission uncertainty (i.e. a factor of 2) (Bond et al.,
2004, 2007).

Based on the work of Stohl (2006), North America (50–
180◦ W), European Union (15◦ W–15◦ E) and the former
USSR (15–180◦ E) are the major BC source regions affecting
the Arctic. The areas of the above regions cover the whole
land area of these regions, which are obtained based on the
Gridded Population of the World, version 3 (GPWv3, avail-
able athttp://sedac.ciesin.columbia.edu/gpw). The BC sur-
face fluxes from these regions for 1990–2005 are calculated
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Fig. 1. Annual average BC surface flux (ng/m2/s) from European
Union, the former USSR, and North America: 1990–2005.

by dividing annual regional emissions by regional surface
area and time, as shown in Fig. 1. On average of the 16-
year period, the surface flux of European Union is about 6 (7)
times higher than that of North America (former USSR). BC
surface flux in the former USSR decreased by more than 50%
of its 1990 level during the first half of the 1990s, and since
then has remained fairly stable with signs of a progressive
increase. The North American sector has increased steadily
during the 16-year period.

2.4 Simple linear regression model

A mass balance approach is used to establish the linkage
among the surface flux of BC anthropogenic emissions, the
frequency of atmospheric transport, and the measured BC
surface concentrations, which has the following formula

[BC]Jan/Apr,j =

n∑
i=1

(fi,j ·Ci,j ) (1)

wherei = 1,2,...n is an arbitrary index for atmospheric trans-
port pathways affecting Alert andj = 1990,1991,...,2005
represents year from 1990 through 2005. For the year of
j , the left-hand side of the above equation represents the
monthly average BC concentration observed in January or
April (in ng/m3), fi,j (in percentage) is the transport fre-
quency of thei-th pathway, andCi,j (in ng/m3) is defined
as the BC concentration that would be measured if only the
i-th transport pathway had affected the receptor.

It is then assumed in this study that the characteristic BC
concentration of a transport pathway is linearly proportional
to the surface flux of BC emission at source region identified
by trajectory cluster analysis. The mass balance model takes
the following form,

[BC]Jan/Apr,j =

n∑
i=1

(fi,j ·bi ·Ei,j ) (2)
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whereEi,j (in ng/m2/s) represents the surface flux of BC
emission from source regioni in the year ofj andbi (in s/m)
is a cluster specific proportional constant. The final form
of the mass balance model shows a linear dependence of
monthly average BC concentration ([BC]) on transport fre-
quency (f ) and surface flux (E), which are obtained follow-
ing the methodologies described in Sects. 2.1–2.3. It is a
simple linear regression model with the independent variable

or predictor
n∑

i=1
(fi,j ·Ei,j ) and the slopebi . It is physically

meaningful to have a zero intercept in this model, which im-
plies that BC emissions other than those considered in this
study have negligible impact on the near-surface BC concen-
tration observed at Alert. It was previously shown using a
particle dispersion model that the BC source contribution to
the entire Arctic troposphere from south Asia is only 10% of
the European contribution (Stohl, 2006). Given BC concen-
trations, transport frequencies, and surface fluxes, the slope
(bi) is estimated using the least squares method. The purpose
of introducing the b factors is to relate the available surface
emission inventories to the observed concentrations at the re-
ceptor when atmospheric transport from source regions takes
place. The b factors are assumed to be the ratio of the concen-
tration in the air to the surface emission flux. So it is region
and transport pathway specific, which has the unit of s/m. In
principle, atmospheric processes that modify BC concentra-
tion during the transport of BC from source regions to the
receptor contribute to the b values. Presumably, the b factors
would mainly depend on mixing heights (m) in the source
regions and aerosol removal processes (1/s). For example,
greater mixing height in a source region would result in more
dilution of the initial BC concentration in the air, and thus re-
duces the b value associated with that specific source region.
At the same time, if an atmospheric transport pathway is as-
sociated with relatively fast aerosol removal processes (pos-
sibly due to long distance of transport, fast transformation
from hydrophobic to hydrophilic particles, frequent precipi-
tation events, and so on), one would expect a small b value
specifically for this pathway.

3 Results and discussion

3.1 Transport pathways affecting Alert

Ten-day backward trajectories for January and April from
1990 through 2005 are classified into 7 distinct groups by im-
plementing the modified clustering algorithm. The cluster-
mean trajectories, which indicate the average atmospheric
flow patterns, are shown in Fig. 2. The identified 7 transport
pathways are distinct in wind direction and speed. First of all,
there are several specific characteristics that can be found for
the air masses arriving at Alert in January. In terms of trans-
port frequency, clusters 1, 2, and 6 are among the most fre-
quent transport pathways, which in total account for 55% of
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Fig. 2. Transport pathways affecting Alert, Nunavut in January(a)
and April(b) from 1990 through 2005 identified by cluster analysis.
Each plotted pathway shows the average of 10-day back trajectories
generated by the HYSPLIT model. The number outside the brack-
ets serves only as an identification of each cluster; the one inside
the brackets gives the frequency of occurrence of the underlining
transport pathway.

atmospheric transport in winter. In terms of wind direction, it
was found that southerly (clusters 1, 2, and 3) and northerly
(clusters 4, 5, 6, and 7) flows dominate the wintertime atmo-
spheric transport. For the period of interest, northerly winds
constitute slightly over 50% of the total flows and the rest is
from southerly transport. Among southerly transport routes,
clusters 2 and 3 indicate transport of air masses from south
and southwest to the receptor Alert. The cluster-member
plot for cluster 2 (refer to Supplementary Information:
cluster-member plots, seehttp://www.atmos-chem-phys.net/
10/5065/2010/acp-10-5065-2010-supplement.pdf) indicates
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that most of the trajectories in this group originally started
from Canada or Alaska, moved first towards southeast of
Canada, and turned north between Baffin Island and Green-
land due to the effect of geographic barrier. Cluster 3 (about
11%) is composed of trajectories with a strong westerly wind
component. The trajectories in this cluster are mostly found
to originate between Eastern Siberia and the Beaufort Sea,
although few are found from Bering Sea. Cluster 1 (17%),
however, contains trajectories passing through the European
Arctic region. Trajectories in this cluster initiated from the
North Atlantic Ocean and Europe.

Among the northerly transport pathways in Fig. 2a, clus-
ter 5 is characterized as a relatively slow northerly moving
group, which is found about 14% of the time in January. Tra-
jectories grouped into this cluster initiated from the northern
high latitudes of the former USSR, but they are found cycling
around the Alert site. During the 10-day transport to Alert,
trajectories in this group spent considerable amount of time
traveling above the sea ice covering the Arctic Ocean. In Jan-
uary, several fully developed long-range transport pathways
bringing air masses from Eurasia into Alert are found with
considerable frequency of occurrence. This type of path-
ways includes clusters 4, 6, and 7 in Fig. 2a. Cluster 7
(about 10%) represents the transport of mid-latitude conti-
nental air masses from Eastern Europe. A number of trajec-
tories in this cluster extend deeply into the mid-latitudes as
far south as 45◦ N. Many of them traveled eastwards for the
first one or two days before entering the Arctic region. In
cluster 6, trajectories started within a wide area of Siberia
and extended also deeply into the continent (about 50◦ N in
latitude). Such long range transport is found during the win-
ter 18% of the time. Cluster 4 (10%) represents atmospheric
transport mainly from Eastern Siberia, but it contains few
trajectories originated from Bering Sea and Alaska.

Compared to the atmospheric transport patterns in Jan-
uary, the cyclonic feature is much weaker and the length of
trajectories is shorter in April, due to shifted and weakened
surface pressure systems: the Siberian High, the Icelandic
Low, and the Aleutian Low (Serreze and Barry, 2005). Thus,
long-range transport from the mid-latitudes is less frequent in
spring compared to winter. The monthly average trajectory
length in April is about 38% shorter than January between
1990 and 2005. In Fig. 2b, clusters 1 and 2 represent trans-
port originated from the central and the northwestern North
America, respectively. Cluster 3 is composed of trajectories
from Eastern Siberia, and clusters 4 and 5 point to the central
northern Siberia. Transport of air mass from Europe in April
is only found in cluster 7.

According to the direction of each identified transport
pathway, the linkage between the source of emission and
the receptor is established. Tables 1 and 2 present the year-
to-year changes in atmospheric transport frequency between
1990 and 2005 for winter and spring, respectively. In the
North American sector, the frequency of atmospheric trans-
port increases by about 10% from winter to spring. In the
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Fig. 3. Time-series of the model reconstructed and the observed
monthly average BC concentrations in January(a) and April (b),
1990–2005. TheR2 shown in both plots are the squares of the
Pearson’s correlation coefficients between the reconstructed and ob-
served BC concentrations rather than those for linear regressions.

former USSR sector, transport from the western and the cen-
tral USSR increases by 6% in spring compared to the winter
pattern. Compared to that in winter, the frequency of trans-
port from Europe in spring also decreases significantly by
15%.

3.2 Inter-annual variations of BC at Alert explained by
the model

The transport frequency obtained in the previous section is
then used here asf values in Eq. (2). Given monthly aver-
age BC concentrations ([BC]), transport frequency (f ), and
surface BC flux (E), the linear regression model (Eq. 2) is
solved using the least squares method, and the region spe-
cific b factors, as well as the individual p-values, are given
in Table 3 for both seasons. The regressions are signifi-
cant at 95% confidence level for both seasons. The time-
series and the correlation between model reconstructed and
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Table 1. Inter-annual variation of transport frequency (trajectory number of each sector divided by the total number of trajectories, in
percentage) affecting Alert in January, 1990–2005.

North America Former USSR European Union
Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6Cluster 1 Cluster 7

1990 25% 3% 0% 0% 17% 33% 21%
1991 55% 0% 7% 10% 17% 9% 2%
1992 30% 4% 10% 32% 6% 11% 8%
1993 14% 42% 3% 0% 27% 14% 0%
1994 5% 2% 19% 19% 33% 11% 12%
1995 12% 4% 6% 37% 25% 13% 3%
1996 31% 26% 11% 4% 9% 18% 0%
1997 11% 6% 9% 10% 21% 1% 43%
1998 19% 5% 18% 7% 11% 31% 10%
1999 1% 15% 2% 8% 0% 70% 4%
2000 43% 29% 6% 10% 7% 6% 0%
2001 26% 13% 0% 14% 20% 15% 11%
2002 2% 3% 16% 14% 39% 10% 15%
2003 15% 21% 18% 19% 7% 15% 3%
2004 23% 5% 28% 4% 34% 2% 2%
2005 18% 6% 1% 21% 9% 19% 27%
Average 21% 52% 27%

Table 2. Same as Table 1, but for April, 1990–2005.

North America Former USSR European Union
Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7

1990 15% 11% 38% 13% 2% 0% 22%
1991 1% 16% 26% 16% 0% 41% 1%
1992 38% 0% 13% 2% 20% 17% 11%
1993 2% 4% 24% 40% 12% 8% 9%
1994 33% 8% 21% 4% 19% 5% 11%
1995 19% 7% 16% 16% 27% 0% 15%
1996 19% 0% 6% 0% 0% 0% 74%
1997 22% 4% 8% 4% 11% 38% 14%
1998 8% 17% 6% 0% 9% 43% 17%
1999 11% 12% 21% 8% 40% 8% 0%
2000 39% 11% 29% 14% 5% 2% 0%
2001 37% 4% 18% 38% 1% 1% 0%
2002 0% 69% 14% 10% 0% 7% 0%
2003 3% 5% 52% 15% 7% 17% 1%
2004 25% 11% 7% 15% 22% 8% 13%
2005 36% 1% 26% 12% 19% 6% 0%
Average 30% 58% 12%

Table 3. Values ofbi factors for January and April, 1990–2005.

b1 b2 b3 b4 b5 b6 b7

January 11.0 68.4 100.3 192.7 167.1 181.4 43.7
p-value 0.048 0.081 0.088 0.082 0.017 0.006 0.006
April 65.8 54.8 137.6 113.8 129.0 62.6 9.2
p-value 0.037 0.045 0.002 0.046 0.045 0.046 0.048
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the observed monthly average BC concentrations are shown
in Fig. 3. Strong positive correlations are found between the
model reconstructed and the observed BC at Alert for both
seasons. The square of Pearson’s correlation coefficient (R2)

indicates the fraction of the inter-annual variations in obser-
vations explained by our linear regression model. As shown
in Fig. 3, our model is able to explain 77% of the variation
in the observed BC for winter, and over 80% is explained for
spring, which is considerably better than the approach devel-
oped by Gong et al. (2010). Given the same BC emission
dataset used in both studies, the better correlations obtained
in this study are probably due to the implementation of 3-D
trajectories followed by cluster analysis to better represent
transport pathways affecting Alert rather than the pressure
difference on a specific pressure level. It may also be par-
tially due to the introduction of the pathway specific b fac-
tors, which implicitly account for the effect of atmospheric
BC removal. Thus, about 80% of the inter-annual variation of
BC concentrations observed at Alert between 1990 and 2005
is reconstructed by considering the year-to-year changes in
transport frequency and surface emission flux. The ability
of our model to reconstruct BC inter-annual variability im-
plies that atmospheric transport plays an important role in
connecting source emissions and the surface BC observed at
the Canadian high Arctic site during the haze season. In such
an extreme cold season, favorable meteorological conditions,
such as stable stratification, surface temperature inversion,
and extreme dryness, suppress mixing, dry deposition, and
wet scavenging of BC in the air and, therefore, enhance the
long-range atmospheric transport.

About 20% of the inter-annual variation in observations
cannot be explained by this approach. The uncertainty of this
approach is affected by several assumptions made in the cur-
rent study. First, the atmospheric removal mechanisms are
not explicitly included in our approach. By assuming con-
stant b factors with respect to the identified transport path-
ways, constant removal efficiencies during transport are im-
plicitly assumed between 1990 and 2005. This assumption
may not perfectly hold for years with extreme precipitation
events. In January, 1997, for instance, the area averaged
precipitation accumulation at the European sector is found
the lowest among the period of interest, and it is estimated
33% lower than the multi-year average based on the Climate
Prediction Center (CPC) Merged Analysis of Precipitation
(CMAP) dataset (Huffman et al., 1997). Thus, the underesti-
mation (about 25 ng/m3 or 17% lower than the observation)
in January, 1997 may be partly due to the extreme dry condi-
tions, which substantially suppressed the wet scavenging of
aerosols. In January, 1995, however, the highest precipita-
tion accumulation at the European sector (33% higher than
the multi-year average) was found, which may partly explain
the overestimation (about 18 ng/m3 or 18% higher than the
observation) by our model. Another major source of uncer-
tainty is the assumption that BC particles are uniformly dis-
tributed at the regions of emission. The regional BC surface
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Fig. 4. Model estimated source contributions of BC from the North
American and the Eurasian sectors based on the average of January
and April from 1990 through 2005. The inter-annual changes in BC
surface flux are show by two dashed lines.

flux used in this study does not consider the geographic dis-
tribution of BC emissions within the potential source regions.
Uncertainties of this approach may also come from trajectory
calculation, emission data, and the implicit treatment of par-
ticle dry deposition and air mass mixing during the transport.
To reduce all these sources of uncertainties, a study imple-
menting the state-of-the-art aerosol model is on-going.

3.3 Source contributions to BC at Alert

The contributions of BC transport from Eurasia (former
USSR and European Union combined) and North America
are estimated based on the average of January and April from
1990 through 2005, as shown in Fig. 4. The annual average
BC emission fluxes of North America and Eurasia are also
shown for comparison. Comparing the importance of these
two regions in affecting Alert, contributions from Eurasia
dominate throughout the 16-year period. The model suggests
that BC emitted from the former USSR and European Union
contributes about 70 ng/m3 (or 67%) and 19 ng/m3 (or 18%),
respectively to the measured BC particles at Alert to the mea-
sured BC mass at Alert, while North America contributes less
than 15 ng/m3 (or 15%) on 16-year average. Therefore, it is
estimated that Eurasia contributes about 90 ng/m3 (or 85%)
to the measured BC particles at Alert. In January, the effect
of the Eurasian emission is found to be even more predom-
inant (94%) than that in April (70%), which is due to the
enhanced long-range transport in January. The case study
conducted by Worth et al. (1994), for example, found that
the observed peaks in BC concentration at Alert can be at-
tributed to long-range transport events from the Eurasian sec-
tor. The estimated relative importance of the North Ameri-
can and Eurasian BC emissions agree well with recent stud-
ies. Based on January-April average, Gong et al. (2010) esti-
mated that the Eurasian contribution varied between 80–90%
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and the North American contribution was about 10–20% for
the same period of time. The estimates by this study also
agree well with a most recent multi-model estimation con-
ducted by Shindell et al. (2008). In their study, the contri-
bution from North America was estimated to be 10% for the
year of 2001, based on the average estimation from 16 mod-
els. The Eurasian contribution for 2001 was estimated to be
72% (90%) without (with) Asian BC emissions considered.

The model also suggests that the contribution of Eura-
sia declined significantly in the first 8–10 years after 1990.
However, a slightly increasing trend can be noticed since
the late 1990s to 2005 on the Eurasian contribution curve
in Fig. 4. The relative importance of atmospheric transport
and BC emission in governing the inter-annual variations of
regional contributions to the near-surface BC level at Alert
is also investigated. The Pearson’s correlation coefficient be-
tween the Eurasian contribution and BC surface flux from
that region is found to be 0.93, which indicates that the inter-
annual change in Eurasian contributions is mainly attributed
to regional BC emission reduction during the 16-year pe-
riod rather than the changes in atmospheric transport. On
the other hand, the correlation for the North American side is
very poor (R = 0.23). The North American contributions for
the same period did not simply depend on regional BC emis-
sion, but also on other factors, especially atmospheric trans-
port patterns, as indicated by the good agreement between
measured and reconstructed BC surface concentration.

4 Conclusions

Based on the atmospheric transport frequency and the es-
timated surface flux of BC emissions from surrounding re-
gions, a linear regression model is constructed to investigate
the inter-annual variations of BC observed at Alert in January
and April, representative of winter and spring respectively,
from 1990 through 2005. The atmospheric transport fre-
quency is obtained by conducting cluster analysis on 10-day
backward trajectories arriving at Alert. Annual BC emission
from potential source regions (i.e. European Union, former
USSR, and North America) used in this study is an extended
database initially developed by Cooke et al. (1999). Solv-
ing the linear model, strong correlations are found between
BC concentrations predicted with the regression model and
measured at Alert for both seasons. The linear model is able
to explain 77% of the inter-annual variation of BC for win-
ter, and over 80% is explained for spring. Results imply
that atmospheric transport and BC emission are the major
contributors to the inter-annual variations in BC concentra-
tions observed at Alert in the cold seasons for the 16-year
period. The portion of unexplained inter-annual variation
(about 20%) may be due to the limitation of this analysis,
such as the lack of an explicit representation of the year-to-
year change in deposition and the assumption of a uniform
distribution of BC surface flux within source region.

The relative importance of North American and Eurasian
emissions to BC concentration at Alert is also investigated.
Considering both seasons, the model suggests that Eurasia
is the major contributor to the near-surface BC levels at the
Canadian high Arctic site with an average contribution of
over 85% during the 16-year period. In winter, the atmo-
spheric transport of BC aerosols from Eurasia is found to be
even more predominant with a multi-year average of 94%.
The model estimates smaller contribution from the Eurasian
sector in spring (70%) than that in winter. Results suggest
that atmospheric transport and BC emission played differ-
ent roles in governing the inter-annual variations of regional
contributions to the near-surface BC level at Alert. It is found
that the change in Eurasian contributions depends mainly on
the reduction of BC emissions. On the other hand, the inter-
annual variation of the North American contributions was
due to the changes in both emission and atmospheric trans-
port. In agreement with Gong et al. (2010), controlling BC
emissions in Eurasia seems to be an effective way to reduce
BC levels in the Arctic lower troposphere in the cold seasons.

Acknowledgements.The authors gratefully acknowledge the
NOAA Air Resources Laboratory (ARL) for the provision of the
HYSPLIT transport and dispersion model and READY website
(http://www.arl.noaa.gov/ready.html) used in this publication.

Edited by: A. Stohl

References

Barrie, L. A.: Arctic air-pollution – an overview of current knowl-
edge, Atmos. Environ., 20, 643–663, 1986.

Bond, T. C., Streets, D. G., Yarber, K. F., Nelson, S. M., Woo, J. H.,
and Klimont, Z.: A technology-based global inventory of black
and organic carbon emissions from combustion, J. Geophys.
Res.-Atmos., 109(43), D14203, doi:10.1029/2003jd003697,
2004.

Bond, T. C., Bhardwaj, E., Dong, R., Jogani, R., Jung, S. K., Roden,
C., Streets, D. G., and Trautmann, N. M.: Historical emissions
of black and organic carbon aerosol from energy-related com-
bustion, 1850–2000, Global Biogeochem. Cy., 21(16), GB2018,
doi:10.1029/2006gb002840, 2007.

Chung, C. E., Ramanathan, V., Kim, D., and Podgorny, I. A.: Global
anthropogenic aerosol direct forcing derived from satellite and
ground-based observations, J. Geophys. Res.-Atmos., 110(17),
D24207, doi:10.1029/2005jd006356, 2005.

Clarke, A. D. and Noone, K. J.: Soot in the Arctic snowpack –
a cause for perturbations in radiative-transfer, Atmos. Environ.,
19, 2045–2053, 1985.

Cooke, W. F., Liousse, C., Cachier, H., and Feichter, J.: Construc-
tion of a 1 degrees x 1 degrees fossil fuel emission data set for
carbonaceous aerosol and implementation and radiative impact
in the ECHAM4 model, J. Geophys. Res.-Atmos., 104, 22137–
22162, 1999.

Dorling, S. R., Davies, T. D., and Pierce, C. E.: Cluster-analysis –
a technique for estimating the synoptic meteorological controls

Atmos. Chem. Phys., 10, 5065–5073, 2010 www.atmos-chem-phys.net/10/5065/2010/

http://www.arl.noaa.gov/ready.html


L. Huang et al.: A trajectory analysis of atmospheric transport of black carbon 5073

on air and precipitation chemistry – method and applications, At-
mos. Environ. A, 26, 2575–2581, 1992.

Eckhardt, S., Stohl, A., Beirle, S., Spichtinger, N., James, P.,
Forster, C., Junker, C., Wagner, T., Platt, U., and Jennings, S. G.:
The North Atlantic Oscillation controls air pollution transport to
the Arctic, Atmos. Chem. Phys., 3, 1769–1778, doi:10.5194/acp-
3-1769-2003, 2003.

Flanner, M. G., Zender, C. S., Randerson, J. T., and Rasch,
P. J.: Present-day climate forcing and response from black
carbon in snow, J. Geophys. Res.-Atmos., 112(17), D11202,
doi:10.1029/2006jd008003, 2007.

Gong, S. L., Zhao, T. L., Sharma, S., Toom-Sauntry, D., Lavoue,
D., Zhang, X. B., Leaitch, W. R., and Barrie, L.: Identification of
trends and inter-annual variability of sulphate and black carbon
in the Canadian High Arctic: 1981 to 2007, J. Geophys. Res.-
Atmos., 115, D07305, doi:10.1029/2009JD012943, 2010.

Hansen, J. and Nazarenko, L.: Soot climate forcing via snow
and ice albedos, P. Natl. Acad. Sci. USA, 101, 423–428,
doi:10.1073/pnas.2237157100, 2004.

Harris, J. M. and Kahl, J. D.: A Descriptive Atmospheric Trans-
port Climatology for the Mauna-Loa-Observatory, Using Clus-
tered Trajectories, J. Geophys. Res.-Atmos., 95, 13651–13667,
1990.

Harris, J. M. and Kahl, J. D. W.: Analysis of 10-Day Isentropic
Flow Patterns for Barrow, Alaska – 1985–1992, J. Geophys.
Res.-Atmos., 99, 25845–25855, 1994.

Huffman, G. J., Adler, R. F., Arkin, P., Chang, A., Ferraro, R., Gru-
ber, A., Janowiak, J., McNab, A., Rudolf, B., and Schneider, U.:
The Global Precipitation Climatology Project (GPCP) Combined
Precipitation Dataset, B. Am. Meteorol. Soc., 78, 5–20, 1997.

Jacobson, M. Z.: Strong radiative heating due to the mixing state
of black carbon in atmospheric aerosols, Nature, 409, 695–697,
2001.

Jacobson, M. Z.: Climate response of fossil fuel and biofuel
soot, accounting for soot’s feedback to snow and sea ice albedo
and emissivity, J. Geophys. Res.-Atmos., 109(15), D21201,
doi:10.1029/2004jd004945, 2004.

Kahl, J. D.: Characteristics of the Low-Level Temperature Inversion
Along the Alaskan Arctic Coast, Int. J. Climatol., 10, 537–548,
1990.

Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D.,
Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y.,
Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K.
C., Ropelewski, C., Wang, J., Leetmaa, A., Reynolds, R., Jenne,
R., and Joseph, D.: The NCEP/NCAR 40-year reanalysis project,
B. Am. Meteorol. Soc., 77, 437–471, 1996.

Kim, Y., Hatsushika, H., Muskett, R. R., and Yamazaki,
K.: Possible effect of boreal wildfire soot on Arctic sea
ice and Alaska glaciers, Atmos. Environ., 39, 3513–3520,
doi:10.1016/j.atmosenv.2005.02.050, 2005.

Koch, D. and Hansen, J.: Distant origins of Arctic black
carbon: A Goddard Institute for Space Studies ModelE
experiment, J. Geophys. Res.-Atmos., 110(14), D04204,
doi:10.1029/2004jd005296, 2005.

Kristjansson, J. E., Iversen, T., Kirkevag, A., Seland, O., and De-
bernard, J.: Response of the climate system to aerosol direct
and indirect forcing: Role of cloud feedbacks, J. Geophys. Res.-
Atmos., 110(13), D24206, doi:10.1029/2005jd006299, 2005.

Law, K. S. and Stohl, A.: Arctic air pollution: Origins and impacts,
Science, 315, 1537–1540, 2007.

Lin, C. J., Cheng, M. D., and Schroeder, W. H.: Transport pat-
terns and potential sources of total gaseous mercury measured in
Canadian high Arctic in 1995, Atmos. Environ., 35, 1141–1154,
2001.

Quinn, P. K., Shaw, G., Andrews, E., Dutton, E. G., Ruoho-Airola,
T., and Gong, S. L.: Arctic haze: current trends and knowledge
gaps, Tellus B, 59, 99–114, 2007.

Ramanathan, V. and Carmichael, G.: Global and regional cli-
mate changes due to black carbon, Nat. Geosci., 1, 221–227,
doi:10.1038/ngeo156, 2008.

Serreze, M. C. and Barry, R. G.: The Arctic Climate System,
Cambridge Atmospheric and Space Science Series, edited by:
Dessler, A. J., Houghton, J. T., and Rycroft, M. J., Cambridge
University Press, New York, 412 pp., 2005.

Sharma, S., Lavoue, D., Cachier, H., Barrie, L. A., and Gong, S.
L.: Long-term trends of the black carbon concentrations in the
Canadian Arctic, J. Geophys. Res.-Atmos., 109(10), D15203,
doi:10.1029/2003JD004331, 2004.

Sharma, S., Andrews, E., Barrie, L. A., Ogren, J. A., and Lavoue,
D.: Variations and sources of the equivalent black carbon in the
high Arctic revealed by long-term observations at Alert and Bar-
row: 1989–2003, J. Geophys. Res.-Atmos., 111(15), D14208,
doi:10.1029/2005jd006581, 2006.

Sharma, S., Ishizawa, M., Chan, D., Lavoué, D., Leaitch, R., Wor-
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