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Abstract. Solid state vapour pressures of a selection of at-
mospherically important substituted dicarboxylic acids have
been measured using Knudsen Effusion Mass Spectrometry
(KEMS) over a range of 20 K (298–318 K). Enthalpies of
fusion and melting points obtained using Differential Scan-
ning Calorimetry (DSC) were used to obtain sub-cooled liq-
uid vapour pressures. They have been compared to estima-
tion methods used on the E-AIM website. These methods
are shown to poorly represent – OH groups in combination
with COOH groups. Partitioning calculations have been per-
formed to illustrate the impact of the different estimation
methods on organic aerosol mass compared to the use of ex-
perimental data.

1 Introduction

1.1 Organic aerosols

Atmospheric aerosols influence climate directly via the scat-
tering, reflection and absorption of solar radiation, and in-
directly by acting as cloud condensation nuclei. The errors
associated with aerosols are one of the greatest uncertain-
ties in our understanding of radiative forcing (Solomon et
al., 2007). Organic components comprise a major fraction of
the sub-micron particulate mass in the ambient lower atmo-
sphere in all locations where they have been sampled (Zhang
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et al., 2007; Hallquist et al., 2009). The organic fraction may
comprise many tens to hundreds of thousands of compounds
(Goldstein and Galbally, 2007). A significant proportion of
these components are thought to arise from gas to particle
partitioning, as opposed to primary particulate emissions.

1.2 Vapour pressures

Organic aerosol (OA) formation from volatile organic com-
pounds (VOC) is frequently described by an equilibrium
based absorptive partitioning model (Barley et al., 2009;
Pankow et al., 1994). This requires knowledge of pure com-
ponent vapour pressures. There are many methods of esti-
mating pure component vapour pressures but most of the ex-
perimental data collected to date has been for intermediate
or high vapour pressures and the proportion of experimental
data for low vapour pressures (<100 Pa) has been very small.
Some of the estimation methods can give errors in vapour
pressure of several orders of magnitude for multifunctional
compounds at ambient temperatures (Makar, 2001; Camre-
don et al., 2006; Pankow and Asher, 2008; Barley and Mc-
Figgans, 2010). The testing of vapour pressure estimation
methods for use in atmospheric applications is severely lim-
ited by the relatively small number of multifunctional com-
pounds for which experimental vapour pressure are available
at ambient temperatures. This requires a reliable method of
determining vapour pressures of low volatility compounds at
ambient temperatures. Knudsen Effusion Mass Spectrometry
(KEMS) is a well-established technique for measuring the
vapour pressures of very low volatility compounds at high
temperatures (up to 2500 K) such as metals and ceramics

Published by Copernicus Publications on behalf of the European Geosciences Union.

http://creativecommons.org/licenses/by/3.0/


4880 A. M. Booth et al.: Solid state and sub-cooled liquid vapour pressures

(Hilpert, 1991, 2001). It has also recently been used to mea-
sure the solid state vapour pressure at ambient temperature
of straight chain dicarboxylic acids; oxalic, malonic, suc-
cinic, glutaric and adipic acid (Booth et al., 2009a). Car-
boxylic acids have been well established as components of
atmospheric aerosols (Kawamura and Kaplan, 1987; Bilde
et al., 2003; Cappa et al., 2007; Kundu et al., 2010), al-
though there is a high level of uncertainty in the formation
mechanisms of multifunctional oxygenated organics (Hal-
lquist et al., 2009). Substituent functional groups of dicar-
boxylic acids have been isolated and identified in laboratory
SOA studies and atmospheric aerosols; methyl (Sempere and
Kawamura, 1994) keto (Kawamura et al., 1996) and alcohol
(Gao et al., 2003; Kawamura et al., 2005) have all been ob-
served. Understanding how such groups affect vapour pres-
sure is therefore important.

1.3 Sub-cooled liquid vapour pressures

These dicarboxylic acids are solids at room temperature
and pressure, however, in the atmosphere they can exist as
components of a sub-cooled liquid aerosol (Riipinen et al.,
2007; Koponen et al., 2007). The sub-cooled liquid is the
metastable liquid which exists if solidification does not oc-
cur at temperatures below that of the triple point. On aP ,T
phase diagram it is a line that forms an extension to the liq-
uid phase vapour pressure line below the triple point tem-
perature. Additionally, current gas/particle partitioning mod-
els use the sub-cooled reference state, as do activity models.
The sub-cooled liquid vapour pressure therefore allows eas-
ier comparison with theoretical vapour pressure estimation
methods which predict the sub-cooled state. KEMS how-
ever cannot directly measure the sub-cooled liquid vapour
pressure. The solid state vapour pressure can be corrected
to the sub-cooled state value using thermochemical proper-
ties obtained by other means such as Differential Scanning
Calorimetry (DSC) (Prausnitz et al., 1986). In this work we
combine results from KEMS and DSC to obtain solid state
and sub-cooled liquid vapour pressures for the following di-
and tri-carboxylic acids: oxalic, malonic, methyl-malonic,
tartronic, succinic, malic, tartaric, keto-succinic, methyl-
succinic, aspartic, citramalic, glutaric, 2-methyl-glutaric, 3-
methyl-glutaric, 2-keto-glutaric, 3-keto-glutaric, glutamic,
citric and adipic acid.

2 Theory

2.1 Sub-cooled correction

The sub-cooled vapour pressure is derived from the value
measured above the solid state using the following equation
(Prausnitz et al., 1986):
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wherepl /ps is the ratio of vapour pressures with the sub-
script s referring to the solid and l to the sub-cooled liquid
phase,1Hfus is the enthalpy of fusion (J mol−1), 1cp;sl de-
notes the best estimate of the underlying change in heat ca-
pacity between the liquid and solid state at the melting point
(J mol−1 K−1), T is the temperature (K) andTm is the melt-
ing point (K), which is commonly used instead of the triple
point, Tt . Tm is typically within 1 K of Tt for small organic
acids.

2.2 Vapour pressure estimation

Many predictive methods exist for vapour pressure. Barley
and McFiggans (2010) recently evaluated several methods
using a basis set of 45 multifunctional low-volatility com-
pounds for which experimental vapour pressures were avail-
able. Here we compare our experimental results with the
methods available on the E-AIM (Extended Aerosol Inorgan-
ics Model) website,http://www.aim.env.uea.ac.uk/aim/aim.
php (Wexler and Clegg, 2002; Clegg et al., 2008). These
methods use a normal boiling point (Tb) from which the
vapour pressure at the required temperature is extrapolated
using a vapour pressure equation (referred to here as the
vapour pressure method). The three vapour pressure meth-
ods available are the Nannoolal et al. (2008) and the Moller et
al. (2008) methods, both withTb by Nannoolal et al. (2004),
and the Myrdal and Yalkowsky (1997) method withTb by
Stein and Brown (1994). Additionally, boiling points were
calculated using the Joback et al. (1987) method (Dortmund
data bank) and used with each of the three vapour pressure
methods.

2.2.1 Nannoolal vapour pressure method

The Nannoolal et al. (2004) estimation method uses group
contribution calculations using primary and secondary
groups and group interactions (207 groups). It was used to
calculate both normal boiling points (Nannoolal et al., 2004)
and the slope of the vapour pressure line (Nannoolal et al.,
2008). The normal boiling pointTb (K) is given by:

Tb =

∑
i

NiCi

na +b
+c (2)

whereNi is the number of groups of typei, Ci the group
contribution of groupi [K],

a, b, c are adjustable parameters from a linear regression
(a = 0.6583,b = 1.6868,c = 84.3395) of the equation to ex-
perimental boiling points, andn is the total number of atoms

Atmos. Chem. Phys., 10, 4879–4892, 2010 www.atmos-chem-phys.net/10/4879/2010/

http://www.aim.env.uea.ac.uk/aim/aim.php
http://www.aim.env.uea.ac.uk/aim/aim.php


A. M. Booth et al.: Solid state and sub-cooled liquid vapour pressures 4881

in the molecule (except hydrogen). The vapour pressure in
atm is given by:

log10P
0
i = (4.1012+dB)

[
T −Tb

T −0.125Tb

]
(3)

wheredB adjusts the slope of the vapour pressure curve and
is calculated using group contributions.

dB =

(∑
NiCi +GI

)
−0.176055 (4)

where the first term in the brackets is the sum of the primary
and secondary group contributions, and the second term is
the group interaction:

GI =
1

n

m∑
i=1

m∑
j=1

Ci−j

m−1
(5)

whereCi−j = Cj−i andm, n are the total number of inter-
acting groups and the number of (non-hydrogen) atoms in the
molecule respectively.

2.2.2 Moller vapour pressure method

The Moller et al. (2008) method is a refinement of the Nan-
noolal et al. (2008) method. It features an additional term
to improve predictions for aliphatic alcohols and carboxylic
acids, new size dependent groups to improve predictions for
several functional groups, and new hydrocarbon groups. Re-
writing Eq. (3) and adding the extra term gives:

log10P
0
i = B ′

T −Tb

T −C(Tb)
+D′ ln

(
T

Tb

)
(6)

whereD′ is the the new term for carboxylic acids and al-
cohols which is set to zero when they are not present. In the
Nannoolal et al. (2008) method,C = Tb/8, but this is replaced
in the Moller et al. (2008) method with the following term:

C(Tb) = −2.65+
T 1.485

b

135
(7)

All group contributions were refitted to the above equations.
Several new hydrocarbon groups were added to account for
specific structural effects, and size dependent corrections for
alkene and alkyne molecules were also introduced to improve
predictions.

2.2.3 Myrdal and Yalkowsky vapour pressure method

The Myrdal and Yalkowsky (1997) method requires a source
of boiling point (Tb) estimations. In this work the group
contribution method of Stein and Brown (1994) (85 groups),
which is adapted from an earlier method (Joback and Reid,
1987), was used to provideTb. This was then used with
the equations of Myrdal and Yalkowsky (1997) which uses
the flexibility of the molecular structure and hydrogen bond
number to estimate the entropy of vapourisation1Svap:

1Svap= 86+0.4τ +1421×HBN (8)

whereτ is the effective number of torsional bonds and HBN
is the number of hydrogen bonds. This is then used with a
vapour pressure equation:

log10P
0
i = −

[
56.5−19.2log(σ )+9.2τ

]
(Tm −T )

19.1T

−
1Svap(Tb −T )

19.1T
−

[90.0+2.1τ ]

19.1

(
Tb −T

T
− ln

Tb

T

)
(9)

where theP 0
i is the vapour pressure (Atm) andσ is the

molecular rotational symmetry number. The first term is
a correction between the solid state and sub-cooled liquid
vapour pressure, so would only be used when calculating a
solid state vapour pressure. If calculating a liquid or sub-
cooled liquid, as with this case, then just the 2nd and 3rd
terms are used.

2.3 Equilibrium gas to aerosol partitioning

The partitioning model follows the approach described in
Barley et al. (2009). This approach is based upon earlier
models (Pankow, 1994; Pankow et al., 2001) with minor
modification. The semi-volatile compounds are partitioned
according to their saturation concentration (C∗

i ) value:

C∗

i =
106γiP

0
i

RT
(10)

whereP 0
i is the saturated vapour pressure of componenti

in atmospheres,γi is the activity coefficient of component
i andC∗

i is the saturation concentration in µmol m−3. The
amount of condensed material (COA) is then calculated by
summing over all componentsi ensuring the amount of ma-
terial (moles) are balanced between the two phases for each
component considered. Defining a partitioning coefficientξ

for compound i given its saturation concentrationC∗

i :

ξi =

(
1+

C∗

i

COA

)−1

(11)

where bothC∗

i andCOA have units of µmol m−3. The total
number of moles of organic aerosol is the sum of the products
of the individual component concentrations (Ci) and their
partitioning coefficient (ξi):

COA =

∑
i

Ciξi (12)

Equation (2) will thus quantify the amount of each compo-
nent in the condensed phase in µmol m−3 and is readily con-
verted into mass based amounts by multiplying by the ap-
propriate molecular weight. Summing the mass based con-
densed quantities for all the compounds provides the amount
of total condensed OA in mass based units.
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3 Experimental

Samples of oxalic, malonic, methyl-malonic, tartronic, suc-
cinic, malic, tartaric, keto-succinic, methyl-succinic, aspar-
tic, citramalic, glutaric, 2-methyl-glutaric, 3-methyl-glutaric,
2-keto-glutaric, 3-keto-glutaric, glutamic, citric and adipic
acid were purchased from Sigma-Aldrich with purities of
99% or higher and used with no further preparation. Solid
state vapour pressures were determined using a custom built
Knudsen Effusion Mass Spectrometer. Solid state vapour
pressures have been previously reported for oxalic, malonic,
succinic, glutaric and adipic acid (Booth et al., 2009a) us-
ing this KEMS system. The system (Fig. 1) consists of two
chambers connected via an all metal gate valve (VAT-valves).
Each chamber is separately pumped by 70 ls−1 pumping
speed V-81-T turbo pumps (Varian) on CF 63 flanges with a
SH-110 dry scroll backing pump. Pressure is measured using
convectorr gauges (Varian) for atmospheric pressure down to
10−3 mbar, and IMG-100 inverted magnetron ion gauges for
<10−4 mbar (Varian).

Briefly, a sample of known vapour pressure is placed in a
temperature controlled cell. The cell has a champfered ef-
fusing orifice with a size≤1/10 the mean free path of the
gas molecules in the cell. This ensures the orifice does not
significantly disturb the thermodynamic equilibrium of the
samples in the cell (Hilpert, 2001). The resulting molec-
ular beam is ionised by electron impact, then sampled by
a Balzers-Pfeiffer quadrupole mass spectrometer which was
used with a QMS 410 mass analyzer, a QMH 410 RF-box
connected to a QMG 422 controller. This produces a signal
proportional to the vapour pressure. After calibration a sam-
ple of unknown vapour pressure is put in the cell. During
sample change the second chamber is isolated via the gate
valve and vented to air allowing the ioniser filament to be left
on. After this calibration, unknown vapour pressures can be
determined from the intensity of the mass spectrometer sig-
nal of the compound in question. The system can be used to
determine partial pressures of mixed systems. The pressure
of theith component in the KEMS instrumentPi in Pascals,
is given by:

Pi =
kIiT

σi

(13)

whereIi is the ion intensity measured in the mass spectrome-
ter,σi is the ionisation cross section andT is the temperature
of the Knudsen cell in Kelvin.k is the machine constant
which incorporates information on the geometry of the sys-
tem, Clausing factor of the effusion orifice and any other cor-
rection factors, and is determined by using reference samples
of known vapour pressure.σi is calculated by summing the
ionisation cross section from constituent atoms or groups in
the molecule at the ionisation energy (70 eV) (Hilpert, 2001)
using data obtained from the NIST electron impact database
(Kim and Irikura, 2000). In all cases, the accommodation co-
efficient is assumed to be identical between samples. Such an

Fig. 1. Schematic of KEMS system. Reproduced from Booth et
al. (2009a).

assumption may introduce unquantifiable errors, but it is ex-
pected that they are minimized by appropriate choice of sim-
ilar reference and sample compounds (Booth et al., 2009a).
KEMS directly measures the steady state vapour pressure but
the equilibrium vapour pressure is desired. If the Knudsen
number is high enough then effusing gas does not signifi-
cantly disturb the equilibrium in the cell (Booth et al., 2009a;
Hilpert, 1991, 2001) making the steady state pressure mea-
sured as close as possible to equilibrium conditions (negli-
gible perturbation of condensation/evaporation equilibrium).
There was no systematic difference between hole size for the
dicarboxylic acid measurements made using this system in
Booth et al. (2009a), so the assumption that the steady state
vapour pressure is indistinguishably close to the equilibrium
vapour pressure is valid. Pressures reported are the average
of two runs. Based on repeat runs of several compounds
over a temperature range of 20 K we estimate the error to
be±40%. Enthalpies and entropies of sublimation were ob-
tain from a linear fit of the Clausius-Clapeyron equation with
estimated errors based on Booth et al. (2009a) of±15%.

Melting points (Tm) and Enthalpies of Fusion (1Hfus)

were measured using a TA instruments Q200 Differential
Scanning Calorimeter (DSC). Heat flow and temperature
were calibrated using an indium reference, and heat capacity
using sapphire reference. A heating rate of 10 C min−1 was
used. 5–10 mg of sample was measured out and recorded us-
ing a microbalance, the sample was then pressed into a her-
metically sealed aluminium DSC pan. A purge gas of N2
was used with a flow rate of 30 ml min−1. The reference
was an empty sealed pan of the same type. Data process-
ing was performed using the “Universal Analysis” software

Atmos. Chem. Phys., 10, 4879–4892, 2010 www.atmos-chem-phys.net/10/4879/2010/
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Fig. 2. Vapour pressures in Pa at 298 K.� solid state,� sub-cooled
liquid.

supplied with the instrument. 1cp,sl is frequently esti-
mated using three assumptions, based on empirical evidence;
1cp,sl=0 (Yalkowsky et al., 1981; Prausnitz et al., 1986),
1cp,sl=0.51Sfus (Tsonopoulos, 1970) and1cp,sl = 1Sfus
(Mauger et al., 1972; Grant et al., 1984) which is used in
this work.

4 Results and discussions

4.1 Solid state vapour pressures

The dependency of certain solid state properties, such as sol-
ubility (Booth et al., 2009b) or sublimation pressure (Booth
et al., 2009a; Bilde et al., 2003), of dicarboxylic acids on
carbon chain parity is well known and has been attributed
to crystalline structure. Hydrogen bonds formed from car-
boxylic end groups line up with neighbouring molecules
in either acis- (Odd) or trans- (Even) configuration which
makes the crystal structure less or more stable, respectively.
Interestingly this property also influences the effect of substi-
tutions on the carbon chain. For diacids with an odd carbon
number and a relatively less stable crystal structure, the addi-
tion of extra groups seems to always lower the vapour pres-
sure (Fig. 2, Table 1). A factor of∼0.5 for methyl-malonic
and tartronic compared to malonic, and 0.4 to 0.1 for glutaric
depending on the group. With succinic acid (an even carbon
number) most group additions raise the solid state vapour
pressure by factors of 2 to 6 (excepting a single alcohol or
ketone group).

Mønster et al. (2004) have studied methyl and dimethyl
substituted dicarboxylic acids using a HTDMA system. They
also note that additional groups give an increase in solid state
vapour pressure for even numbered dicarboxylic acids. They
see an even greater increase in solid state vapour pressure
from methyl substitutions to succinic acid compared with this
work. Knudsen mass loss (da Silva et al., 2001) has also been
used to study methyl substitutions (Table 2, Fig. 3). Mass

loss data extrapolated down to 298 K from a higher tempera-
ture shows good agreement with our data (within 1σ , except
for methyl malonic which is within 2σ). Frosch et al. (2010)
have recently published results on keto substituted diacids
using the HTDMA technique (Table 3, Fig. 3). We both ob-
serve reductions in the solid state vapour pressure for keto
substitutions, including a vapour pressure for 3-keto glutaric
∼50% lower than for 2-keto glutaric. They observe a greater
reduction in vapour pressure for all keto substitutions. Al-
though they state that 2-keto succinic and 3-keto glutaric
may have undergone decarboxylation, affecting the values.
Solubility or surface tension effects could possibly explain
the differences in the size of the keto and methyl substitu-
tion effects compared to Frosch et al. (2010) and Mønster et
al. (2004). Surface tension is a term in the Kohler equation
which effects the vapour pressure over the aerosols measured
in the TDMA method to derive vapour pressures. Froesch et
al. (2010) assume a surface tension of 72.9 mN/m−1 (pure
water) in their work, and they also state limited solubility
was not accounted for. This hypothesis could be tested by in-
tercomparing the two techniques on both a very soluble com-
pound (e.g. citric acid) and an insoluble, strongly surfactant
compound (e.g. pinonic acid).

4.2 Sub-cooled liquid vapour pressures

Sub-cooled liquid vapour pressures (Fig. 2) were derived us-
ing Eq. (1) and the thermochemical data in Table 4. The odd-
even effect is noticeable in the melting point and enthalpy of
sublimation of the straight chain diacids. The corrected sub-
cooled liquid vapour pressures for the unsubstituted diacids
show no odd-even effect. There is a significant difference,
by up to three orders of magnitude, between the two pres-
sures. This arises as a result of the sub-cooled liquid vapour
pressure diverging from the solid vapour pressure at the melt-
ing point. As theP298 K is measured at a temperature much
lower thanTm (A minimum of 71 K lower for glutaric acid
and a maximum of 238 K for the glutamic acid estimate) a
large difference is expected.

Riipinen et al. (2007) and Koponen et al. (2007) measured
vapour pressures in the humidity range 58–80% and derived
values for the sub-cooled liquid state (Table 5, Fig. 4). Our
data for those 4 diacids show higher values than those of Ri-
ipinen et al. (2007). The discrepancy between our results
is far larger at short chain lengths; a factor of 6.5 out for
malonic, 4 for succinic, 2 for glutaric, and adipic acid is in
agreement within experimental error. The HDTMA method
requires a model of the thermodynamic activity, the choice
of which will impact upon the results obtained. Riipinen et
al. (2007) used Dortmund modified UNIFAC. This may ex-
plain the differences observed which seem especially promi-
nent for malonic acid. Koponen et al. (2007) used two differ-
ent activity models (Dortmund modified UNIFAC and Van
Laar), and observed differences between them of two orders
of magnitude in the calculated solid state vapour pressure

www.atmos-chem-phys.net/10/4879/2010/ Atmos. Chem. Phys., 10, 4879–4892, 2010
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Table 1. KEMS determined solid state vapour pressures, enthalpies of sublimation and entropies of sublimation. Estimated maximium error
onP298solid±40%.

 

 

Table 1. KEMS determined solid state vapour pressures, enthalpies of sublimation and 

entropies of sublimation. Estimated maximium error on P298 solid ± 40%. 

Structure Name P298 solid (Pa) ∆Hsub  

(kJ mol-1) 

∆Ssub  

(J mol-1 K-1) 

OH

O O

OH 

Oxalic 2.15×10-2 75 213 

     

OH

O

OH

O

 

Malonic 5.73×10-4 92 238 

OH

O

OH

O

CH3  

2-methyl 3.34×10-4 87 225 

OH

O

OH

O

OH  

2-hydroxy 

(tartronic) 

2.50×10-4 69 162 

     

OH

O

O

OH

 

Succinic 1.13×10-4 93 222 

 33

for malonic acid, and the differences between the different
activity models decreases with increasing chain length. A
comparison of oxalic acid (C2) could confirm if it is an ac-
tivity model dependent difference especially prominent for
smaller molecules. This opens up the possibility of combin-
ing KEMS and TDMA to validate activity models, or if the
activity coefficients are known, to evaluate the accommoda-
tion coefficients required for the TDMA technique.

Malonic acid shows an increase (factor of∼1.7) in sub-
cooled liquid vapour pressure for methyl and alcohol addi-
tions. Glutaric acid shows a decrease by 0.5 for extra methyl
groups, amino and keto groups in the 2-position have no dis-
cernable effect as the magnitude of the sub-cooled correc-
tion cancel out the lower solid state vapour pressure. In-
terestingly the 3-keto acid and citric acid (an extra OH and
COOH on the third carbon) show an increase by a factor of
1.6. Succinic acid shows a greater sensitivity to substitutions;
single-hydroxy and -methyl groups decrease the vapour pres-
sure (by a factor of∼0.2) but 2-methyl, 2-hydroxy and
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Table 1. Continued.

OH

O

O

OH

CH3

 

2-methyl 2.54×10-4 100 268 

OH

O

O

OH

OH

CH3

 

2-methyl,2-

hydroxy 

(citramalic) 

4.90×10-4 104 286 

OH

O

O

OH

OH

 

2-hydroxy 

(malic) 

6.37×10-5 81 192 

OH

O

O

OH

OH

OH

 

2,3-

dihydroxy 

(tartaric) 

1.79×10-4 68 157 

OH

O

O

OH

NH2

 

2-amino 

(aspartic) 

6.71×10-4 53 116 

OH

O

O

OH

O

 

2-keto 8.23×10-5 81 195 
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Table 1. Continued.

OH

O

OH

O

 

Glutaric 4.21×10-4 123 208 

OH

O

OH

O

CH3  

2-methyl 1.85×10-4 82 204 

OH

O

OH

OCH3

 

3-methyl 1.77×10-4 86 215 

OH

O

OH

OOH

OH O  

3-

carboxylic,3-

hydroxy 

(citric) 

 

3.79×10-5 64 129 

OH

O

OH

O

NH2  

2-amino 

(glutamic) 

3.60×10-5 63 128 

OH

O

OH

OO

 

2-keto 1.23×10-4 53 103 

OH

O

OH

O

O  

3-keto 5.96×10-5 89 217 

     

OH

O

OH

O  

Adipic 6.00×10-6 119 231 
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Table 2. Comparison of methyl substituted dicarboxylic acid solid state vapour pressures.

P298 solid(Pa) P298 solid(Pa) P298 solid(Pa)
this work Mønster et al. (2004) da Silva et al. (2001)

2-methyl-malonic 3.34±1.34×10−4 9.10×10−4 5.70×10−4

2-methly-succinic 2.54±1.01×10−4 1.60×10−3 2.90×10−4

2-methly-glutaric 1.85±0.74×10−4 n/a 2.30×10−4
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Fig. 3. Comparison of measured solid state vapour pressure at
298 K in Pa with literature values. Symbols;× KEMS,N Riberio da
Silva et al. (2001),● Froesch et al. (2010),� Mønster et al. (2003).
Froesch et al. (2010) suggest that 2-keto succinic and 3-keto glutaric
acid may have undergone decarboxylation affecting their results.

Table 3. Comparison of keto substituted dicarboxylic acid solid
state vapour pressures.

P298 solid P298 solid
this work Frosch et al. (2010)

succinic 1.13±0.452×10−4 3.90×10−5

keto succinic 8.23±3.29×10−5 1.00×10−5

glutaric 4.21±1.72×10−4 6.70×10−4

2-keto glutaric 1.23±0.49×10−4 3.60×10−5

3-keto glutaric 5.96±2.38×10−5 1.60×10−5

2,3-dihydroxy substitutions show increases by a factor of 2
and 80 respectively. 2-amino and 2-keto also show an in-
creased vapour pressure with respect to succinic acid, by fac-
tors of 6.6 and 4 respectively. Increasing vapour pressure
by adding polar groups is a counter intuitive result. Chat-
topadhyay and Ziemann (2005) have used thermal desorption
particle beam mass spectrometry to obtain solid state vapour
pressures of hydroxy-substituted carboxylic and dicarboxylic
acids and observe similar effects. They note that group po-
sition is highly important; for glutaric acid they observe a
2-hydroxy substitution increasing the vapour pressure by a
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Fig. 4. Comparison of sub-cooled liquid vapour pressure at 298 K
in Pa. Symbols;× KEMS, � Riipinen et al. (2007).

factor of 4, and 3-hydroxy substitution decreasing the vapour
pressure by a factor of 66. Adipic and azelaic hydroxy sub-
stitutions were shown to have similar positional effects. Two
possible reasons for the unusual behavior of additional po-
lar groups are; intra-molecular hydrogen bonding between
the extra group and one of the carboxylic acid groups (Chat-
topadhyay and Ziemann, 2005), or an inductive effect reduc-
ing the polarity of the acid group. Either could reduce inter-
molecular bonding and raise the vapour pressure.

The thermochemical parameters used in Eq. (1) determine
the difference between the two states. In the literature, re-
portedTm values lie within a range of 4 K for malonic and
succinic, and 7 K for glutaric and adipic. The extremes of
these values give differences of 5% and 12% respectively
for the sub-cooled liquid vapour pressure. Similarly,1Hfus
values lie in a range of∼7 kJ mol−1 for malonic and adipic
and∼4 kJ mol−1 for succinic and glutaric; leading to varia-
tions of up to 80% and 40% respectively. The assumption
of 1cp;sl = 1Sfus leads to an differences in the sub-cooled
liquid vapour pressure, compared with literature values, of
∼10–20%. Combining this with the uncertainties in the solid
state vapour pressure (∼40%) we estimate a maximum un-
certainty of±75% for our sub-cooled liquid vapour pres-
sures. The sub-cooled liquid vapour pressure diverges from
the solid state at the melting point, so it is expected that the
higherTm is, the greater the correction. This does however
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Table 4. Sub-cooled liquid vapour pressures, melting points, enthalpies and entropies of fusion. * denotes thermochemical data was
unobtainable, Joback et al. (1987) estimates were used instead. Estimated maximum error onP298 sub−cooled±75%.

P298 sub−cooled Tm 1Hfus 1Sfus
(Pa) (K) (J mol−1) (J mol−1 K−1)

Oxalic 2.74×10−2 370 3424 9

Malonic 3.19×10−3 406 18 739 46
2-methyl 5.34×10−3 403 30 746 76
2-hydroxy 5.64×10−3 428 30 619 72

Succinic 3.86×10−3 458 31 259 68
2-methyl 5.58×10−4 383 9980 26
2-methyl,2-hydroxy 7.48×10−3 379 35 697 94
2-hydroxy 8.72×10−4 403 29 031 72
2,3-dihydroxy 3.23×10−1 480 62 723 131
2-amino 2.56×10−2 524 28 076* 114
2-keto 1.67×10−2 437 50 382 115

Glutaric 1.96×10−3 369 22 043 60
2-methyl 9.63×10−4 349 30 259 87
3-methyl 9.19×10−4 356 27 351 77
citric 3.10×10−3 427 43 455 102
2-amino 2.05×10−3 536 30 666* 105
2-keto 2.02×10−3 386 34 693 90
3-keto 3.22×10−3 397 45 895 116

Adipic 2.14×10−4 423 35 891 85

Table 5. Comparison of dicarboxylic acid sub-cooled liquid vapour
pressures.

P298 sub−cooled(Pa) P298 sub−cooled(Pa)
this work Riipinen et al. (2007)

Oxalic 2.74±1.92×10−2 n/a
Malonic 3.19±2.23×10−3 4.90×10−4

Succinic 3.86±2.70×10−3 9.90×10−4

Glutaric 1.96±1.37×10−3 7.10×10−4

Adipic 2.14±1.49×10−4 1.70×10−4

magnify the impact of any errors association with1Hfus or
1Cps,l . The comparison of malonic, succinic, glutaric and
adipic literature values ofTm, 1Hfus and1Cps,l with ours
does not reveal any systematic differences with increasing
Tm. So while the random errors may be higher for highTm

compounds we do not expect a systematic error.

4.3 Vapour pressure estimates

As many vapour pressure methods are based predominantly
on data for more volatile compounds, low-volatility com-
pound data is essential to verify which methods are best

suited for atmospheric applications. The subset of vapour
pressure estimation methods shown here are those from the
E-AIM (Extended Aerosol Inorganics Model) website,http:
//www.aim.env.uea.ac.uk/aim/aim.php(Wexler and Clegg,
2002; Clegg et al., 2008). The estimation methods used here
first require a boiling point. Barley and McFiggans (2010)
found the Nannoolal et al. (2004) boiling points to give the
best results when comparing estimated boiling points for
those with experimental data for low volatility compounds.
In this data set the Nannoolal et al. (2004) and Stein and
Brown (1994) boiling points (Table 6) are in fairly good
agreement with differences∼10 K except for citric and tar-
taric acid (2,3-dihydroxy-succinic acid) where the difference
is∼20 K. The Joback et al. (1987) method gives much higher
boiling points than those of Nannoolal et al. (2004), an aver-
age of 56 K higher and up to 160 K for citric acid.

Table 7 and Fig. 5 show the estimated vapour pressures
compared with the KEMS measured values. The Moller
et al. (2008), Nannoolal et al. (2008) and Myrdal and
Yalkowsky (1997) methods give the best results over this
range of compounds when combined with Nannoolal (2004)
and Stein and Brown (1994) boiling points, on average 1–2
orders of magnitude out. When using Joback et al. (1987)
boiling points the Moller et al. (2008) and Nannoolal et
al. (2008) methods perform worse, respectively 4 and 3

Atmos. Chem. Phys., 10, 4879–4892, 2010 www.atmos-chem-phys.net/10/4879/2010/
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Table 6. Normal boiling points by the estimation methods, in K.

Joback Nannoolal Stein and
Brown

Oxalic 536.38 529.636 520.084

Malonic 559.30 544.60 537.30
2-methyl 581.70 548.53 543.87
2-hydroxy 651.00 595.02 580.91

Succinic 582.14 559.40 553.60
2-methyl 604.58 563.54 559.80
2-methyl,2-hydroxy 693.97 602.79 596.46
2-hydroxy 673.88 607.13 594.65
2,3-dihydroxy 765.62 651.83 629.01
2-amino 654.23 590.00 584.15
2-keto 636.01 593.11 582.81

Glutaric 605.00 573.80 570.00
2-methyl 627.46 578.06 574.84
3-methyl 627.46 578.06 574.84
Citric 862.36 700.97 680.33
2-amino 677.11 603.44 597.69
2-keto 658.89 606.60 596.44
3-keto 658.89 606.60 596.44

Adipic 627.9 587.9 583.5

orders of magnitude out on average. Interestingly the Myrdal
and Yalkowsky (1997) method, when combined with Joback
et al. (1987) boiling points gives one of the better results,
with the overestimating bias of Joback et al. (1997) boil-
ing points being cancelled out by an opposing bias from the
vapour pressure method. The main cause of inaccuracy for
the Moller et al. (2008) and Nannoolal et al. (2008) methods
are the –hydroxy containing compounds, without these they
provide the best match to the experimental data. The Moller
et al. (2008) specifically includes extra terms for both COOH
and OH so additional experimental data from these sorts of
compounds is more likely to help improve this method more
than any other.

4.4 Partitioning calculation

In order to assess the impact of estimates of vapour pres-
sures on secondary organic aerosol (SOA) formation, the par-
titioning calculation method described by Barley and Mc-
Figgans (2010); Barley et al. (2009) was used. The base
case used the sub-cooled liquid vapour pressure derived from
the KEMS with the abundance of all 19 components set
to a value which gave 10.6 µg m−3 of OA as in the Bar-
ley and McFiggans (2010) study. Figure 6 shows a box-
whisker plot of the effect on OA yield of substituting a sin-
gle estimated vapour pressure value for each compound, in
turn. The boxes show the lower quartile, median and up-
per quartile, the whiskers are the lowers and highest values
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Fig. 5. Sub-cooled liquid vapour pressures in Pa at 298 K. Symbols:
× KEMS; ❍ Moller with NannoolalTb; ● Moller with JobackTb;
� Myrdal and Yalkowsky with Stein and BrownTb; � Myrdal and
Yalkowsky with JobackTb; M Nannoolal with NannoolalTb; N
Nannoolal with JobackTb.
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Fig. 6. Box-whisker plots of the predicted amount of OA formed by
the partitioning model using estimated vapour pressures for a sin-
gle compound out of the 19 reported. The boxes show the lower
quartile, median and upper quartile, the whiskers are the lowest and
highest values within 1.5 times the interquartile range. The base
case uses experimental vapour pressure values with the concentra-
tion of all components set to the value that gives 10.6 µg m−3. Es-
timation methods are: 1) Moller with JobackTb; 2) Nannoolal with
JobackTb; 3) Myrdal and Yalkowsky with JobackTb; 4) Moller
with NannoolalTb; 5) Nannoolal with NannoolalTb; 6) Myrdal
and Yalkowsky with Stein and BrownTb.

within 1.5 times the interquartile range, the cross in meth-
ods 5 and 6 are the highest or lowest values outside of 1.5
times the interquartile range. As expected, methods us-
ing Joback et al. (1987) boiling points tend to overestimate
the OA yield, with median overestimates by approximately
12, 8 and 2 µg m−3 for Moller et al. (2008), Nannoolal et
al. (2008) and Myrdal and Yalkowsky (1997) respectively.
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Table 7. Vapour pressure results for estimation methods, allP298 K are measured in Pa in the sub-cooled liquid state. (J) = Joback et
al. (1987)Tb, (N) = Nannoolal et al. (2004)Tb and (S&B) = Stein and Brown (1994)Tb. The experimental data in the final column are
measured over a range of 20 K with maximum errors of±75%.

Moller (J) Nannoolal (J) Myrdal and Moller (N) Nannoolal (N) Myrdal and Experimental
Yalkowsky (J) Yalkowsky (S&B) P298 sub−cooled(Pa)

Oxalic 3.85×10−3 4.35×10−1 2.99×10−1 6.69×10−3 6.45×10−1 7.90×10−1 2.74×10−2

Malonic 1.48×10−3 7.00×10−2 9.30×10−2 4.91×10−3 1.73×10−1 3.46×10−1 3.19×10−3

2-methyl 4.79×10−4 1.29×10−2 3.11×10−2 7.33×10−3 1.06×10−1 2.94×10−1 5.34×10−3

2-hydroxy 1.99×10−9 7.63×10−6 2.76×10−4 1.94×10−6 5.67×10−4 2.19×10−2 5.64×10−3

Succinic 4.10×10−4 1.08×10−2 2.70×10−2 2.77×10−3 4.71×10−2 1.50×10−1 3.86×10−3

2-methyl 1.01×10−4 1.91×10−3 8.59×10−3 3.37×10−3 2.94×10−2 1.25×10−1 5.58×10−4

2-methyl, 2-hydroxy 2.18×10−11 1.15×10−7 2.73×10−5 3.16×10−6 1.92×10−4 1.18×10−2 7.48×10−3

2-hydroxy 1.57×10−10 7.23×10−7 7.49×10−5 8.61×10−7 1.52×10−4 1.06×10−2 8.72×10−4

2,3-dihydroxy 1.09×10−16 5.88×10−12 1.72×10−7 6.77×10−9 3.34×10−7 1.18×10−3 3.23×10−1

2-amino 3.65×10−7 2.48×10−5 2.53×10−4 1.89×10−4 2.57×10−3 1.98×10−2 2.56×10−2

2-keto 2.89×10−6 3.75×10−4 1.36×10−3 1.67×10−4 6.64×10−3 3.37×10−3 1.67×10−2

Glutaric 8.56×10−5 1.59×10−3 7.33×10−3 1.30×10−3 1.30×10−2 6.51×10−2 1.96×10−3

2-methyl 1.60×10−5 2.69×10−4 2.23×10−3 1.32×10−3 8.21×10−3 5.37×10−2 9.63×10−4

3-methyl 1.60×10−5 2.69×10−4 2.23×10−3 1.32×10−3 8.21×10−3 5.37×10−2 9.19×10−4

3-hydroxy acid 4.18×10−21 6.47×10−16 4.45×10−10 5.34×10−9 9.32×10−9 6.58×10−5 3.10×10−3

2-amino 4.25×10−8 2.77×10−6 6.44×10−5 8.00×10−5 6.99×10−4 9.42×10−3 2.05×10−3

2-keto 3.75×10−7 4.35×10−5 3.49×10−4 6.84×10−5 1.70×10−3 1.57×10−2 2.02×10−3

3-keto 3.75×10−7 4.35×10−5 3.49×10−4 6.84×10−5 1.70×10−3 1.57×10−2 3.22×10−3

Adipic 1.34×10−5 2.19×10−4 1.89×10−3 5.18×10−4 3.66×10−3 2.86×10−2 2.14×10−4

Myrdal and Yalkowsky (1997) with Stein and Brown (1994)
boiling points gives the best results with these compounds,
with a narrow spread and a median within 1 µg m−3 of the
target yield. The Nannoolal et al. (2008) method with Nan-
noolal et al. (2004) boiling points also shows a similar result
with the median within 1 µg m−3 of the target yield although
over a larger range. The Moller et al. (2008) method with
Nannoolal et al. (2004) boiling points tends to cause over
estimates in the OA yield, with a median value 10 µg m−3

greater than the base case, with a very asymmetric spread to-
wards lower OA yields. This will be greatly influenced by
this method’s tendency to underestimate the vapour pressure
of OH containing compounds.

In order to determine the error propagation, the partition-
ing calculations have also been performed with the base case
increased and decreased by a factor of 1.7 to investigate the
most extreme interpretation of our errors on the calculation
(in reality they are random errors and would not all be bi-
ased in the same direction). This does have a big effect
on the total amounts of SOA predicted to form because of
normalising the concentration so that the base case gives
10.6 µgram m−3 of SOA. With experimental VP values the
required concentration is 0.041778 µmoles m−3. If the VP
values are all increased by×1.7 then the required concentra-
tion is 0.064116 µmoles m−3 (giving much more SOA with
the estimated VP values); while if the experimental VPs

are reduced by the same factor the required concentration
(0.028194 µmoles m−3) gives much less SOA. The general
trends between the estimation methods however remain the
same with the Myrdal and Yalkowsky (1997) and Stein and
Brown (1994) method still the best in each case followed by
the Nannoolal et al. (2008) Nannoolal et al. (2004) method.

5 Conclusions

KEMS solid state vapour pressures combined with melting
points and enthalpies and entropies of fusion have been used
to obtain sub-cooled liquid vapour pressures for a selection of
multifunctional compounds based on dicarboxylic acids. The
sub-cooled liquid vapour pressures have been compared with
a series of vapour pressure estimation methods. The methods
underestimate the observed vapour pressure of dicarboxylic
acids substituted with hydroxy groups reported in this work,
possibly due to intramolecular hydrogen bonding between
COOH and OH groups. Myrdal and Yalkowsky (1997), com-
bined with Stein and Brown (1994) boiling points gives the
best estimates. Partitioning calculations illustrate the impact
of this for OA yields. The Moller et al. (2008) and Nannoolal
et al. (2008) methods with Nannoolal et al. (2004) boiling
points do not match the data as closely. They do however
include parameters for group interactions, and the Moller et
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al. (2008) method in particular includes extra terms specifi-
cally for COOH and OH groups. As the interaction between
these two groups causes most of the discrepancies, we expect
further experimental data will be able to improve this method
disproportionately more than any other.
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