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Abstract. Stratospheric aerosol particles under non-volcanic
conditions are typically smaller than 0.1 µm. Due to funda-
mental limitations of the scattering theory in the Rayleigh
limit, these tiny particles are hard to measure by satellite
instruments. As a consequence, current estimates of global
aerosol properties retrieved from spectral aerosol extinction
measurements tend to be strongly biased. Aerosol surface
area densities, for instance, are observed to be about 40%
smaller than those derived from correlative in situ measure-
ments (Deshler et al., 2003). An accurate knowledge of the
global distribution of aerosol properties is, however, essen-
tial to better understand and quantify the role they play in
atmospheric chemistry, dynamics, radiation and climate.

To address this need a new retrieval algorithm was devel-
oped, which employs a nonlinear Optimal Estimation (OE)
method to iteratively solve for the monomodal size dis-
tribution parameters which are statistically most consistent
with both the satellite-measured multi-wavelength aerosol
extinction data and a priori information. By thus combin-
ing spectral extinction measurements (at visible to near in-
frared wavelengths) with prior knowledge of aerosol proper-
ties at background level, even the smallest particles are taken
into account which are practically invisible to optical remote
sensing instruments.

The performance of the OE retrieval algorithm was as-
sessed based on synthetic spectral extinction data generated
from both monomodal and small-mode-dominant bimodal
sulphuric acid aerosol size distributions. For monomodal
background aerosol, the new algorithm was shown to fairly
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accurately retrieve the particle sizes and associated integrated
properties (surface area and volume densities), even in the
presence of large extinction uncertainty. The associated re-
trieved uncertainties are a good estimate of the true errors.
In the case of bimodal background aerosol, where the re-
trieved (monomodal) size distributions naturally differ from
the correct bimodal values, the associated surface area (A)
and volume densities (V ) are, nevertheless, fairly accurately
retrieved, except at values larger than 1.0 µm2 cm−3 (A) and
0.05 µm3 cm−3 (V ), where they tend to underestimate the
true bimodal values. Due to the limited information content
in the SAGE II spectral extinction measurements this kind of
forward model error cannot be avoided here. Nevertheless,
the retrieved uncertainties are a good estimate of the true er-
rors in the retrieved integrated properties, except where the
surface area density exceeds the 1.0 µm2 cm−3 threshold.

When applied to near-global SAGE II satellite extinction
measured in 1999 the retrieved OE surface area and volume
densities are observed to be larger by, respectively, 20–50%
and 10–40% compared to those estimates obtained by the
SAGE II operational retrieval algorithm. An examination of
the OE algorithm biases with in situ data indicates that the
new OE aerosol property estimates tend to be more realistic
than previous estimates obtained from remotely sensed data
through other retrieval techniques.

Based on the results of this study we therefore suggest
that the new Optimal Estimation retrieval algorithm is able
to contribute to an advancement in aerosol research by con-
siderably improving current estimates of aerosol properties
in the lower stratosphere under low aerosol loading condi-
tions.

Published by Copernicus Publications on behalf of the European Geosciences Union.

http://creativecommons.org/licenses/by/3.0/


4296 D. Wurl et al.: Optimal estimation retrieval of aerosol properties

1 Introduction

Stratospheric aerosols are known to play an important role
in the climate system because they can influence the global
chemical and radiation balance in the atmosphere in a num-
ber of ways (McCormick et al., 1995; Solomon, 1999).
In the aftermath of large volcanic eruptions stratospheric
aerosols have a significant impact on the Earth’s radiation
balance for several years after the eruption. The obser-
vation that stratospheric sulphuric acid aerosol can exert a
cooling effect on tropospheric temperatures (e.g.Pueschel,
1996) has even stimulated the idea of deliberately introduc-
ing aerosols to counteract climate warming caused by an-
thropogenic emissions of greenhouse gases. This area of re-
search, called geoengineering by sulphate aerosols, is receiv-
ing increasing attention (e.g.Rasch et al., 2008a,b; Tilmes
et al., 2008). During volcanically quiescent periods, when
stratospheric aerosol can be characterized as in a background
state unperturbed by volcanism, the direct radiative impact
of stratospheric aerosols tends to be rather small. How-
ever, these particles may also play a role in the nucleation
of near tropopause cirrus, and thus indirectly affect radiation
(Kärcher and Str̈om, 2003; Penner et al., 2009). Stratospheric
background aerosols also play an important role in the chem-
ical balance of the stratosphere. At mid-latitudes they affect
the ozone balance indirectly by interacting with both nitrous
oxides (Fahey et al., 1993) and chlorine reservoir species.
For instance, NOx increases under low aerosol loading con-
ditions and induces ozone loss from the nitrogen catalytic
cycle (Crutzen, 1970). In the polar stratosphere the small
aerosol particles provide condensation sites for polar strato-
spheric clouds which then provide the surfaces necessary to
convert inactive to active chlorine leading to polar ozone loss.
These examples provide an insight into the intricate interac-
tions between stratospheric aerosols and the climate system.

The impact of an aerosol on the different processes is
determined by the chemical composition and, more impor-
tantly, by the microphysical properties: particle size distri-
bution, surface area density, and the volume density. These
properties are determined by the production mechanisms of
the particles, by the source of precursor gases and subsequent
chemical reactions, by temperature and the abundance of gas
phase sulphuric acid, and by the growth and removal pro-
cesses.

Much knowledge about these aspects was gained from in
situ measurements. The stratospheric aerosol layer was first
measured in the late 1950s using balloon-borne impactors
(Junge et al., 1961) and is often called the Junge layer, al-
though its existence was suggested 50 years earlier from twi-
light observations (Gruner and Kleinert, 1927). From a num-
ber of complementary measurements the knowledge was es-
tablished that stratospheric aerosol is composed primarily of
sulphuric acid and water during both volcanically active and
quiescent periods (e.g.Junge et al., 1961; Rosen, 1971; Hof-
mann and Rosen, 1961; Deshler et al., 1992; Sheridan et al.,

1992; Grainger at al., 1993; Arnold et al., 1998; Murphy
et al., 1998). Under background conditions, these originate
mainly from the tropospheric source gases carbonyl sulphide
(OCS), (an inert sulphur bearing molecule), and SO2, and
from direct injections of sulphate particles (Crutzen, 1976;
Turco et al., 1980; Weisenstein and Bekki, 2006). During
strong volcanic eruptions, sulphur is directly injected into
the stratosphere and then oxidized and transformed into sul-
phuric acid. Other minor constituents of stratospheric aerosol
include upper tropospheric material such as nitrate, ammo-
nia, organics, minerals and metals (e.g.Talbot et al., 1998;
Murphy et al., 1998), or meteoric material (Murphy et al.,
2007; Renard et al., 2008), aircraft and rocket exaust (Kjell-
strom et al., 1999; Danilin et al., 2001; Jackman et al., 1996).
A comprehensive review of the measurements, the impor-
tance, and the life cycle of local and global stratospheric
aerosol can be found inDeshler(2008).

Direct measurements of size resolved particle concentra-
tions in the lower stratosphere are provided by balloon-
borne in situ measurements which are limited primarily
to Laramie/Wyoming/USA (41◦ N) with sporadic measure-
ments from Lauder/NZ (45◦ S) and a few other locations
(Hofmann et al., 1975; Deshler et al., 2003). These measure-
ments will be used (in this study) as prior knowledge, with
the help of which SAGE II spectral extinction measurements
will be evaluated to obtain new estimates of aerosol prop-
erties under non-volcanic conditions. The balloone-borne
measurements from Laramie (Deshler et al., 2003) along
with ground based lidar measurements at two mid-latitude
sites (Osborn et al., 1995; Jäger, 2005) and two tropical sites
(Barnes and Hofmann, 1997; Simonich and Clemesha, 1997)
provide the longest stratospheric aerosol records available
(Deshler et al., 2006). They are particularly valuable, for in-
stance, for having captured the complete cycle of three major
volcanic eruptions (Fuego, 1974, 14◦ N; El Chich́on, 1982,
17◦ N; Pinatubo, 1991, 15◦ N) which have not been measured
in as much detail or even not at all by satellite instruments.

Although ground-based or air-borne in situ measurements
provide detailed and valuable information about strato-
spheric aerosol properties, their reach remains local. To be
able to quantify the climatic impact of stratospheric aerosol
on a global scale, they have to be complemented by large-
scale measurements from space based platforms.

Long-term measurements of the global stratospheric
aerosol burden using satellite instruments began in the late
1970s with the Stratospheric Aerosol Measurement (SAM) II
(Pepin et al., 1977; Poole and Pitts, 1994) and the Strato-
spheric Aerosol and Gas Experiment (SAGE) I (McCormick
et al., 1979). SAM II was a one channel instrument which
took measurements at high-latitude regions (between 64 and
86◦ N) for about 12 years between 1979 and 1991. SAGE I
was a four channel sun spectrometer taking measurements
on a near-global extent (between 80◦ N and 80◦ S) between
1979 and 1981. Its successor, SAGE II (McCormick, 1987),
was upgraded to seven spectral channels (four of which are

Atmos. Chem. Phys., 10, 4295–4317, 2010 www.atmos-chem-phys.net/10/4295/2010/



D. Wurl et al.: Optimal estimation retrieval of aerosol properties 4297

Table 1. Fractional contributions1β(λ) (in %) to the total SAGE II
spectral extinction (atλ =[0.386, 0.452, 0.525, 1.020] µm) of all
particles smaller than 0.1 µm in the case of three normalized (with
number densityN = 1 particle per cm3) lognormal particle size
distributions (background conditions with(a) median radiusR =

0.008 µm and distribution widthS = 0.90; (b) R = 0.067 µm,S =

0.45; (c) R = 0.180 µm,S = 0.25) and how they compare to typical
SAGE II experimental uncertainties,σ(βλ). The definition of the
size distribution parametersN , R, andS is given in Sect.2.

R, S 1β(0.386) 1β(0.452) 1β(0.525) 1β(1.020)

0.008, 0.90 19 15 12 4
0.067, 0.45 15 13 11 6
0.180, 0.25 0.0 0.0 0.0 0.0

σ(βλ) 10–60 5–35 3–25 1–10

suitable for aerosol measurements) and provides the longest
continual record of aerosol spectral measurements to date: it
operated between 1984 and 2005 for 21 years.

For a volcanic aerosol laden stratosphere, current esti-
mates of aerosol surface area density retrieved from SAGE II
measurements are observed to agree well with those inferred
from size distributions fit to in situ measurements (Thoma-
son et al., 1997). In contrast, under background aerosol
conditions, the retrieved surface area estimates tend to be
40% smaller than those derived from the corresponding in
situ data (Deshler et al., 2003; Reeves et al., 2008). Dis-
crepancies have also been observed between SAGE II es-
timates and in situ measurements of number densities and
median particle radii (Bingen et al., 2004a,b). These and
other observations gathered in a recent assessment of strato-
spheric aerosol properties lead to the conclusion that “signif-
icant questions remain regarding the ability to characterize
stratospheric aerosol during volcanically quiescent periods,
particularly in the lower stratosphere” (Thomason and Peter,
2006). A good knowledge of these aerosol properties at the
natural background level is, however, an important reference
base on which trends can be estimated and perturbations of
the climate system can be quantified.

The difficulty associated with retrieving aerosol proper-
ties from SAGE II measurements in the volcanically unper-
turbed stratosphere has to do with the small sizes of back-
ground aerosol particles. Median radii are typically between
0.01 and 0.2 µm. One problem is that their contribution to
the measured optical extinction is often of the same order of
magnitude as the experimental uncertainty. To illustrate this,
Table1 presents the fractional contributions by all particles
smaller than 0.1 µm to the total SAGE II spectral extinction,
for three different size distributions. They are observed to be
similar in magnitude to the listed experimental spectral un-
certainty levels. Table2 lists the associated fractional particle
number, surface area and volume. These numbers demon-
strate that for two of the three example size distributions the

Table 2. Fractional particle number,1N , surface area density,1A,
and volume density,1V , (in %) of all particles smaller than 0.1 µm
in the case of three normalized (with number densityN = 1 particle
per cm3) lognormal particle size distributions (background condi-
tions with (a) median radiusR = 0.008 µm and distribution width
S = 0.90; (b) R = 0.067 µm,S = 0.45; (c) R = 0.180 µm,S = 0.25).
The definition of the size distribution parametersN , R, andS and
the associated integrated aerosol propertiesA, andV are given In
Sect.2.

R, S 1N 1A 1V

0.008, 0.90 99.7 83.3 52.5
0.067, 0.45 81.7 50.2 32.9
0.180, 0.25 0.8 0.2 0.1

great majority of all particles are smaller than 0.1 µm. More-
over, volume density depends less on the small particles than
surface area density.

In addition to the low sensitivity problem, particles that
are much smaller than the measurement wavelength are hard
or even impossible to discriminate because of fundamen-
tal limitations of the scattering theory in the Rayleigh limit
(Heintzenberg et al., 1981). The accurate determination of
the particle size distribution parameters and associated inte-
grated aerosol properties depends, however, on all particles
including the smallest. This means, that accurate aerosol
property estimates can only be obtained by combining the
measurements with additional prior information about those
particles in the ”blind spot” of the experiment.

In response to this need for improved estimates of aerosol
properties under background conditions, a new aerosol re-
trieval model was developed, that uses the Optimal Esti-
mation approach to combine space based measurements of
aerosol extinction with prior knowledge about background
monomodal size distributions. This way, even the smallest
and practically invisible particles are considered in the re-
trieval process. Section2 introduces the mathematical de-
scription of the aerosol microphysical properties, the basic
radiative transfer equations, the SAGE II satellite experi-
ment, and the current SAGE II retrieval method. In Sect.3
the new OE retrieval algorithm and the Bayesian approach,
which it is based upon, are described. In Sect.4 the new OE
estimation retrieval algorithm is assessed based on synthetic
aerosol extinction data. The a priori data set is described,
the retrieved results are presented, and the retrieved as well
as additional uncertainties are assessed in a comprehensive
error analysis. In Sect.5 the new algorithm is applied to
near-global SAGE II satellite measurements. The results are
presented and discussed in the light of current estimates of
aerosol properties retrieved (from the same extinction data
but) using different retrieval approaches. Section6 closes
with a summary of the main results and conclusions.
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2 Aerosol properties and measurements

The size spectrum of stratospheric aerosol is generally con-
tinuous and may range from only a few nanometres up to
about 10 micrometres. The most widely used size distribu-
tion model for stratospheric aerosols is the differential log-
normal expression, given by

dN(r)

dr
=

∑
i

Ni
√

2πSi

·
1

r
·exp

[
−

1

2

(lnr − lnRi)
2

S2
i

]
(1)

whereNi is the total number of particles per unit volume of
air, Ri is the median particle radius, andSi is the half width
or standard deviation of modei. (S is the equivalent of lnσ ,
which is sometimes used in the literature). Monomodal dis-
tributions have only one mode, whereas multimodal particle
size distributions can be described by a superposition of sev-
eral modes.dN(r)/dr is the number of particles per unit vol-
ume of air in a radius interval betweenr andr+dr. The total
number of particles can be calculated by summation over all
particle radii and is usually given per cm3.

The non-volcanic stratospheric background aerosol is usu-
ally well described by a monomodal size distribution, al-
though balloon borne in situ measurements indicate that a
second mode of larger but less abundant particles can coexist
(Deshler, 2008).

From the particle size distribution the associated surface
area density and volume density can be derived

A =

∫
∞

0
4πr2

·
dN(r)

dr
dr = 4πNR2

·exp
[
2S2

]
(2)

V =

∫
∞

0

4

3
πr3

·
dN(r)

dr
dr =

4

3
πNR3

·exp

[
9

2
S2
]

(3)

whereA is usually given in µm2 per cm3 andV in µm3 per
cm3. The effective radius or area-weighted mean radius is
given by

Reff =
3V

A
= R ·exp

[
5

2
S2
]
. (4)

The presence of atmospheric aerosols can be detected
based on their effect on other processes in the atmosphere,
for instance on the propagation of sunlight. The intensity,I ,
of electromagnetic radiation transmitted through an inhomo-
geneous medium is observed to decrease exponentially with
increasing distance,s, as described by the Beer-Lambert law:

I = I0exp
[
−βext

·s
]
, (5)

whereI0 is the initial intensity, andβext the volume extinc-
tion coefficient at a particular wavelength. The extinction
properties of a medium depend on the efficiency with which
light is removed from the beam by absorption and scattering.
The volume extinction coefficient can be thought of as the

cross-sectional area per unit volume with which the ray in-
teracts. It is the sum of all particle cross-sections multiplied
by the extinction efficiencyQext

βext(λ) = π

∫
∞

0
r2

·Qext
·
dN(r)

dr
dr. (6)

The extinction coefficient is conventionally given in
µm2cm−3 or km−1 and hereafter just called “extinction”.
The extinction efficiencyQext is a function of particle size,
of the wavelength of the incident light, and of the refrac-
tive index of the substance. As tiny sulphuric acid parti-
cles can be assumed to be spherical (Torres et al., 1998)
and homogeneous, the extinction coefficient can be calcu-
lated using Mie’s theory of light extinction (Mie, 1908).
The Mie scattering code used in this study originates from
the work of Grainger(1990) and can be downloaded from
www.atm.ox.ac.uk/code/mie.

The refractive index of sulphuric acid droplets at 1.06 µm
ranges between 1.394 and 1.444 for ambient conditions typi-
cally found in the lower stratosphere, that is temperatures be-
tween 195 K and 240 K, water vapour pressures of 1×10−4

to 8×10−4 hPa, and associated acidities between 35 and 85%
by weight H2SO4 (Steele et al., 1999). The imaginary part of
the refractive index (describing the absorption) is very close
to zero and hence extinction is equivalent to scattering.

In this study refractive indices were calculated using a
model by Semmler et al.(2003) which is based on labo-
ratory measurements of the densities and refractive indices
of binary or ternary H2SO4, and/or(NH4)2SO4 and water
solutions. The model applies the Lorentz-Lorenz relation-
ship to determine the refractive index at a certain tempera-
ture from the refractive index at a reference temperature. The
aerosol acidity was determined with the help of temperature
and pressure observations (from the National Meteorological
Center, NMC) and observed humidity data (SAGE II) and by
linearly interpolating between tabulated values fromSteele
and Hamill(1981) with extensions fromRussell and Hamill
(1984).

The SAGE II instrument is a seven-channel sun photome-
ter and measures changes in received sunlight as the Sun rises
or sets as seen from the spacecraft (solar occultation). A typi-
cal SAGE II slant path length is 200 km long for a 1-km thick
shell at a tangent height of about 20 km. The optical data are
recorded at a series of discrete altitudes (tangent heights) so
that vertical distributions of ozone, nitrogen dioxide, water
vapour concentration, and aerosol extinction (per km) can
be determined. Each day, SAGE II measures approximately
15 sunrise and 15 sunset events, equally spaced in longitude
along two latitude belts between 80◦ N and 80◦ S. Extremes
of latitudes are covered every 4 to 5 weeks. The four wave-
lengths used for aerosol retrieval are 1.02, 0.525, 0.452, and
0.386 µm. The inversion algorithm is described byChu et al.
(1989). For a description of the optical assembly and op-
eration of the SAGE II instrument the interested reader is
referred toMcCormick (1987) andMcMaster(1986). The
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SAGE II aerosol extinction data used in this study are a sub-
set of the version 6.1 data made available to the public by
the NASA Langley Research Center (LaRC, Hampton, VA,
USA).

The operational algorithm used by the NASA LaRC to re-
trieve integrated aerosol properties from SAGE II aerosol ex-
tinction is based on the Principal Component Analysis (PCA)
method described byThomason et al.(1997) andSteele et al.
(1999). In the PCA approach, the kernel function in the
aerosol extinction equation (Eq.6) is expanded in terms of
a set of orthogonal basis functions. Integral properties such
as surface area density and volume density can then be eval-
uated from a linear combination of the spectral extinction
measurementsβ(λi) multiplied by a factor which is depen-
dent on particle composition (through the aerosol refractive
index), on the integration limits employed in the calculation
of the eigenvectors and eigenvalues of the covariance matrix,
and on the number of principal components retained. The
propagation of experimental error can be reduced by nar-
rowing the integration interval and by limiting the number
of principal components. This introduces a systematic bias
error (Steele et al., 1999).

Operationally, the PCA approach has been modified to
move the surface area density derivation dependence toward
the 525 and 1020 nm channels, which are more reliable than
the short wavelength channels (Thomason et al., 2008). In
addition, the relationship for surface area density (SAD) has
been simplified for implementation in the operational soft-
ware using an empirical fit based on the 525 to 1020 nm ex-
tinction ratio,r, and the absolute 1020-nm aerosol extinction,
k1020 (in units of km−1), that captures approximately 90% of
the variance of the original:

SAD= k1020

(
1854.97+90.137r +66,97r2

1.−0.1745r +0.00858r2

)
. (7)

Observations show that during low aerosol loading periods
the operational SAGE II retrieval algorithm tends to under-
estimate surface area densities derived from in situ data mea-
sured by optical particle counters (e.g.Deshler et al., 2003;
Thomason and Peter, 2006; Reeves et al., 2008). In a recent
sensitivity studyThomason and Peter(2006) found that dur-
ing background periods the surface area density operational
product has an uncertainty of at least a factor of 2. They
ascribe this uncertainty to the lack of sensitivity to particles
with radii less than 100 nm, the same conclusion arrived at
by Deshler et al.(2003).

3 Optimal estimation retrieval algorithm

In atmospheric remote sensing, the common problem of in-
verting a set of measured radiances to determine aspects of
the atmospheric state (e.g. temperature profile, trace gas mix-
ing ratio profiles, aerosol properties) is often ill-conditioned,

meaning that no unique solution exists. Thus additional in-
formation of some type is usually required to constrain the
retrieval to fall within physically reasonable limits. The new
aerosol retrieval algorithm presented here seeks the maxi-
mum a posteriori (MAP) solution, which is a specific type
of Optimal Estimation (OE) technique (Rodgers, 2000). The
general strategy of the OE approach is to seek the solution
which is most statistically consistent with both the measured
radiances (aerosol extinction) and the typical background
aerosol size distributions as represented by the a priori.

Because of the ill-posed problem of retrieving three vari-
ables (monomodal size distribution parameters) from Equa-
tions (1) and (6), and because of experimental error, a point in
state space (particle size distribution) will map into a region
of measurement space (spectral aerosol extinction). Con-
versely, a measurement could be the results of a mapping
from anywhere in a region of state space, described by some
probability density function, rather than from a single point.
The OE retrieval approach is based on Bayesian statistics,
which provide a formalism (Bayes’ theorem) that translates
uncertainty in measurement space into uncertainty in state
space. Bayes’ Theorem relates a set of measurements,y, to
the a priori knowledge about the required state, described by
a vectorx. If the a priori, consisting of a mean state and
covariance matrix, describes the statistical behaviour of the
state vector, Bayes’ Theorem allows us to obtain the posterior
probability density function (pdf) of a retrieved solution state
by updating the prior pdf of the state with the conditional pdf
of a measurement:

P(x|y) =
P(x)

P (y)
P (y|x),where (8)

P (x|y) is the posterior conditional pdf ofx which describes
the probability that the state lies in the interval (x,x +dx)
wheny has a given value; it is the MAP solution.

P (x) is the prior pdf of the statex expressing quantita-
tively our knowledge ofx before a measurement is taken.

P (y|x) is the conditional pdf of a measurementy, which
describes the probability that the measurement vector lies in
the interval (y,y +dy) given a certain statex.

P (y) describes the knowledge about the measurement be-
fore it is taken which is in practice only a normalizing factor
(Rodgers, 2000).

This means that all possible states that are consistent with
the measured information can be identified and characterized
by probability density functions if the following information
is given: (a) any prior information about the unknown state,
(b) a measurement together with a description of its error
statistics, and (c) a forward model. The most likely value
of each solution pdf (one for each size distribution parame-
ter) is taken to be “the” Optimal Estimation solution and the
width of each solution pdf is the associated (one-sigma) un-
certainty. The particular advantage of this approach to the
aerosol retrieval problem is that by considering all possi-
ble monomodal lognormal size distribution parameters and
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by weighting them according to their natural probability of
occurrence (in the form of pdfs), the Bayesian solution in-
cludes also the smallest and effectively invisible aerosol par-
ticles. The size discrimination problem of small particles in
the Rayleigh limit of scattering is alleviated by prescribing a
lognormal size distribution shape.

With the help of Bayes’ Theorem and the general expres-
sion of the probability function of a vectory, the following
expression for the general form of the Bayesian solution can
be derived (seeRodgers, 2000):

−2lnP(x|y) = [y −F(x)]TSε
−1

[y −F(x)]+

[x −xa]
TSa

−1
[x −xa]+c, (9)

whereF (x) is the forward model expressing spectral aerosol
extinction in terms of the size distribution parameters,Sε is
the measurement error covariance matrix,xa andSa are the
a priori mean state and covariance matrix, andc is a con-
stant. In this form it can be seen that the MAP retrieval so-
lution combines two independent estimates of the same vec-
tor quantity (i.e. the state vector determined solely from the
measurement vectory and a virtual measurement represented
by the a priori state vectorxa) inversely weighted by their
respective covariances. However, if the a priori pdf is appro-
priate, the solutions will be biased only within experimental
uncertainty (Rodgers, 2000). The quadratic form inx implies
that it must be possible to express lnP(x|y) as a function of
a new statêx (retrieval solution) and an associated error co-
varianceŜ:

−2lnP(x|y) = [x − x̂]
TŜ−1

[x − x̂]. (10)

An explicit expression for̂Scan be derived when assuming
that within a small particle size range the forward model can
be approximated by a linearised forward model of the form
F(x) =∇xF (x0)(x −x0) =y0 + K0 (x −x0), wherex0 is an
arbitrary linearisation point andK0 is the Jacobian matrix of
derivatives atx0. This approach is appropriate as the prob-
lem is no more than moderately non-linear, meaning that the
difference between the forward model and a linearised ver-
sion of the forward model remains within the solution error
covariance. Equating terms that are quadratic inx then leads
to an expression for the inverse covariance matrix

Ŝ−1
= KTS−1

ε K +S−1
a , (11)

whereK is the Jacobian or weighting function matrix con-
taining the partial derivative ofF (x) with respect to the state
vector elements.

The expected MAP retrieval state is situated where the
posterior pdf takes a maximum. This is equivalent to finding
the minimum on a multidimensional surface which is given
by the right hand side of Eq. (9). This leads to the following
implicit expression for̂x

−K̂TS−1
ε [y − F̂ ]+S−1

a [x̂ −xa] = 0, (12)

whereK̂ is the Jacobian matrix of derivatives at the solution
state. Application of the Levenberg-Marquardt root-finding
method (Press et al., 1992) and dropping the second deriva-
tive of the forward model leads to the following iterative
equation for the solution state

xi+1 = xi +(S−1
a +KT

i S−1
ε K i +γ S−1

a )−1
·

(KT
i S−1

ε [y −F(xi)]−S−1
a [xi −xa]), (13)

whereγ is chosen at each step to minimise the right hand side
of Eq. (9) and such that the new value ofx remains within
the linear range of the previous estimate.

In our aerosol retrieval model the measurement vector,y,
consists of a set of four volume extinction coefficients, one
for each of the four SAGE II aerosol spectral channels. The
state vector is a three element vector containing the natural
logarithms of the three monomodal size distribution param-
eters,x = ln[N,R,S]. This form is particularly suitable be-
cause in log-space (a) the size distribution parameters are ap-
proximately normally distributed, (b) the different orders of
magnitude ofN (1–100 particles per cm3), R (0.001–1.0 µm)
andS (0.1–1 in log radius) are merged to a similar scale, and
(c) the solution space is positive definite and hence naturally
constrained to physically sensible solutions.

The forward modelFλ(x) expresses the aerosol extinction
at a particular wavelengthλ in terms of the monomodal log-
normal size distribution parameters

Fλ(x) =

lnrb∑
lnra

πr2
·Qext(r,λ,RI) ·

dN(r)

dlnr
1lnr, (14)

wherer is the particle radius at which the function is evalu-
ated,ra andrb are finite integration limits between which the
integrand is non-negligible,1lnr is the width of the parti-
cle size interval in log-space, and RI is the aerosol refractive
index at wavelengthλ.

Each retrieval process is initialised with a first guess of
the aerosol state. The first retrieval process starts with the a
priori mean state as first guess. As usually subsequent mea-
surements were taken at adjacent heights, aerosol properties
retrieved at heightk are used as a first guess state at height
k+1. In case a retrieval process does not converge, the ad-
jacent measurements are initialised with the a priori mean
state.

Whether or not a retrieval process has converged to suf-
ficient precision is decided based on the size and rate of
change of the retrieval cost (right hand side of Eq.9), on the
differences (between two consecutive iterations) in the re-
trieved signal and in the retrieved state vector elements, and
on the number of iterations performed. The computational
efficiency and accuracy of the forward model are optimized
by adapting the number of grid points to the smoothness of
the integrand and by individually estimating suitable integra-
tion limits for each measurement vector. As a result solutions
are found quickly and mostly obtained in less than five itera-
tions.

Atmos. Chem. Phys., 10, 4295–4317, 2010 www.atmos-chem-phys.net/10/4295/2010/



D. Wurl et al.: Optimal estimation retrieval of aerosol properties 4301

4 Model validation

4.1 A priori data

In principle, the a priori represents the expected statistical
behaviour (both in terms of the mean state and variability)
of the state vector. Prior information about aerosol particle
size distributions can be gained from in situ balloon borne
size resolved concentration measurements (Deshler et al.,
2003). The size distributions used in this study were mea-
sured between May 1991 and October 1997 by the Univer-
sity of Wyoming at Laramie (41◦ N, 105◦ W) at altitudes be-
tween 20 and 35km. Although the majority of measurements
taken during this period indicate bimodal size distributions
that were at least partly influenced by the eruption of Mt.
Pinatubo (June 1991, 15◦ N), only monomodal background
data were selected. These 264 monomodal aerosols size dis-
tributions have median particle radii between 0.02 and 0.2 µm
and are clearly non-volcanic. Given the fact that comparable
in situ measurements at other latitudes are rather scarce to
date, the Laramie record currently represents our best knowl-
edge of aerosol properties under background conditions.

Probability density functions (characterized by a mean and
covariance matrix) of number density, median radius and dis-
tribution width were generated based on these measurements,
which were collected at different altitudes and times of the
year and are therefore representative of a range of tempera-
tures and acidities. It will be shown that good retrieval results
are achieved using the a priori knowledge in this form. The
limitations of this choice are discussed in Sect.4.3.

4.2 Retrieval from synthetic extinction

To assess the performance of the new retrieval algorithm
synthetic extinction coefficients (at 0.385, 0.452, 0.525 and
1.020 µm) were calculated for a 75% (by weight) sulphuric
acid solution at 300 K (refractive indices byPalmer and
Williams, 1975) and based on the monomodal a priori size
distributions described in Sect.4.1. By adding two differ-
ent noise components, two test beds were generated: (a)
the Minimum Noise Scenario (minNS) is characterised by
a 1% Gaussian distributed random noise component added
onto each of the four spectral extinction data; (b) the Max-
imum Noise Scenario (maxNS) is characterised by [60, 45,
30, 25]% Gaussian distributed random noise on the respec-
tive spectral channels [0.385, 0.452, 0.525, 1.020] µm. These
noise levels describe the range of typical SAGE II extinction
uncertainties, with the majority of all experimental uncertain-
ties lying between the two extremes.

As these test data cover the entire range of monomodal
size distributions as measured in situ (41◦ N) at different al-
titudes and times of the year, the two test beds can be con-
sidered comprehensive and suitable to test the performance
of the OE retrieval algorithm for monomodal background
aerosol particles. The a priori pdfs are perfect in the sense

Table 3. Model validation: Correlation coefficients,cc, describing
the linear correlation between all accepted (“good”) and the asso-
ciated correct aerosol properties. Given the large number of mea-
surements (≈230) these correlation coefficients are all significant at
p < 0.05% (Taylor, 1939, Table C).

Retrieved vs True cc (minNS) cc (maxNS)

lnN 0.56 0.52
lnR 0.86 0.80
lnS 0.85 0.70
lnA 0.98 0.94
lnV 1.00 0.98
lnReff 0.93 0.90

that they describe exactly the same ensemble of size distri-
butions that we expect to retrieve in the case of a perfectly
successful retrieval model. A bias due to the a priori and the
ensemble of test aerosols size distribution being identical is
not given because only one set of extinction measurements
describing one of the entire ensemble of a priori distributions
is analysed at a time.

The OE retrieval was applied to all test bed data. To dis-
card spurious retrieval solutions an ad hoc quality filter was
developed based on several retrieval diagnostics. This filter
achieves a good balance between maximizing the correlation
between the retrieved and the correct solutions and minimiz-
ing data loss through rejection. In both noise scenarios ap-
proximately 88% of all retrieved solutions pass the screening.

Figure 1 presents all retrieved size distribution parame-
ters in the form of histograms. In can be observed that all
three variables are symmetrically distributed about the a pri-
ori mean and in fact with a frequency distribution very sim-
ilar to the a priori data ensemble (not shown). The same is
true for the derived integrated propertiesA, V , Reff presented
in Fig. 2.

Figure3 (minNS) and Fig.4 (maxNS) display the retrieved
aerosol properties versus the true values. The associated lin-
ear correlation coefficients are listed in Table3. Presented in
this form it becomes obvious that the retrieved and the true
values are well correlated and that the best agreement be-
tween the true and the retrieved solutions is found in surface
area density, volume density and effective radius. This ob-
servation can be explained by the fact thatA, V , andReff are
integrated quantities, whereas number density, median radius
and distribution width are functions in the integral (Eqs.2
and3 with N(r) given by Eq.1). Fluctuations and uncertain-
ties on the size distribution parameters are smoothed out dur-
ing integration such thatA, V , andReff have a higher stability
thanN , R, andS from which they were derived. Conversely,
small fluctuations and uncertainties of the extinction (Eq.6),
which is an integrated quantity, give rise to a highly amplified
fluctuation of the functions in the integral, i.e. onN , R andS.
In addition, the integrated aerosol properties are less sensitive
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Fig. 1. Histograms of number density(a), median radius(b), distribution width(c) as retrieved from synthetic aerosol extinction in the
maximum noise scenario. The vertical lines indicate the a priori mean state (solid), and the a priori mean plus or minus one standard
deviation (dash-dot).

Fig. 1. Histograms of number density(a), median radius(b), distribution width(c) as retrieved from synthetic aerosol extinction in the
maximum noise scenario. The vertical lines indicate the a priori mean state (solid), and the a priori mean plus or minus one standard
deviation (dash-dot).
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Fig. 2. Histograms of surface area density(a), volume density(b), and effective radius(c) as derived from the retrieved distribution parame-
ters shown in Fig. 1. The vertical line indicates the a priorimean state.

Fig. 2. Histograms of surface area density(a), volume density(b), and effective radius(c) as derived from the retrieved distribution
parameters shown in Fig.1. The vertical line indicates the a priori mean state.

Table 4. Ensemble mean retrieved uncertainties (in %) in num-
ber density, median radius, distribution width, surface area density,
volume density, and effective radius for both the minimum noise
scenario (minNS) and the maximum noise scenario (maxNS).

Ens. Mean (%) minNS maxNS

σN , σR , σS 62, 24, 14 75, 37, 26
σA, σV , σReff 22, 11, 11 45, 34, 15

to the small and hard to retrieve particles than the size dis-
tribution parameters which directly depend on all particles
(Tables1 and2). Nevertheless, the median radius (Fig.3b
and Fig.4b) can be observed to be fairly accurately retrieved
at values greater than approximately 0.02 µm (log10(−1.7)),
even in the case of large extinction uncertainty.

As might be expected, less experimental noise allows for
more accurate retrieval solutions which results in higher cor-
relation coefficients. Table4 lists the ensemble mean er-
rors of all six variables in both noise scenarios. A compari-
son with the initial uncertainties (σN = 93%,σR = 61% and

σS = 31% from the a priori variances) shows that, as might
be expected, the latter were clearly reduced by updating the
a priori pdf with the measurements (using Bayes’ Theorem).
The retrieved uncertainties are generally and naturally larger
in the case of large noise (Fig.4) than in the case of little
extinction error (Fig.3). The observation that the uncertainty
in N is highest confirms that number density is harder to re-
trieve than the other five aerosol properties.

4.3 Error analysis

The retrieved uncertainties result from the propagation of
measurement error and from the influence of the a priori con-
straint (Eq.11). In the case of synthetic data the retrieved
errors can be directly compared with the true error, i.e. the
difference between the retrieved and the correct value. This
comparison indicates that the retrieved errors are generally a
good representation of the true errors although slightly over-
estimating the true errors in the maximum noise scenario
(Wurl, 2008).

In the case of measured data additional uncertainties have
to be considered. There could be contributions from forward
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Fig. 3. Minimum Noise Scenario: True versus retrieved values of(a) particle number densityN , (b) median radiusR, (c) distribution width
S, and(d) associated surface area densityA, (e) volume densityV , and(f) effective radiusReff , with their respective uncertainties. All
values are given in log10. The broken line marks where the retrieved and true values are identical.

Fig. 3. Minimum Noise Scenario: True versus retrieved values of(a) particle number densityN , (b) median radiusR, (c) distribution width
S, and(d) associated surface area densityA, (e)volume densityV , and(f) effective radiusReff, with their respective uncertainties. All values
are given in log10. The broken line marks where the retrieved and true values are identical.

26 D. Wurl et al.: Optimal estimation retrieval of aerosol properties

Fig. 4. As Fig. 3 but for the Maximum Noise Scenario.Fig. 4. As Fig.3 but for the Maximum Noise Scenario.

model error and from forward model parameter errors, an
a priori bias due to a potentially inappropriate a priori con-
straint, and a bias due to analysing bimodal aerosol data with
a monomodal retrieval model.

The forward model error is the difference between the ex-
act physics and the mathematical model. There are basically
three sources of uncertainty: (a) deviations from Mie theory,
(b) deviations from the lognormal particle size distribution
model, and (c) numerical errors. Since the tiny sulphuric acid

and water droplets of background aerosols found at tempera-
tures above the frost point (Rosen, 1971; Steele and Hamill,
1981) are expected to be spherical and homogeneous, devi-
ations from Mie theory are assumed to be small. Numeri-
cal forward model errors arising from discretisation of the
model equations and from truncation of the integration inte-
gral are estimated to be smaller than 1% in aerosol extinc-
tion (Wurl, 2008). This is clearly smaller than the 10–60%
measurement noise typically observed at 0.368 µm, but not
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Fig. 5. Histograms of 223 retrieved number densities(a), median radii(b) and distribution width(c) as retrieved from synthetic aerosol
extinction caused by background bimodal aerosols and largenoise (maxNS). The vertical lines indicate the a priori meanstate (solid), and
the a priori mean state plus or minus one standard deviation (dash-dot).

Fig. 5. Histograms of 223 retrieved number densities(a), median radii(b) and distribution width(c) as retrieved from synthetic aerosol
extinction caused by background bimodal aerosols and large noise (maxNS). The vertical lines indicate the a priori mean state (solid), and
the a priori mean state plus or minus one standard deviation (dash-dot).
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Fig. 6. As Fig. 5 but for the resulting integrated aerosol properties, surface area density(a), volume density(b) and effective radius(c). The
vertical line indicates the a priori mean state (solid).

Fig. 6. As Fig.5 but for the resulting integrated aerosol properties, surface area density(a), volume density(b) and effective radius(c). The
vertical line indicates the a priori mean state (solid).

necessarily negligible compared to the 1–10% measurement
noise typically observed at 1.020 µm. As size resolved con-
centration measurements appear to be well approximated by
lognormal distributions (Deshler et al., 2003), uncertainties
arising from any discrepancies to the true size distributions
are expected to be small compared to the experimental un-
certainty.

The forward model parameter error arises from uncertain-
ties in parameters that are not part of the state vector but nev-
ertheless influence the measurements. In this retrieval model
these are the atmospheric temperature and water vapour par-
tial pressure, sulphuric acid concentration and refractive in-
dex. A common approach to estimate the forward model
parameter error is to use best-guess values and a random
deviation of the “true” atmosphere about this guess. When
size distribution parameters were retrieved from spectral ex-
tinction data simulated for a typical background aerosol
(N=4.7 cm−3, R=0.04 µm andS = 0.48) at two reference
states (220 K/70%; 200 K/65%) and two fluctuation scenar-
ios (±1 K/±1%; ±5 K/±5%), the forward model error was
found to be always less than 3% inN , R, andS. This is
generally over an order of magnitude smaller than the re-

trieved uncertainties (Table4) which indicates that the for-
ward model parameter error tends to be negligible com-
pared to the measurement uncertainties mapped into solution
space.

The purpose of the a priori pdf is to add to the informa-
tion contained in the measurements by describing the solu-
tion space as comprehensively as possible.

As the loading of aerosol varies with height and latitude
as the tropopause height changes, as well as with time (e.g.
with season of the year or with the phase of the quasi-biannial
oscillation,Trepte and Hitchman, 1992) the ideal a priori in-
formation would be a function of latitude, altitude, and time.
However, given the paucity of aerosol measurements (other
than SAGE) it seems more reasonable to use a broad a pri-
ori pdf that captures the variation with height and latitude.
Firstly, as the a priori becomes more specific (either spatially
or temporally), the a priori variances and covariances would
be expected to decrease. In the maximum a posteriori tech-
nique, this will tend to decrease the relative weight of the
measured extinction in the aerosol retrieval and thereby in-
crease the relative weight of the a priori mean state. And
secondly, our experience of satellite retrievals suggests that
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Fig. 7. Integrated monomodal aerosol properties as retrieved frombimodal background aerosol in comparison with the correct bimodal
surface area densities(a), volume density(b) and effective radius(c). The linear correlation coefficients are 0.87 inA, 0.96 inV and 0.38 in
Reff (significant atp > 0.05% , Taylor (1939, Table C).

Fig. 7. Integrated monomodal aerosol properties as retrieved from bimodal background aerosol in comparison with the correct bimodal
surface area densities(a), volume density(b) and effective radius(c). The linear correlation coefficients are 0.87 inA, 0.96 inV and 0.38 in
Reff (significant atp > 0.05% ,Taylor (1939, Table c).

using spatially-varying a priori may produce spurious fea-
tures in the retrieved fields (Deeter et al., 2003). Neither of
these effects is desirable at present, as they both would com-
plicate interpretation of the retrieval results.

The Wyoming in situ record (Sect.4.1) comprises aerosols
measured at different altitudes and different times of the year.
It is therefore representative of a range of different tempera-
tures and acidities. As these were, however, all measured at
mid-latitudes (41◦ N), they may not be entirely representative
of all aerosols that may occur at other latitudes. A compar-
ison with a series of in situ measurements taken at Lauder,
New Zealand (45◦ S, 1991–2001) shows that these southern
mid-latitude aerosols are very similar to the Laramie (41◦ N)
time series (Deshler et al., 2003). A bias due to the a priori
data being potentially unrepresentative of some aerosols that
may occur at other latitudes can only be estimated when new
measurements become available in the future.

The results obtained with the height- and time-
independent comprehensive a priori (Sect.4.1) were shown
to be fairly accurate even in the case of large measurement
uncertainty (Sect.4.2).

4.4 Bimodal aerosols

Another aspect that introduces uncertainty is whether the use
of a monomodal retrieval model is appropriate given that
size resolved particle concentrations measured in the vol-
canically unperturbed stratosphere are often better described
by bimodal than by monomodal particle size distributions
(Deshler et al., 2003). A comparison (not shown) between
monomodal and bimodal data measured in situ between 1997
and 2001 indicates that monomodal aerosols are very similar
to those described by the smaller mode of the bimodal distri-
butions, with typical median radii between 0.01 and 0.2 µm.
The second mode tends to be small containing only very
few, but larger particles with median radii between 0.2 and
0.8 µm.

In order to assess the capability of the monomodal OE re-
trieval model to accurately determine the properties of small-
mode-dominant bimodal aerosols, synthetic extinction data
were generated in the same way as for the two monomodal
test beds (Sect.4.2), but based on 244 bimodal background
aerosol size distributions measured in situ near 41◦ N be-
tween January 1997 and May 2002 at altitudes between
20 and 35 km (Deshler et al., 2003). A comparison be-
tween these spectral extinction data with those generated
from monomodal background aerosol (Sect.4.2) shows that
both cover basically the same range and are therefore not dis-
tinguishable prior to the retrieval analysis. This agrees with
results bySteele and Turco(1997) who found that it is pos-
sible for bimodal size distributions to account for extinctions
generated from monomodal distributions and vice versa.

The OE retrieval algorithm was then applied to the syn-
thetic extinction data to retrieve monomodal size distribution
parameters. About 91% of all data analysed (223 out of 244)
passed the ad hoc quality filter and are presented below. Fig-
ure5 displays frequency distributions of the size distribution
parameters retrieved in the presence of large extinction un-
certainty (maxNS). It can be observed that the peak values
of the N , R andS retrieved from bimodal distributions are
larger than the a priori mean. Compared to the those values
retrieved from monomodal aerosol data (Fig.1), only a few
N andR are smaller than the a priori mean. Nevertheless,
all solutions are within the range described by the a priori
pdfs. Figure6 shows that a similar shift to larger values can
be observed in the derived integrated properties (compared
with Fig. 2). A comparison with histograms of the correct
aerosol properties, separated into mode 1 and mode 2 (not
presented), shows that the retrieved monomodalR, A andV

are very similar to the first mode of small-mode-dominant bi-
modal distributions. This indicates that the minority of large
particles play a minor role in determining median radius, sur-
face area and volume density, which can hence be expected
to be well retrieved even assuming a monomodal model.
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Fig. 8. Histograms of number density(a), median radius(b), distribution width(c) as retrieved from SAGE II measurements of aerosol
extinction in December 1999. The vertical lines indicate the a priori mean state (solid), and the a priori mean state plusor minus one standard
deviation (dash-dot).

Fig. 8. Histograms of number density(a), median radius(b), distribution width(c) as retrieved from SAGE II measurements of aerosol
extinction in December 1999. The vertical lines indicate the a priori mean state (solid), and the a priori mean state plus or minus one standard
deviation (dash-dot).

Figure 7 shows a comparison between the retrieved
(monomodal) integrated aerosol propertiesA, V , andReff
and the correct bimodal solutions. The retrieved surface area
densities (Fig.7a) are observed to match the true (bimodal)
solutions well except at values greater than approximately
1.0 µm2 cm−3, where retrieved (monomodal)A tend to un-
derestimate the correct (bimodal) solutions. This bias prob-
ably explains why the linear correlation coefficient, 0.87,
is noticeably smaller than 0.94 in the case of monomodal
aerosol (Table3).

The retrieved and the correct bimodal volume densities
(Fig. 7b) have a high linear correlation coefficient, 0.96,
which is only slightly (but significantly at p=0.0001%)
smaller than that in the case of monomodal aerosol (0.98,
Table3). A slight tendency to underestimate the true volume
densities is observed at values larger than 0.05 µm3 cm−3

(log10(−1.3)). The comparatively low correlation coefficient
observed inReff, 0.38 (Fig.7c), can be explained by the ef-
fective radius (Eq.4) being sensitive to errors inA andV .
The monomodal retrieval model tends to overestimate the
correctReff. Nevertheless, the retrieved solutions generally
agree with the correct values within the retrieved uncertain-
ties. The retrieved uncertainties inA andV are equally real-
istic (Wurl, 2008), except at surface area densities exceeding
the 1.0 µm2 cm−3 threshold where the true error is underesti-
mated.

Bauman et al.(2003a), who use a multi-wavelength look-
up table (LUT) algorithm as a basis for aerosol retrievals,
have done a similar analysis to study the effect of assuming
a monomodal size distribution, when the actual distribution
is bimodal. They tested the bias with synthetic input spectra
(with no uncertainty from measurement error or spatiotem-
poral variability) and found that the retrieved surface area
and volume densities tend to underestimate the correct bi-
modal values, whereas the retrieved effective radii are larger
than the correct values in the case of small-mode-dominant
bimodal distributions. In principle, the OE results agree

with the LUT findings. However, a noticeable bias is only
observed at surface area and volume densities greater than
1.0 µm2 cm−3 and 0.05 µm3 cm−3, respectively.

In summary, the above assessment of the retrieved and po-
tential additional uncertainties has shown: The retrieved er-
rors are generally a realistic estimate of the true errors, ex-
cept at surface area densities larger than 1.0 µm2 cm−3 where
the retrieved uncertainty estimates tend to underestimate the
true errors. A bias due to the mid-latitude a priori data being
potentially unrepresentative of typical aerosols at other lati-
tudes can only be quantified when new in situ measurements
become available in the future.

5 Application to measured data

5.1 Retrieval from SAGE II measurements

The new Optimal Estimation aerosol retrieval algorithm was
then applied to SAGE II satellite measurements recorded in
December 1999. This data consists of approximately 19 700
sets of spectral aerosol extinction data measured between
70◦ S and 40◦ N in the lower stratosphere at altitudes between
12 and 35 km. As the year 1999 is part of the longest volcani-
cally quiescent period in the SAGE II record which began
around 1997 (Deshler et al., 2006), the aerosols are assumed
to consist of tiny spherical sulphuric acid particles. Measured
temperature, pressure and humidity data (associated with the
extinction measurements) are used to calculate the aerosol
acidity, which is then used to determine the aerosol refractive
index using a model bySemmler et al.(2003). The a priori
data is used as described in Sect.4.1. The OE retrieval al-
gorithm was applied to all measurements with experimental
uncertainties smaller than 99%. Nearly all retrieval processes
converged to a solution, and those results which passed the
ad hoc quality screening (approximately 90%) are presented
below.
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Fig. 9. Histograms of surface area density(a), volume density(b), effective radius(c) as derived from the retrieved size distribution
parameters shown in Fig. 8. The vertical lines indicate the apriori mean.

Fig. 9. Histograms of surface area density(a), volume density(b), effective radius(c) as derived from the retrieved size distribution
parameters shown in Fig.8. The vertical lines indicate the a priori mean.

Figure8 presents the retrieved size distribution parameters
in the form of histograms. It becomes immediately appar-
ent that the number densities, median radii and distribution
widths retrieved from SAGE II measurements of aerosol ex-
tinction are very similar to those retrieved from synthetic ex-
tinction by bimodal background aerosol (Fig.5). Both data
sets have peak frequencies at similar values larger than the a
priori mean, and the great majority of all results are observed
to be within one standard deviation of the a priori mean. The
ensemble mean retrieved linear size distribution parameters
and a priori ensemble means are listed in Table5.

Figure9 displays frequency distributions of the integrated
aerosol properties derived from the retrieved size distribu-
tion parameters shown above (Fig.8). A similar resemblance
(as observed inN , R, andS) to those results retrieved from
bimodal aerosol data can be detected in surface area den-
sity, volume density, and effective radius. The peak frequen-
cies of the SAGE II data are, however, slightly larger than
those observed in Fig.6. The ensemble mean retrieved and
a priori values are listed in Table6. The similarity with
those aerosol properties retrieved from synthetic extinction
by bimodal background aerosols (Sect.4.3) suggests that the
aerosols measured by SAGE II could have been predomi-
nantly bimodal. This means that the retrieved number den-
sities, distribution widths and effective particle radii may be
less accurate, and surface areas greater than 1.0 µm2 cm−3

and volume densities greater than 0.05 µm3 cm−3 could be
underestimated due to the monomodal forward model.

Figure10 presents the retrieved uncertaintiesσN , σR and
σS . A comparison with the model validation results (see
Table 4) shows that, as might expected, the OE uncertain-
ties retrieved from SAGE II measurements are larger than
those in the minimunm noise scenario and smaller than those
achieved in the maximum noise scenario. The associated un-
certainties in the integrated properties,σA, σV , σReff, are pre-
sented in Fig.11. The ensemble mean uncertainties of all
retrieved aerosol properties are listed in Tables5 and6.

Table 5. Ensemble mean retrieved size distribution parameters
(SAGE II data, December 1999) with associated uncertainties (in
%). Number density is given in cm−3, median radius in µm, and
lognormal distribution (half) width in log of µm.

SAGE II, Dec 1999

N , R, S

Ensemble Mean : 9.0, 0.069, 0.57
A priori: 4.7, 0.046, 0.48

σN , σR , σS (%)
Ensemble Mean : 69, 33, 14
A priori: 93, 61, 31

Table 6. Ensemble mean retrieved surface area density, volume
density, and effective radius (SAGE II data, December 1999) with
associated uncertainties (in %). Surface area density is given in
µm2 cm−3, volume density in µm3 cm−3, and effective radius in
µm.

SAGE II, Dec 1999

A, V , Reff
Ensemble Mean : 1.00, 0.05, 0.16
A priori: 0.20, 0.005, 0.075

σA, σV , σReff (%)
Ensemble Mean : 23, 12, 13
A priori: 146, 179, 40

5.2 Discussion

In order to assess how the new Optimal Estimation algorithm
can add to the current knowledge of aerosol microphysical
properties in the volcanically unperturbed lower stratosphere,
the retrieved results are compared to aerosol properties es-
timated through different retrieval techniques as well as to
correlative in situ data.
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Fig. 10. SAGE II, 12/1999: Histograms of the retrieved uncertainties (in %) in number densityN , median particle radiusR, and distribution
width S.

Fig. 10. SAGE II, 12/1999: Histograms of the retrieved uncertainties (in %) in number densityN , median particle radiusR, and distribution
width S.
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Fig. 11. SAGE II, 12/1999: Histograms of the uncertainties (in %) associated with surface area density(a), volume density(b), and effective
radius(c).

Fig. 11. SAGE II, 12/1999: Histograms of the uncertainties (in %) associated with surface area density(a), volume density(b), and effective
radius(c).

The NASA Langley Research Center retrieves surface area
density and effective radius from SAGE II aerosol extinction
data using the Principal Component Analysis (PCA) tech-
nique (Sect.2). The associated volume densities can be
derived using Eq. (4). Figure12 shows the PCA solutions
versus the Optimal Estimation results, all retrieved from the
same SAGE II extinction measurements. The correlation co-
efficients, 0.94 inA, 0.98 inV , and 0.76 inReff, indicate a
good (and highly significant) linear correlation between the
two data sets, however, there is a systematic bias. The great
majority of all OE surface areas and volumes are larger than
the associated PCA values, whereas OE effective radii are
smaller than the PCA solutions. Figure13 presents the rela-
tive differences (in %) between the respective method results,

1x =
(xPCA−xOE)

xOE
·100. (15)

The PCA surface area and volume densities are observed to
be smaller by respective 20 to 50% and 10 to 40%, whereas
the PCA effective radii tend to be 10 to 40% larger than the
respective OE values.

Similar biases have previously been observed between
PCA retrieval results and in situ data. In particular,Steele

et al. (1999) found that retrieved surface areas for back-
ground aerosol can be underestimated by up to 50% and
volume densities by up to 30% through Principal Compo-
nent Analysis.Deshler et al.(2003) observed that for back-
ground aerosol conditions the SAGE II estimates of surface
area density retrieved through Principal Component Analysis
are about 40% lower than those calculated from correlative
in situ measurements.Reeves et al.(2008) come to similar
conclusions based on comparisons of SAGE II estimates with
near coincident in situ aircraft measurements of aerosol size
distributions. This suggests that the new OE estimates tend to
be more realistic and hence improved compared to current es-
timates of aerosol properties in the volcanically unperturbed
lower stratosphere.

To directly compare correlative OE, the PCA and the in
situ (Optical Particle Counter, OPC) surface area densities,
the SAGE II and the in situ data sets were searched for cor-
relative measurements. In 1999, the University of Wyoming
(41◦ N, 105◦ W) performed in situ measurements on six
dates: 22 March, 20 April, 23 June, 21 July, 16 September,
and 10 December. As, however, only two SAGE II mea-
surement events coincide with these dates and location, the
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Fig. 12. SAGE II measurements (December 1999): Principal ComponentAnalysis (PCA) retrieval results of surface area density in
µm2 cm−3, effective radiusReff in µm (courtesy of NASA LaRC) and the associated volume density in µm3 cm−3, compared to the Optimal
Estimation retrieval results. The diagonal line marksx= y where both results would be identical.

Fig. 12. SAGE II measurements (December 1999): Principal Component Analysis (PCA) retrieval results of surface area density in
µm2 cm−3, effective radiusReff in µm (courtesy of NASA LaRC) and the associated volume density in µm3 cm−3, compared to the Optimal
Estimation retrieval results. The diagonal line marksx=y where both results would be identical.

time constraint was slightly relaxed to allow for measure-
ments recorded within a few days of the Laramie balloon
flights. The four SAGE II measurement events identified this
way differ from the two correlative in situ measurement by
up to 6 days, 2◦ in latitudinal and 5◦ in longitudinal direc-
tion. Bearing in mind that the observed differences will re-
sult from a combination of differences in the measurement
characteristics (different measurement techniques, recording
times, location) as well as systematic differences between the
OE and PCA retrieval results, the PCA and OE retrieval re-
sults are now compared to the correlative in situ data in the
form of vertical profiles. The relative difference between any
two values at a particular altitude is given in % of the in situ
(OPC) value

1xi =
(x̂i −xi,OPC)

xi,OPC
·100, (16)

and the profile mean difference is the arithmetic mean of
all differences (absolute numbers) in the profile. Figure14
shows a comparison between vertical profiles of surface
area density as retrieved from SAGE II using the PCA ap-
proach versus the correlative in situ surface area densities of
monomodal background aerosol. In June (Fig.14a and c),
distinct deviations can be observed below 19 km, where the
in situ surface area densities take values of 1.9 µm2 cm−3.
At these lower altitudes, the PCA retrieval solutions are 30
to 70% smaller than the in situ values (Fig.14b and d). A
comparison with the associated in situ number densities and
median radii (not shown) helps to understand the observed
differences: the particle radii decrease from 0.06 µm at 19 km
to about 0.02 µm at 13 km; simultaneously the number den-
sity increases strongly from about 10 to over 100 particles
per cm3 at 13 km (near the tropopause), which explains the
observed increase inA toward lower altitudes. In December
(Fig. 14e and g), the PCA surface area densities are observed

to be almost consistently smaller by about 30 to 40% com-
pared to the in situ values (Fig.14f and h).

Figure 15 displays the same comparison for the OE re-
trieval results. As the OE surface area densities are gener-
ally higher than the PCA values shown above, the difference
to the a priori values below 19 km (Fig.15a and c) has de-
creased. In Fig.15a the two profiles even agree within the OE
uncertainties. Between 20 and 23 km theAOE are observed
to be larger than the in situ values. In December (Fig.15e
and g), the OE surface area densities are observed to widely
agree with the in situ values within the respective uncertain-
ties.

Cross-comparisons between the different retrieval method
results shows that the OE profiles (Fig.15) and the PCA pro-
files (Fig. 14) of surface area densities are similar in their
vertical structure, although the PCA surface area densities
are generally smaller than the OE values. The OE and PCA
results are observed to converge near 24 km, where the par-
ticle sizes are largest (0.08 µm). Above as well as below the
monomodal aerosols observed in situ tend to decrease in size.
Overall, the profile comparisons suggest that the Optimal Es-
timation surface area densities tend to match the in situ val-
ues better than the Principal Component Analysis solutions.

Bingen et al.(2004a,b) retrieved particle number density
and median particle size from SAGE II aerosol extinction
measured between 1984 and 2000 using a regularized inver-
sion retrieval technique. Compared to the OE results the
particle radii retrieved byBingen et al.(2004a) are about
three times as large. For instance, at an altitude of 17.5km
at mid-latitude (40 to 70◦ N/S) in 1999, the retrieved radii
range between 0.25 and 0.33 µm (NH) or 0.27 and 0.37 µm
(SH), whereas the OE results are on the order of 0.08 µm. Si-
multaneously, the number densities retrieved byBingen et al.
(2004b), which they found to be low compared to coincident
in situ Optical Particle Counter measurements (Bingen et al.,
2004b), are smaller than the OE number densities.Bingen
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Table 7. Overview of uncertainties (in %) on aerosol properties retrieved under similar conditions (background aerosol, SAGE data) but
using different retrieval techniques. The “+” indicates that the value is an estimate of partial errors only and that the total error is expected to
be higher due to other disregarded uncertainty components. The uncertainties inA as reported bySteele et al.(1999) andSteele and Turco
(1997), for instance, account for propagated random errors only. The total errors are expected to be higher by about 50% due to disregarded
systematic (method bias) errors and contributions from particles smaller than 0.1 µm. The methods and the conditions under which these
uncertainties were achieved are described in: (1)Wurl (2008), (2) Steele et al.(1999), (3) Thomason and Poole(1993), (4) Steele and
Turco (1997), (5) Anderson et al.(2000), (6) Bingen et al.(2004b), (7) Wang et al.(1989), and (8)Bauman et al.(2003a). The acronyms
stand for Principal Component Analysis (PCA), Constrained Linear Inversion (CLI), Randomized Minimization Search Technique (RMST),
Regularized Inversion Method (RIM), Nonlinear Iterative Method (NIM), and Look-Up-Table approach (LUT).

Source/Method σN σR σS σA σV σReff

(1)/OE 60–75 30–40 10–20 20–30 5–20 10–15
(2)/PCA (15–20)+
(3)/PCA 30 12–25
(4)/CLI 25+ 15+ 15+
(5)/RMST 8–50 5–25 6–36
(6)/RIM 50–200 35–50 100–250
(7)/NIM <11 5–28
(8)/LUT 20+ 21+ 18+
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Fig. 13. Difference (in %) between the retrieved Optimal Estimationsurface area densities (A), volume densities (V ), and effective radii
(Reff ) and the Principal Component Analysis (PCA) results: (PCA-OE)/OE. Frames(a–c): Difference as a function ofA, V , Reff . Frames
(d–f): Cumulative histograms of the differences.

Fig. 13. Difference (in %) between the retrieved Optimal Estimation surface area densities (A), volume densities (V ), and effective radii
(Reff) and the Principal Component Analysis (PCA) results: (PCA-OE)/OE. Frames(a–c): Difference as a function ofA, V , Reff. Frames
(d–f): Cumulative histograms of the differences.

et al. ascribe their low number densities and overestimated
particle sizes to the inability of SAGE II optical measure-
ments to discriminate very thin particles in the Rayleigh limit
of scattering. This suggests that the larger OE number den-
sities and smaller OE median radii tend to be more realistic
than those presented byBingen et al.(2004b).

Error estimates associated with the retrieved solutions are
ideally a good representation of the difference between the
retrieved and the correct solutions. Achieving realistic un-
certainty estimates, however, is in practice often difficult,

because not all biases can be reliably estimated under cer-
tain circumstances. Consequently, some error estimates pre-
sented in the literature may represent partial uncertainties
only and can therefore not give conclusive evidence of the
accuracy of the achieved results. Nonetheless, uncertainty
estimates do give an indication of the quality of the retrieved
results provided that the scope of their application (all in-
cluded aspects and expected additional uncertainties) is taken
into account.
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Fig. 14. Vertical profiles of surface area density. Frames(a)/(c)/(e)/(g): Surface areas as retrieved (from SAGE data) by the NASA LaRC
using the PCA approach (diamonds with error bars, measured on 22 June (a), 23 June (c), 14 December (e) and 16 December 1999(g)) and
correlative in situ (OPC) measurements (without error bars, measured on 23 June and 10 December 1999); the vertical dashed line marks the
a priori mean, and the short horizontal dotted line marks thetropopause level (NMC data) at the time of the SAGE II measurements. Frames
(b)/(d)/(f)/(h): Associated relative differences. The long vertical linesmark the zero (solid) and the profile mean difference (dotted). The a
priori uncertainty of 40% (Deshler et al., 2003) is marked bythe dash-dotted line.

Fig. 14. Vertical profiles of surface area density. Frames(a)/(c)/(e)/(g): Surface areas as retrieved (from SAGE data) by the NASA LaRC
using the PCA approach (diamonds with error bars, measured on 22 June (a), 23 June (c), 14 December (e) and 16 December 1999 (g)) and
correlative in situ (OPC) measurements (without error bars, measured on 23 June and 10 December 1999); the vertical dashed line marks the
a priori mean, and the short horizontal dotted line marks the tropopause level (NMC data) at the time of the SAGE II measurements. Frames
(b)/(d)/(f)/(h): Associated relative differences. The long vertical lines mark the zero (solid) and the profile mean difference (dotted). The a
priori uncertainty of 40% (Deshler et al., 2003) is marked by the dash-dotted line.
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Fig. 15. As Fig. 14 but for surface area density as derived from the retrieved Optimal Estimation size distribution parameters.Fig. 15. As Fig.14but for surface area density as derived from the retrieved Optimal Estimation size distribution parameters.
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Fig. 16. Locations of SAGE II measurement events in March, June, September, and December 1999. The square marks the approximate
location of Laramie/Wyoming (41◦ N, 105◦ W)

Fig. 16. Locations of SAGE II measurement events in March, June, September, and December 1999. The square marks the approximate
location of Laramie/Wyoming (41◦ N, 105◦ W)
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Fig. 17. Number of measurements per 10◦ latitude and 1 km altitude grid box. Each grid box is represented by a spot. Contours are marked
for 10, 50, 100, 200, and 300 counts.

Fig. 17. Number of measurements per 10◦ latitude and 1 km altitude grid box. Each grid box is represented by a spot. Contours are marked
for 10, 50, 100, 200, and 300 counts.
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Fig. 18. Histograms of number density(a), median radius(b), distribution width(c) as retrieved from SAGE II measurements of aerosol
extinction in September 1999. The vertical lines indicate the a priori mean state (solid), and the a priori mean state plus or minus one standard
deviation (dash-dot).

Fig. 18. Histograms of number density(a), median radius(b), distribution width(c) as retrieved from SAGE II measurements of aerosol
extinction in September 1999. The vertical lines indicate the a priori mean state (solid), and the a priori mean state plus or minus one standard
deviation (dash-dot).

Table7 provides a list of uncertainty estimates associated
with aerosol properties all retrieved under non-volcanic con-
ditions but using different retrieval techniques. The “+” in-
dicates that a given value is an estimate of partial errors only
and that the total error is expected to be higher due to other
disregarded uncertainty components. Generally, it can be ob-
served that in surface area, volume density and effective ra-
dius the OE retrieved uncertainty estimates are of a similar
size to those values reported in the literature. For the number
size distribution parameters there are less values to compare
and larger differences between the data sets. In number den-
sity, the uncertainties reported byBingen et al.(2004b) are
larger than the OE error estimates, whereas those estimated
by Wang et al.(1989) are considerably smaller. The 11%
reported byWang et al.(1989), however, account only for
particles greater than 0.15 µm although the great majority of
the retrieved OE sizes are smaller than that (Fig.8). Sim-
ilarly, uncertainties in median particle radius estimated by
Wang et al.(1989) are smaller than those reported byBingen
et al.(2004b) and smaller than those achieved through Opti-
mal Estimation, but their error estimates apply only to radii
between 0.1 and 0.7 µm. However, although particles smaller
than 0.1 µm may contribute little to the total aerosol extinc-
tion, their contribution is important to get accurate estimates
of the retrieved aerosol properties (Sect.1).

The uncertainties in surface area density, volume density,
and effective radius reported byBauman et al.(2003a) de-
scribe the retrieval uncertainties after a correction for a bias
error due to the assumption of a monomodal size distribution.
These values do not take into account contributions resulting
from the propagation of measurement uncertainty, which will
have to be added on top.

In contrast, the uncertainties retrieved through Optimal Es-
timation (assessed in Sect.4.3) were found to be a good de-
scription of the true errors (a) in all retrieved size distribution
parameters and integrated properties, where the true aerosols
are monomodal, and (b) at least for all integrated aerosol

properties (except whereA is greater than 1.0 µm2 cm−3) in
the case of bimodal background aerosols. The only uncer-
tainty aspect which cannot be estimated at present is a po-
tential bias due to the Wyoming in situ data being potentially
unrepresentative of some aerosols that may occur at other lat-
itudes.

Figure 16 illustrates the locations of SAGE II measure-
ment events in four different seasons in 1999. Figure17
presents the resulting number of measurements counted into
10◦ latitude by 1 km altitude grid boxes. Due to the SAGE II
measuring geometry, the great majority of all data mea-
sured in December were recorded at northern mid-latitudes,
namely near 40◦ N. This means that the a priori data used
in this study would be appropriate at least for the majority
of all data presented here. In contrast, most of the September
measurements were recorded at higher latitudes, namely near
60◦ N and S. If the retrieved aerosol properties in September
were distinctly different from the December data, this could
be an indication that the measured aerosols were not appro-
priately represented by the mid-latitude a priori size distri-
butions. In Fig.18 (September data), no great discrepancies
to the results retrieved in December (Fig.8) can, however,
be observed. This means that the applicability of the current
mid-latitude a priori for aerosols measured at other latitudes
in the SAGE record cannot be disproved until new in situ
measurements become available.

6 Summary and conclusions

We have introduced a new Optimal Estimation algorithm
which retrieves monomodal number size distribution param-
eters and associated uncertainties from spectral aerosol ex-
tinction measured at visible to near infrared wavelengths un-
der non-volcanic conditions. The particular challenge of this
ill-posed aerosol retrieval problem arises from the low sen-
sitivity of the available aerosol extinction measurements to
particles smaller than 0.1 µm combined with the difficulty
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of discriminating particle sizes in the Rayleigh limit of Mie
scattering. The Optimal Estimation algorithm approaches
this problem with the help of Bayes’ Theorem, which trans-
lates uncertainty in measurement space into uncertainty in
state space and identifies the monomodal size distribution pa-
rameters which are statistically most consistent with both the
satellite-measured multi-wavelength aerosol extinction data
and the a priori information. By thus considering all parti-
cle sizes and by weighting them according to their natural
probability of occurrence, even the smallest and practically
invisible particles are considered in the solution process. The
size discrimination problem at the small particle end is allevi-
ated by prescribing an analytical lognormal size distribution
shape.

The new OE retrieval algorithm was tested on synthetic
monomodal and small-mode-dominant bimodal aerosol size
distributions and then applied to a large set of spectral
SAGE II aerosol extinction data recorded in 1999. The re-
sults were compared to other estimates of aerosol properties
retrieved from remotely sensed data (using different retrieval
approaches) and also to correlative in situ measurements. We
found:

– Aerosol properties retrieved from synthetic extinction
data are generally well correlated with the true solu-
tions, even in the presence of large extinction uncer-
tainty. The best agreement between the true and the
retrieved solutions is found in the integrated properties,
namely in surface area density, volume density and ef-
fective radius.

– In the case of bimodal aerosols, the retrieved
monomodal parameters can be expected to naturally
deviate from the correct bimodal values. Neverthe-
less, the integrated aerosol properties can be accu-
rately retrieved except at surface area densities greater
than 1.0 µm2 cm−3 and at volume densities greater than
0.05 µm3 cm−3, where they tend to underestimate the
correct bimodal values.

– The comprehensive (as opposed to height- or time-
resolved) a priori probability density functions were
found to be appropriate for retrieving aerosol properties
from synthetic measurements, even in the case of large
extinction uncertainty and in the case of small-mode-
dominant bimodal aerosols (with the exceptions named
above). A bias due to the Wyoming data being poten-
tially unrepresentative of aerosols at other latitudes can-
not be detected in the retrieved results. At present, the
mid-latitude in situ measurements provide the best prior
estimate we have, and the retrieval results seem to con-
firm the validity of their use.

– The retrieved uncertainty estimates are of the order of
69% for number concentration, 33% for median radius,
14% for the lognormal distribution width, 23% for sur-
face area density, 12% for volume density, and 13% for

effective radius. Compared to retrieval errors reported
by other researchers the OE uncertainties are smaller
(for number density, median radius and distribution
width) or of the same order of magnitude (for sur-
face area density, volume density, and effective radius).
While some of the uncertainty estimates provided by
other researchers represent partial errors only, the un-
certainties retrieved through Optimal Estimation were
found to be a good description of the true errors: (a) in
all retrieved size distribution parameters and integrated
properties, where the true aerosols are monomodal, and
(b) at least for all integrated aerosol properties (except
whereA is greater than 1.0 µm2 cm−3) in the case of
bimodal background aerosols. Additional error contri-
butions from typical forward model errors and from for-
ward model parameter errors tend to be small compared
to the experimental uncertainty. The only uncertainty
aspect which cannot be estimated at present (due to a
lack of in situ aerosol measurements at other latitudes)
is a bias due to the Wyoming in situ data being poten-
tially unrepresentative of some aerosols that may occur
at other latitudes.

– A comparison of the OE retrieval results with integrated
aerosol properties retrieved from the same SAGE II data
set but using the Principal Component Analysis (PCA)
approach indicates that the OE surface areas tend to be
larger by 20 to 50%, the OE volumes tend to be larger
by 10 to 40%, and the OE effective radii tend to be 10 to
40% smaller than the respective PCA values. As PCA
surface area densities (retrieved from the same SAGE II
measurements) are known to underestimate correlative
in situ data by about 40% (Deshler et al., 2003; Reeves
et al., 2008) and that the PCA volume densities tend
to be low by an estimated 30% (Steele et al., 1999),
these observations suggest that the new OE algorithm
provides improved aerosol property estimates.

– The OE number densities are larger and the median radii
are smaller than the number densities and median radii
retrieved byBingen et al.(2004a) from SAGE II extinc-
tion data using a regularized inversion technique. As
the latter were observed to underestimate correlative in
situ data ofN and to overestimate correlative in situ val-
ues ofR (Bingen et al., 2004a), the OE results can be
considered the more realistic estimates.

– A comparison between vertical profiles of the OE and
the PCA surface area densities (retrieved from the same
SAGE II measurements) with correlative in situ data
indicates that the Optimal Estimation estimates ofA

tend to match the in situ values better than the Prin-
cipal Component Analysis solutions of the operational
SAGE II retrieval algorithm.
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All these findings lead us to conclude that the new Optimal
Estimation algorithm is able to significantly improve current
estimates of aerosol microphysical properties retrieved from
SAGE II satellite measurements in the volcanically unper-
turbed lower stratosphere.

A SAGE II climatology of monomodal aerosol properties
generated by Steven Marsh using the new OE aerosol re-
trieval algorithm can be downloaded fromhttp://www.atm.
ox.ac.uk/project/PARTS/.

In the future, the algorithm can be adapted to other so-
lar occultation instruments, like for instance SAGE III. As
SAGE III has three additional aerosol channels the algorithm
could be expanded to retrieve aerosol properties from bi-
modal particle size distributions, and consequently from vol-
canically enhanced aerosols.
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