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Abstract. A novel methodology to derive the average wind
profile from the Navier-Stokes equations is presented. The
development employs the Generalized Integral Transform
Technique (GITT), which combines series expansions with
Integral Transforms. The new approach provides a solution
described in terms of the quantities that control the wind vec-
tor with height. Parameters, such as divergence and vortic-
ity, whose magnitudes represent sinoptic patterns are con-
tained in the semi-analytical solution. The results of this new
method applied to the convective boundary layer are shown
to agree with wind data measured in Wangara experiment.

1 Introduction

The Navier-Stokes equations provide the framework for the
interpretation of atmospheric boundary layer flows. How-
ever, their analytical solution requires approximations, which
are, in many cases, idealized and distant from the physical
reality. Particularly, the mean wind profile is a solution of
the governing equations whose derivation can be applied to a
wide variety of natural processes.

The classical Ekman expression for the mean wind pro-
file is, probably, the most famous example of an analytical
solution of the simplified Navier-Stokes equations (Sorbjan,
1989; Stull, 1988). Such solution needs, however, the strong,
non-realistic assumption that the vertical eddy diffusivities
(K) are constant with height. In fact, Grisogono (1995) ar-
gues that “...it is a complicated, nonlinear function of the
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flow structure and there is no explicit relation between the
boundary-layer profiles and K”.

The search for an analytical solution for the mean wind
profiles in the atmospheric boundary layer under more real-
istic conditions has been a major focus of mathematical and
physical research for a long time. For a given, imposed eddy
diffusivity profile, solutions have been derived in a wide set
of studies, reviewed by Zilitinkevich (1970), Monin and Ya-
glom (1971) and Grisogono (1995).

Other studies have expanded the solution to include baro-
clinic and advective conditions (Miles, 1994; Bannon and
Salem, 1995). Berger and Grisogono (1998) extended the
results obtained by Grisogono (1995) for the baroclinic case
and a generic vertical eddy diffusivity profile. Tan (2001)
proposed a semi-geostrophic Ekman layer solution for vari-
able eddy diffusivities and baroclinicity. This model united
the solutions presented by Wu and Blumen (1982) and Griso-
gono (1995), finding that the mean wind structure depends on
the inertial acceleration, eddy diffusivity and baroclinic pres-
sure gradient. The study concluded that anti-cyclonic wind
shear accelerates the flow, while cyclonic shear has the oppo-
site effect. Wilson and Flesch (2004) used a three-layer sim-
plified model that provided a good comparison to observed
wind profiles.

In the present study, using the Generalized Integral Trans-
form Technique (GITT), we derive a semi-analytical solu-
tion of the Navier-Stokes equation to obtain the mean wind
profile in the atmospheric boundary layer. Such technique
is a hybrid numerical-analytical method applied to the treat-
ment and solution of partial differential equations (Özişik,
1993; Mikhailov andÖzişik, 1984; Cotta, 1993). It provides
a systematic, direct and efficient approximation to the solu-
tion of homogeneous and non-homogeneous, stationary and

Published by Copernicus Publications on behalf of the European Geosciences Union.



2228 L. Buligon et al: Mean wind profile in the ABL

non-stationary, linear and non-linear boundary-value prob-
lems. The technique combines series expansion and an inte-
gration employing an inverse-transform pair. The PBL is dis-
cretized intoN sub-intervals in such manner that inside each
sub-region the eddy diffusivity is the average value (Moreira
et al., 1999), that allows the use of realistic eddy diffusivity
profiles, which depend on the physical characteristics of the
energy-containing eddies. The nonlinear terms are written
in terms of kinematical properties of the flow, such as diver-
gence and vorticity, allowing the solutions to be interpreted
in terms of large-scale synoptic conditions. The model re-
sults are compared to observed wind profiles obtained from
the classical Wangara experiment (Clarke et al., 1971).

2 Semi-analytical model

2.1 Basic equations

Considering that the turbulent momentum fluxes can be pa-
rameterized by a first order closure (K-theory), the mean
horizontal wind spatial distribution is given by the Navier-
Stokes equation in the following form:
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with u≡ u(x,y,z), v ≡ v(x,y,z), z0< z < zi , 0< x < Lx
and 0<y <Ly . Thefc is the Coriolis parameter.

The equations above assume stationarity, no mean verti-
cal motion, and that the molecular dissipation terms are ne-
glectable. On the other hand, the flow is allowed to vary
horizontally.

The geostrophic wind components in the baroclinic case
are approximated by:

ug = uT z+ug0, (2a)

vg = vT z+vg0, (2b)

whereug0 andvg0 are the surface geostrophic winds compo-
nents anduT andvT are the thermal wind components (Sor-
bjan, 1989).

The eddy diffusivities in each of the directions are repre-
sented byKx ,Ky andKz.

To realistically reproduce the wind profile, it is important
to consider the vertical variation of the eddy diffusivities. As
a consequence, in the present approach, the planetary bound-
ary layer (PBL) is discretized intoN sublayers (Vilhena and
Barichello, 1991; Moreira et al., 1999; Degrazia et al., 2001).

In each of the sublayers, the eddy diffusivities and horizon-
tal wind components assume vertically averaged values. To
overcome the difficulties that arise from the nonlinear char-
acter of Eqs. (1a) and (1b), the advective terms are written
in terms of the large-scale kinematical properties of the flow
(Bluestein, 1992), namely, divergence(δ) and vorticity(ζ ):
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Where the deformation components of the wind field were
neglected and the indexn refers to the different sublayers
considered. With the assumptions above, Eqs. (1a) and (1b)
can be written as:
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with zn ≤ z ≤ zn+1, 0< x < Lx , 0< y < Ly and n =

1,2, ...,N .
Multiplying Eq. (4b) byi (i ∈ C), and adding term by term

to Eq. (4a), yields
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wn = −fcwgni, (5)

wherewn = un+vn i, wgn = ugn+vgn i, zn ≤ z≤ zn+1, 0<
x <Lx , 0<y <Ly andn= 1, 2, ...,N .

Equation (5) is a differential equation on the complex vari-
able functionwn = un+vn i, whose solution provides an ex-
pression to the mean wind profile in terms of the flow diver-
gence and vorticity.

2.2 Boundary and interface conditions

The horizontal wind speeds are assumed to be constant at the
lower boundary atz= z0, and to be geostrophic at the upper
boundary, the PBL top. Laterally, a horizontal domain is as-
sumed, with dimensionsLx×Ly . At the lateral boundaries,
the wind components are given by the imposed divergence
and vorticity, so that:

wn= w0 in z= z0 and n= 1, (6a)

wn= wgn in z= zi and n=N, (6b)
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and

wn=
1

2
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At the interfaces between neighbor vertical layers, it is
necessary to assume continuity of both the eddy fluxes and
horizontal wind components.

wn= wn+1, (8a)

Kzn
∂wn
∂z

=Kz(n+1)
∂wn+1

∂z
, (8b)

with z= zn andn= 1,2,...(N−1).

3 Solution

Equation (5) can be solved using the Generalized Integral
Transform Technique – GITT (Mikhailov and̈Ozişik, 1984;
Özişik, 1993; Cotta, 1993). In this method, the solution func-
tion is expanded in terms of the eigenfunctions correspond-
ing to the auxiliary problem (Sturm-Liouville), associated
with the original problem. The eigenfunction orthogonal-
ity condition is used to determine the expansion coefficients,
hence originating the integral transform and its inverse. Ap-
plying the integral transform, the partial derivatives in rela-
tion to variablesx andy are removed, reducing the problem
to an ordinary second-order differential equation on variable
z. Therefore, once the transformed problem is solved, the
inverse formula is used to obtain a solution to the original
problem. The truncation order is selected according to the
desired precision.

3.1 The auxiliary problem

The auxiliary problem associated withwn is:
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)
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with boundary conditions:

ψ = 0 in x= 0 and x=Lx, (10a)

ψ = 0 in y= 0 and y=Ly . (10b)

The solution to the problem above is (Mikhailov and
Özişik, 1984;Özişik, 1993):
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spectively. Equations (11) and (12) are known, respectively,
as the eigenfunctions and eigenvalues associated with the
Sturm-Liouville problem. From the normalization integral:
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3.2 The transform problem

The integral transform is given by:
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with wn≡ wn
(
x′,y′,z

)
andλ2

pq =β2
p+γ 2

q .
Each term in Eq. (16) is solved by a different method. In

the first integral, Lebniz rule is used. The second integral is
solved by using Green’s theorem, employing the eigenvalue
problem (9), along with the boundary conditions (7). The
third integral is directly substituted by definition (15). Fi-
nally, in the right-hand side, results (11) and (12) are used.
This procedure yields in the following ordinary differential
equation:

d2wn
dz2

−(α1n+α2n i)wn= −
fcwgnGi
Kzn

−Cn, (17)

where the constants are given in Appendix A.
The boundary and interface conditions associated with the

transformed problem inz direction can be determined ap-
plying definition (15) to equations (6) and (8) given, respec-
tively, by:

wn=Gw0 in z= z0 and n= 1, (18a)

wn=Gwgn in z= zi and n=N, (18b)

wn= wn+1, (19a)

Kzn
∂wn
∂z

=Kz(n+1)
∂wn+1

∂z
, (19b)

with z= zn andn= 1,2,...(N−1).

3.3 The inverse transform

From the GITT formalism, the solution to equation (5) is
given by the expansion:

wn(x,y,z)=
∞∑
p=1

∞∑
q=1

ψ
(
λpq ,x,y

)
N
(
λpq

)1/2 wn
(
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)
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The solution to Eq. (17) is given by:
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)
=Anexp[r1n z] +Bnexp[r2n z]

+wnP
(
λpq ,z

)
, (21)

whereAn,Bn,r1n,r2n,wnp ∈ C. The constants are given in
Appendix A.

The boundary and interface conditions lead to the determi-
nation of constantsAn andBn. Therefore, for eachp andq,
the resulting system is solved numerically.

Using the previous results in the Eq. (20), results
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wherewn
(
λpq ,z

)
is given by the Eq. (21).

Finally, we obtain the components of the average wind,
un and vn, from the fact thatwn(x,y,z) = un(x,y,z)+

vn(x,y,z) i. In that case,

un(x,y,z)= <wn(x,y,z), (23a)

vn(x,y,z)= =wn(x,y,z), (23b)

where< represents the real part ofwn, and=n represents the
imaginary part ofwn.

4 Eddy diffusivity

The eddy diffusivity vertical profiles employed in this study
have been proposed by Degrazia et al. (2000). Such eddy
diffusivities are based on Taylor’s statistical diffusion theory,
in which the shear buoyancy PBL spectra are modeled by
means of a linear combination of the convective and mechan-
ical forcings. Therefore, in the present case, such param-
eterization allowed reproducing the realistic case of a con-
vective boundary layer where shear-generated turbulence oc-
curs. The eddy diffusivities for such conditions are given by
the following expression:
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f ∗
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where ci = αiαu(2πκ)−2/3 with αu = 0.5± 0.05 (Cham-
pagne et al., 1977; Sorbjan, 1989) andαi = 1, 4
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the local friction velocity, in whichα1 = 1.7 (Wyngaard
et al., 1974);(u∗)0 is the superficial friction velocity;zi
is the convective PBL height;z is the height above the
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functions, εb = (0.75)3/2
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dissipation (Højstrup, 1982);L is the Monin-Obukov length

and κ = 0.4 is the von Ḱarmán constant;
(
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m

)
i
=

z

(λm)i
is the reduced frequency of the convective spectral peak,
where (λm)i is the peak wavelength of the turbulent ve-
locity spectra. According to Kaimal et al. (1976) and
Degrazia and Anfonssi (1998),(λm)u= (λm)v = 1.5zi and

(λm)w = 1.8zi

[
1−exp
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The reduced frequency of the neutral peak,(fm)i , with
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,
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Table 1. Meteorological Parameters for the experiment of Wangara.

Day Hour −L (m) zi (m) u∗(m/s) ug0 (m/s) vg0 (m/s)

33 15:00 2.8 1200 0.155 −5.32 −0.77
40 15:00 10 1200 0.14 1.7 −2.55

(fm)v = 0.16

(
1+33

fcz

(u∗)0

)
and

(fm)w = 0.35

(
1+15

fcz

(u∗)0

)
; fc = 2� sinφ is the Coriolis

parameter.

5 Result

5.1 Analysis parameters

Equation (22) expresses, in terms of many independent pa-
rameters, the mean wind profiles. Among these parameters
are: the size of the horizontal area defined byLx andLy , the
thickness1z of the vertical sublayers over which the PBL
was divided, the truncation order (p andq), and the values
of large-scale divergenceδ and vorticityζ , which affect the
lateral boundary conditions.

The size of the horizontal domain has an appreciable im-
pact on the solution, but only for small areas (Fig. 1). As
Lx andLy are successively increased from 1 km to 100 km,
the solution becomes independent of the domain size for
Lx = Ly ≥ 50 km. It means that the present solution is
meaningful only over horizontal areas as large as 50 km.
From this point on, the solutions shown were obtained with
Lx =Ly = 50 km.

A similar convergence analysis was applied to the sublayer
thickness1z and the truncation ordersp andq, leading to
the conclusion that1z= 5 m andp= q = 9 are values that
warrant convergence of the mean wind profiles. The model
results depend on the horizontal position within the domain,
even when no large-scale divergence and vorticity are con-
sidered (Fig. 2). The horizontal variation is larger close to
the domain boundaries, so that there is a good portion of the
domain, near its center, for which the wind profiles do not
vary largely in the horizontal. The following analysis con-
siders the vertical profiles at the domain center only.

5.2 Comparison to observational data from the
Wangara experiment

The Wangara experiment was conducted in Hay, New South
Wales, Australia, from July to August, 1967 (Clarke et al.,
1971). Wind profiles were obtained every hour up to a 2-km
height, using pilot balloons. A 16-m tower provided microm-
eteorological surface observations. In the present study, two
convective days were chosen for comparison to the proposed
model: days 33 and 40 (Table 1).

The wind components at the top of the domain are given
by a thermal wind approximation (Eq. 2), and both the sur-
face geostrophic winds (ug0 andvg0) and the thermal wind
magnitudes (uT andvT ) are given by Wangara observed val-
ues.

The mean wind magnitudes simulated by the model are
similar to the average magnitudes observed at Wangara
(Fig. 3). It is important to stress that such agreement con-
cerns only the vertical overall average, but not the local max-
ima and minima observed at day 33, which characterize an
unmixed wind profile. Indeed, such vertical variability is
quite difficult to capture with a simplified model, as stated
by Wyngaard (1988): “unfortunately, our knowledge of PBL
physics does not yet allow us to calculate the wind profile
from first principles . . .”. Unmixed wind profiles, such as
those observed at day 33, may be attributed to a number
of reasons, such as local baroclinicity or vertical eddy dif-
fusivity variability. Any of these reasons are, however, case-
specific, and cannot be reproduced by a model where thermal
wind is assumed to be constant.

The simulated values for different large-scale synoptic
conditions (in terms of divergence and vorticity) cover a
range of wind magnitudes, generally in agreement with the
observations. Far from the surface, the condition without di-
vergence and vorticity is the one which departs mostly from
the measurements. This same condition, on the other hand,
provides the best match to observations at the lowest levels
(inlet). Different combinations of vorticity and divergence
have been applied for the comparison. There is no clear dis-
tinction among most of them, as can be seen in Fig. 3. How-
ever, an analysis based on statistical indices (Appendix B)
reveals that, while the results are very similar for the wind
magnitude (Table 2), the approximation for wind direction
(Table 3) is improved when both the divergence and vorticity
are positive.

Regarding the vertical profiles for day 33 (Fig. 3), the anal-
ysis based on statistical indices shows that, whenδ= ζ = 0
and δ = ζ = −fc, the model overestimates the mean ob-
served wind magnitude (small negative values ofFB). On
the other hand, the statistical indexFB shows that the hor-
izontal wind direction is underestimated regardless ofδ and
ζ , meaning that the modeled winds are rotated counterclock-
wise with respect to the observations. The statistical index
FS indicates that, except for the caseδ = ζ = 0, the dis-
persion of the mean wind magnitude underestimated the ex-
perimental data. For the wind direction, this same index is
negative in all cases, a consequence of the very small wind
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Fig. 1. Simulated vertical profiles of(a) wind magnitude and(b) wind direction, for different domain sizes, as indicated in legend. Inlet
shows the wind magnitude vertical profile for the lowest 60 m in detail.
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Fig. 2. Simulated vertical profiles of(a) wind magnitude and(b) wind direction, for different positions within the domain, as indicated in
legend. Inlet shows the wind magnitude vertical profile for the lowest 60 m in detail.

direction variability with height in the observed data, while
the model results indicate a slight wind rotation with height.
Other indices, such as NMSE, andFA2 are similar for all
cases, and indicative of good agreement between model and
observations. Finally, the correlation coefficientR was more
variable, and therefore, serves as a measure of the best agree-
ment in each case.

Thermal winds were observed only twice a day, at synoptic
times, and those values were interpolated to 15:00 LT . The
large gradients near the top of the boundary layer arise from
the assumed baroclinicity. For any case, the different mod-
eled profiles agree to each other as a consequence of the top
boundary conditions. They do not necessarily agree to the

observed winds at the boundary layer top as a consequence
of the interpolation used to calculate the thermal wind. This
limitation has been noticed by Sorbjan (1989): “Finally, re-
sults of the Wangara experiment pointed out the difficulties
and limitations of obtaining accurate measurements of ther-
mal winds, vertical velocities, and representative spatially
averaged fluxes”.

Similar results were obtained for day 40 (Fig. 4). In-
deed, the statistical indices (Tables 4 and 5) indicate that the
model reproduced the observations better than for day 33.
In this case, the condition without divergence and vorticity
showed the largest departure from the observations for wind
magnitude both at upper and lower levels. Again, the best
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Fig. 3. Simulated vertical profiles of(a) wind magnitude and(b) wind direction for Wangara day 33, and different values of wind divergence
and vorticity, as indicated in legend. Inlet shows the wind magnitude vertical profile for the lowest 60 m in detail. Squares represent data
from the Wangara experiment for day 33. At Wangara,fc = −8.2×10−5 s−1.

Table 2. Statistical indices evaluating the wind magnitude profiles shown in Fig. 3.

Wind Speed(m/s) NMSE FB FS R FA2

δ= ζ = 0 0.021 −0.107 −0.183 0.685 1.000
δ= −fc; ζ = 0 0.007 0.004 0.110 0.719 1.000
δ= 0; ζ = 2.5fc 0.009 0.032 0.067 0.688 1.000
δ= −fc; ζ = −fc 0.008 −0.024 0.071 0.711 1.000
δ= 0.5fc; ζ = −1.5fc 0.009 0.010 0.039 0.650 1.000
δ= −1.5fc; ζ = −0.5fc 0.009 0.040 0.193 0.702 1.000

Table 3. Statistical indices evaluating the wind direction profiles shown in Fig. 3.

Direction(0) NMSE FB FS R FA2

δ= ζ = 0 0.029 0.151 −0.583 −0.526 1.000
δ= −fc; ζ = 0 0.023 0.129 −0.535 −0.579 1.000
δ= 0; ζ = 2.5fc 0.123 0.318 −1.121 −0.309 1.000
δ= −fc; ζ = −fc 0.010 0.068 −0.446 −0.599 1.000
δ= 0.5fc; ζ = −1.5fc 0.235 0.437 −1.301 −0.172 1.000
δ= −1.5fc; ζ = −0.5fc 0.014 0.090 −0.470 −0.619 1.000

representation offered by the model for both wind magnitude
and direction occurred with positive values of divergence and
vorticity. Furthermore, the solutions with negative vorticity
provided the worst approximation for wind direction. A sim-
ilar analysis of the statistical indices as that made for day 33
can be made for day 40 (Tables 4 and 5).

In both days 33 and 40, the best approximations to the ob-
served profiles were obtained for positive vorticity and diver-
gence (notice that the Coriolis parameter is negative), con-
sistent with the occurrence of anti-cyclonic large-scale flow
at the period. Indeed, the synoptic surface pressure charts
(Clarke et al., 1971) indicate the presence of a high-pressure
system at the region, for both days 33 and 40. Such consis-
tency is further evidence that the model is able to reproduce
the wind profile realistically.
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Fig. 4. Simulated vertical profiles of(a) wind magnitude and(b) wind direction for Wangara day 40, and different values of wind divergence
and vorticity, as indicated in legend. Inlet shows the wind magnitude vertical profile for the lowest 60 m in detail. Squares represent data
from the Wangara experiment for day 40. At Wangara,fc = −8.2×10−5 s−1.

Table 4. Statistical indices evaluating the wind magnitude profiles shown in Fig. 4.

Wind Speed(m/s) NMSE FB FS R FA2

δ= ζ = 0 0.042 −0.187 −0.179 0.952 1.000
δ= −fc; ζ = 0 0.007 −0.028 −0.038 0.941 1.000
δ= 0; ζ = 1,5fc 0.008 −0.047 −0.095 0.954 1.000
δ= −fc; ζ = −fc 0.011 −0.071 −0.038 0.946 1.000
δ= −0.1fc; ζ = fc 0.012 −0.083 −0.107 0.960 1.000
δ= −1.5fc; ζ = −0.5fc 0.010 0.022 −0.001 0.914 1.000

Table 5. Statistical indices evaluating the wind direction profiles shown in Fig. 4.

Direction(0) NMSE FB FS R FA2

δ= ζ = 0 0.004 0.052 0.005 0.493 1.000
δ= −fc; ζ = 0 0.002 0.040 0.101 0.604 1.000
δ= 0; ζ = 1.5fc 0.011 0.091 −0.364 0.288 1.000
δ= −fc; ζ = −fc 0.001 0.013 0.340 0.850 1.000
δ= −0.1fc; ζ = fc 0.008 0.078 −0.249 0.346 1.000
δ= −1.5fc; ζ = −0.5fc 0.001 0.023 0.244 0.763 1.000

6 Conclusions

In the present study, a novel approach was used to obtain
the average wind profile from the Navier-Stokes equations.
The method is based on the Generalized Integral Transform
Technique (GITT), applied to the convective boundary layer
discretized in sublayers. Such discretization allows using
eddy diffusivities that vary vertically. GITT is a procedure
that combines series development and integral transforms,
leading to a final solution (Eq. 22) that contains the physi-
cal parameters determining the wind variability with height.

Large-scale kinematical flow properties, such as divergence
and vorticity are included in the solution, through the bound-
ary conditions and the nonlinear advective terms of the orig-
inal equations.

The model provided a good comparison to the observed
data from Wangara experiment. The mean wind magnitudes
are similar, although the model is not able to reproduce the
unmixed character of the profiles. This is, however, a very
complex task, not achieved by previous analytical results that
provide a very good approximation, such as those by Wilson
and Flesch (2004).
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The results may be improved further employing more re-
alistic boundary conditions. Besides, the selection of other
eddy diffusivity profiles may lead to improved solutions. In
this sense, the methodology developed in the present study
is generic, allowing other eddy diffusivity profiles to be con-
sidered.

The main aim of this study is to establish an alternative
method to determine the mean wind profiles. The method has
been shown in detail, as well as its validation in comparison
to observed data. From this point, it can be used for a further
examination of a more generalized problem. As an example,
in the approach taken here no temporal evolution is consid-
ered. The non-stationary problem can be solved using GITT
along with Laplace transform applied to the time. Besides,
the examples here were restricted to the convective case, but
the development allows the use of the same approach for any
stability condition. The use of appropriate eddy diffusivity
profiles may lead to the determination of wind profiles under
stable conditions as well.

Appendix A

Constants

α1n= λ2
pq+

δ

2Kzn
, (A1a)

α2n=
fc

Kzn
+

ζ

2Kzn
, (A1b)
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2√
LxLy

[(
1−cos(pπ)

β
′

p

)(
1−cos(q π)

γ
′

q

)]
, (A2)

Cn=C3+C6, (A3a)
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2√
LxLy

Kxn

Kzn

[
C1Ly

cos(q π)

γ
′

q

(A3b)

−C2

(
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′

q
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, (A3c)
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1

2
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′
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1

2
(δ+ζ i) Lx β
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Kyn
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[
C4Lx

cos(pπ)

β
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2
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Appendix B

Statistical indices

Following Hanna (1989) the statistical indices used in this
study are defined as:

NMSE=

(
Co−Cp

)2
Co Cp

(Normalized Mean Square Error) (B1a)

FB =

(
Co−Cp

)
0.5
(
Co+Cp

) (Fractional Bias) (B1b)

FS= 2

(
σo−σp

)(
σo+σp

) (Standard Fractional Bias) (B1c)

R=

(
Co−Co

)(
Cp−Cp

)(
σoσp

) (Correlation Coefficient)

(B1d)

FA2= 0.5≤
Co

Cp
≤ 2 (Factor of 2) (B1e)

whereC is the analyzed amount and the subscripto andp
refer to observed and predicted quantities, respectively, the
over bar indicates an averaged value. The statistical index
FB says if the predicted quantity underestimates or over-
estimates the average observed ones. The statistical index
NMSE represents the quadratic error of the predicted quan-
tities related to the observed ones. The statistical indexFS

indicates the as the model gets to simulate the dispersion of
the observed data. The statistical indexFA2 supply the frac-

tion of the data (%) for the ones which 0.5≤
Co

Cp
≤ 2. The

best results are expected to have values near zero for the in-
dices NMSE,FB andFS and near 1 in the indicesR and
FA2.
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