
Atmos. Chem. Phys., 10, 2117–2128, 2010
www.atmos-chem-phys.net/10/2117/2010/
© Author(s) 2010. This work is distributed under
the Creative Commons Attribution 3.0 License.

Atmospheric
Chemistry

and Physics

The spatial distribution of the reactive iodine species IO from
simultaneous active and passive DOAS observations
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Abstract. We present investigations of the reactive iodine
species (RIS) IO, OIO and I2 in a coastal region from a field
campaign simultaneously employing active long path differ-
ential optical absorption spectroscopy (LP-DOAS) as well
as passive multi-axis differential optical absorption spec-
troscopy (MAX-DOAS). The campaign took place at the
Martin Ryan Institute (MRI) in Carna, County Galway at the
Irish West Coast about 6 km south-east of the atmospheric re-
search station Mace Head in summer 2007. In order to study
the horizontal distribution of the trace gases of interest, we
established two almost parallel active LP-DOAS light paths,
the shorter of 1034 m length just crossing the intertidal area,
whereas the longer one of 3946 m length also crossed open
water during periods of low tide. In addition we operated two
passive Mini-MAX-DOAS instruments with the same view-
ing direction. While neither OIO nor I2 could be unambigu-
ously identified with any of the instruments, IO could be de-
tected with active as well as passive DOAS. The IO column
densities seen at both active LP-DOAS light paths are almost
the same. Thus it can be concluded that coastal IO is almost
exclusively located in the intertidal area, where we detected
mixing ratios of up to 29±8.8 ppt (equivalent to pmol/mol).
Nucleation events with particle concentrations of 106 cm−3

particles were observed each day correlating with high IO
mixing ratios. Therefore we feel that our detected IO con-
centrations confirm the results of model studies, which state
that in order to explain such particle bursts, IO mixing ratios
of 50 to 100 ppt in so called “hot-spots” are required.

Correspondence to:K. Seitz
(katja.seitz@iup.uni-heidelberg.de)

1 Introduction

It is well known that reactive halogen species (RHS) affect
tropospheric chemistry in different ways. A drastic exam-
ple is the total depletion of boundary layer ozone in po-
lar spring within days or hours by catalytic cycles involv-
ing bromine (see e.g.,Barrie et al., 1988; von Glasow and
Crutzen, 2007; Simpson et al., 2007and references therein).
While the destruction of arctic boundary ozone appears to
be mainly driven by BrO (with minor contributions from IO
and ClO), at mid latitudes (Read et al., 2008) and possibly
in Antarctica (Frieß et al., 2001; Saiz-Lopez et al., 2008;
Scḧonhardt et al., 2008) IO plays an important role in the pro-
cess of ozone destruction. Besides its influence on the ozone
budget, reactive iodine (like reactive bromine) affects atmo-
spheric chemistry by changing the NO/NO2 and OH/HO2
partitioning (e.g.,Platt and Ḧonninger, 2003). Additionally,
recent field studies, mainly carried out at Mace Head atmo-
spheric research station (Mace Head) (e.g.,O’Dowd et al.,
2002; Mäkel̈a et al., 2002) indicate that reactive iodine plays
a key role in the formation of new particles in coastal areas.
This phenomenon has been studied in several laboratory ex-
periments (e.g.,Hoffmann et al., 2001; Jimenez et al., 2003;
Burkholder et al., 2004; McFiggans et al., 2004; Palmer et al.,
2005) and model studies (e.g.,Pechtl et al., 2006; Saiz-Lopez
et al., 2006a; Vuollekoski et al., 2009). A review of the cur-
rent knowledge on marine aerosol production can be found in
O’Dowd and de Leeuw(2007). If those particles grow to be-
come cloud condensation nuclei (CCN), they could influence
cloud properties and therefore have an impact on climate.

The most likely source of reactive iodine is the photol-
ysis of molecular iodine and organohalogens emitted by
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macroalgae. While initially organohalogens, especially the
short-lived diiodomethane CH2I2 were assumed to be the
major precursors of reactive iodine (Carpenter, 2003), at the
reported levels of I2 and CH2I2, the former would constitute
the dominating source of RHS (McFiggans et al., 2004). The
emission of molecular iodine fromLaminaria Digitatawas
studied byDixneuf et al.(2009), while Ball et al.(2009) re-
port emission rates for different seaweed species.

Most of the measurements of RHS at coastal sites were
conducted at Mace Head (e.g.,Alicke et al., 1999; Hebestreit,
2001; Saiz-Lopez and Plane, 2004a; Saiz-Lopez et al., 2004a,
2006a,b; Peters et al., 2005; Bale et al., 2008), which is lo-
cated about 6 km North-West of the MRI. However,Lee et al.
(2010) andStutz et al.(2007) report observation of reactive
halogen species from the tropical Northern Atlantic and the
Gulf of Maine, respectively, whileMahajan et al.(2009) and
Furneaux et al.(2009) measured reactive halogen species at
the French Atlantic Coast. Previous important measurements
of RHS can be found inPeters et al.(2005).

Mostly RHS are measured using active LP-DOAS. Thus
the obtained mixing ratios are an average along kilometer-
long light paths and one has to keep in mind that a possi-
bly inhomogeneous distribution of the trace gases can not
be resolved.Burkholder et al.(2004) state that the mixing
ratios derived from long path absorption measurements are
too low to account for the large aerosol production observed.
They suggest an inhomogeneous source distribution result-
ing in areas with much above average IO mixing ratios, so-
called “hot-spots”, to explain the significant particle forma-
tion. They conclude that their hypothesis has to be confirmed
by further field studies.

In this study we present results from active LP-DOAS
measurements of RIS on two almost parallel light paths of
different lengths (1034 m and 3946 m), where the shorter
light path was just crossing the intertidal area, in order to
obtain information about the source distribution.

The first section addresses the instrument set-up and the
measurement site, followed by a description of the DOAS
analysis. In next sections results will be presented and dis-
cussed. We conclude with a summary and an outlook.

2 Experimental

2.1 The active LP-DOAS system

DOAS (Platt and Perner, 1983; Platt and Stutz, 2008) is
a well established technique to identify and quantify trace
gases by their narrow band absorption structures. In this
study we used an active LP-DOAS instrument for the de-
tection of the following RIS: IO, OIO and I2. The setup of
the LP-DOAS system used was a further development of the
coaxial mirror system introduced byAxelson et al.(1990).
The light of a high pressure Xe-arc lamp of the type XBO500
(Osram) was collimated into six transmitting fibres of a Y-

fibre bundle. The bundle at the telescope side consists of
one receiving fibre surrounded by the six transmitting fibres.
The transmitting fibres illuminate the mirror of the telescope
yielding an almost parallel light beam, the receiving fibre
is connected to the spectrometer. A detailed description of
the Fibre LP-DOAS can be found in (Merten et al., 2009;
Merten, 2008). The almost parallel light beam is then al-
ternately sent on two different light paths through the open
atmosphere to two arrays of quartz prism retro-reflectors
(63 mm diameter each prism) located at distances of 1973 m
and 517 m. The number of quartz prisms in the arrays was
39 and 13, respectively. The reflected light was transmitted
to an Acton 500 pro spectrometer (f-number=6.9, 600 gr/mm
grating, focal length=500 mm, thermostated to 25◦C) via the
receiving fibre of the fibre bundle, where it was analyzed.
Spectroscopy requires a homogeneous illumination of the
spectrometer grating. To obtain this, quartz glass fibres are
used in order to “mix” the light and thus obtain a homoge-
neous illumination of the spectrometer. Different fibres can
exhibit different mixing properties. The mixing can be im-
proved by exerting mechanical stress on the fibres applying a
mode mixer (Stutz and Platt, 1997), but mixing is often lim-
ited depending on the fibre characteristics. A good mixing
of the light is especially important for very short light paths,
as then the image of the retro reflectors is sharper, or if the
applied light source features strong spectral structures in the
respective wavelength range (which is the case in the evalu-
ation wavelength range of IO). If the mixing is not perfect,
small spectral structures may arise, which can correlate/anti-
correlate with absorption structures. This is probably the rea-
son for the bias we see in the IO data (see Sect.4.3).

A reference spectrum was taken before and after each
measurement spectrum using a shortcut system consisting
of an aluminium diffuser plate that was placed several mm
in front of the fibre bundle thus recording a lamp spectrum
without passage through the atmosphere. The detector was
a 1024 pixel photodiode array detector (type Hamamatsu
S3904-1024). The resulting spectral resolution was about
0.5 nm FWHM. Four different wavelength ranges were suc-
cessively covered to measure the trace gases of interest: BrO
in 320±40 nm, IO in 430±40 nm, OIO and I2 in 550±40 nm
and NO3 in 640±40 nm. The latter measurements were only
performed at solar zenith angles>85◦. These wavelength
ranges also cover other species, such as O3, NO2, H2O, O4,
SO2, HONO and HCHO, which were taken into account for
the analysis. A full LP-DOAS measurement sequence took
about 12 min for good visibility conditions and three wave-
length ranges. A measurement sequence started with a lamp
reference spectrum with 15 scans, followed by the measure-
ment of the atmospheric spectrum with maximum 30 scans
within 30 s and a second lamp reference spectrum of 15
scans. Afterwards background spectra were taken with a
fixed integration time of 10 seconds. In the process of the
analysis, the two lamp reference spectra were added to one
shortcut spectrum for each atmospheric spectrum, in order to
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provide the ideal sensitivity. Since the detection limit of the
longer light path was expected to be lower for homogeneous
distributed trace gases, we performed measurements on the
short light path during every fourth measurement cycle. The
analysis procedure itself will be described in Sect.3.

2.2 The passive MAX-DOAS systems

In addition to the active instrument, two passive MAX-
DOAS instruments were applied to detect RIS. The MAX-
DOAS technique was already described in detail (e.g.,
Hönninger and Platt, 2002; Hönninger et al., 2004). The
instruments used, were “Mini-MAX-DOAS-devices” (Bo-
browski et al., 2003). Scattered sunlight is focussed by a
quartz lens (focal length=40 mm, d=20 mm, aperture angle
<0.6◦) and transmitted to a miniature crossed Czerny-Turner
spectrometer/detector unit (“USB2000”, Ocean Optics, Inc.)
via a fibre bundle. The whole set up is placed in a sealed,
weatherproof aluminium box which also contains the peltier
cooler to stabilize the spectrometer to 0◦C. An attached step-
per motor allows the instrument to observe scattered sunlight
at a series of different elevation angles. The whole instru-
ment was controlled by PC via USB connection. The two in-
struments covered the fixed wavelength ranges 325–461 nm
for the detection of BrO and IO and 538–635 nm for OIO and
I2, respectively. Their viewing azimuth was set up almost
parallel to the light paths of the active instrument. Spectra
were taken under 2◦, 4◦, 6◦, 10◦, 20◦ and 90◦ elevation angle
for a fixed integration time of 300 s for each angle. Thus a
full sequence took 30 min.

2.3 Particle measurements

Particle measurements were carried out by a nano scanning
mobility particle sizer (nano-SMPS), covering the size range
from 3 nm to 20 nm, and a standard SMPS, covering the
10 nm to 100 nm range. Both, the nano-SMPS and SMPS
were standard Thermo Systems Inc. (TSI) systems (Wang
and Flagan, 1990), with the nano-SMPS using the TSI 3025a
condensation particle counter (CPC) as a detector and the
SMPS using a TSI 3010 CPC as a detector. The instruments
were located about 150 m away from the low tide region

and sampling was conducted through a 3 m long,1
4
"

stain-
less steel inlet. Size resolved concentrations were corrected
for diffusional losses, which were calculated on the basis of
tube diameter and residence time in the sample tube using
the equations given bySeinfeld and Pandis(1998).

2.4 Site description

Between 3 August and 9 September 2007, an intensive field
campaign was conducted at the Martin Ryan Institute (MRI)
in Carna (53.31◦N, 9.83◦W) at the Irish West Coast, about
6 km south-east from Mace Head. A description of the area
around Carna can be found in e.g.Hebestreit(2001). The

Fig. 1. Measurement site, the light paths of the active LP-DOAS
are indicated in black arrows, the grey arrow indicates the viewing
direction of the MAX-DOAS instruments. The green area marks
the intertidal zone.
©Crown Copyright and/or database rights. Reproduced by permis-
sion of the Controller of Her Majestys Stationery Office and the UK
Hydrographic Office (www.ukho.gov.uk).

MRI is located in front of Mweenish Island (see Fig.1), an
island with a very high seaweed density. Due to its high sea-
weed density in all wind directions, the area has already been
the object of earlier field measurements (e.g.,Sellegri et al.,
2005).

During the campaign the wind direction was almost all
the time North/North-West. The weather was sunny dur-
ing most of the days, with just few rainy days. Due to
the sunny weather and the vast seaweed abundance, parti-
cle bursts were observed almost each day. An example for
such a particle burst observed at 30 August can be found in
Fig. 2. We concentrate on a core period of five days of mea-
surements between 30 August and 4 September, since only
during those five days we were able to detect IO on both LP-
DOAS light paths. Of the five days of observation, 31 August
and 2 September were rainy, whereas the other three days
were sunny and partly cloudy but with no rain and good vis-
ibility. During the five days a maximal tidal range of 4.4 m
was observed.

The instruments were positioned at few meters distance
from the waterfront during high tide. The light beam of
the active LP-DOAS instrument was crossing the water at
an altitude of about 5 m above sea level at high tide. Dur-
ing low tide the water below the short absorption path was
completely removed, whereas the long light path crossed the
same intertidal area first, then the sea and again an intertidal
area in front of Finish Island, where the second retro-reflector
was placed. Figure1 shows the area of the MRI and the
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Fig. 2. Particle burst event measured 30 August (Julian date and
time) with a nano-SMPS instrument (upper panel). After noon par-
ticle concentrations up to 106 cm−3 particles were observed. The
time of the event correlates well with low tide and high IO column
densities measured along the long light path (lower panel).

absorption paths. It can be seen, that due to the slight angle
between the two light paths, the long light path crosses less
intertidal area in front of the instrument. Figure3 demon-
strates that the seaweed of the area is mainly dominated by
the typeLaminaria, which are known to be strong emitters
of I2 as well as halocarbons (e.g.,McFiggans et al., 2004;
Carpenter et al., 2001; Ball et al., 2009).

3 DOAS data analysis

3.1 Active LP-DOAS

For the analysis of the LP-DOAS spectra the software DOA-
SIS (Kraus, 2005) was used to simultaneously fit the differ-
ent references to the atmospheric spectrum using a non-linear
least-squares method (e.g.,Stutz and Platt, 1996). Labora-
tory studies previous to the campaign showed that the de-
tection limit of the instrument could be improved by tak-
ing reference spectra of the light source as close in time to
the measurement spectrum as possible. Therefore two lamp
reference spectra (shortcut spectra), one directly before and
one directly after the measurement spectrum, were recorded,
added and included in the fit. In addition a polynomial was
included to account for broad band absorption structures,

Table 1. Differential absorption cross sections used for the analysis
of the spectra.

Species Reference

BrO Wilmouth et al.(1999)
O4 Greenblatt et al.(1990)
NO2 Voigt et al.(2002)
I2 Saiz-Lopez et al.(2004b)
OIO Bloss et al.(2001)
IO Spietz et al.(2005)
H2O Rothman et al.(2005)
NO2 (MAX-DOAS) Vandaele et al.(1998)
O3 (243 K, MAX-DOAS) Bogumil et al.(2003)
O3 (223 K, MAX-DOAS) Voigt et al.(2001)

broad band structures due to scattering in the atmosphere and
broad band instrument features. On the basis ofStutz and
Platt (1996) the statistical error of our analysis was multi-
plied by a factor 2, to obtain the real measurement error. The
detection limit is estimated by multiplying a factor 2 to the
1σ statistical error.

IO was analyzed in the wavelength range between 416
and 448.5 nm where four of the strongest vibrational bands
of the electronic transitionA253/2←X253/2 are. Due to
large structures in the residual arising from the Xe-lamp, the
wavelength range between 442 nm and 444 nm was excluded
from the fit. In addition to the IO cross section references
of NO2, O4 and H2O were included in the fit procedure. Ta-
ble 1 summarizes the absorption cross sections used in this
work. The polynomial included was of 5th order. Figure4
shows a sample evaluation of 30 August 2007, 13:26 UTC,
taken on the long light path. The spectrum corresponds to a
column density of(7.8±0.72)×1013 molec/cm2. Assuming
homogenous mixing along the 3946 m light path, this would
correspond to a mixing ratio of (7.9±0.73) ppt.

The evaluation of OIO and I2 was performed in the wave-
length range between 530 and 567 nm. This covers 6 vibra-
tional bands of OIO and 15 vibrational bands of the elec-
tronic transition B35(0+u )−X16+g of I2. Besides the cross
sections of OIO and I2, references of NO2, O4 and H2O and
a 4th order polynomial were included in the fit.

3.2 MAX-DOAS

For the evaluation of the MAX-DOAS measurements the
software WinDOAS (Fayt and van Rozendael, 2001) was
used to perform a non-linear least-squares fit. A descrip-
tion of the evaluation procedure can be found inHönninger
and Platt(2002). To detect the absorbers of interest, a 90◦

reference spectrum of the same sequence, a Ring spectrum,
a polynomial to account for Rayleigh and Aerosol scatter-
ing, an intensity offset (polynomial of degree 2) to account
for possible instrument stray light and cross sections of all
other absorbers were fitted to the atmospheric spectrum. The
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Fig. 3. Seaweed distribution in the vicinity of the MRI: Most of the seaweed is of the typeLaminaria. The short light path crosses almost
exclusivelyLaminaria Saccharina, whereas the long light path crosses firstLaminaria Saccharinaand thenLaminaria Digitata. Adapted
from [Connemara Seaweed Survey 2001. Irish Seaweed Centre, NUIG Internal report 72 pp.].

Table 2. Overview of the analysis settings

Species Wavelength range [nm] Polynomial [order] Trace gas references applied

IO 416–448.5 5th NO2, H2O, O4
I2/OIO 530–567 4th NO2, H2O, O4
IO (MAX-DOAS) 414–438 3rd O4, NO2
O4 (MAX-DOAS) 338.5–367 3rd O3, NO2, BrO
I2/OIO (MAX-DOAS) 553–567 3rd O3, H2O, O4, NO2

results of the evaluation are therefore “differential slant col-
umn densities” (dSCDs), i.e. SdSCD= S (α)−S (90◦), where
S denotes the signal of the respective absorber [molec/cm2]
andα the elevation angle. An overview of the MAX-DOAS
analysis setting applied is given in Table2. A MAX-DOAS
sample evaluation of 30 August 2007, 14:04 UTC is shown
in Fig. 5. The spectrum corresponds to a column density of
(5.5±0.4)×1013 molec/cm2.

4 Results and discussion

4.1 MAX-DOAS measurements

During the five days of observation OIO and I2 could not
be detected with the MAX-DOAS instruments. While the
analysis yielded periods where the differential slant column
densities (dSCDs) exceeded the detection limit, which was
for the 2◦ angle on average 1.4×1014 molec/cm2 for OIO
and 5.6×1014 molec/cm2 for I2, the results did not withstand
different sensitivity studies: A change of the analysis wave-
length range to 547–567 nm changed the results as signifi-
cantly as changing the order of the polynomial to 2 or chang-
ing the intensity offset to first order.
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Fig. 4. Example for the spectral identification of IO on the long
light path using the active LP-DOAS instrument. The spectrum was
recorded 30 August 2007, 13:26 GMT. The corresponding mixing
ratio of IO is(7.9±0.73) ppt.

On all five days IO exceeded the average detection limit
of 2.8×1013 molec/cm2, also sensitivity studies indicated the
results to be robust. The maximum dSCD observed was
1.0×1014 molec/cm2 (Fig. 6). While under an elevation an-
gle of 2◦ the dSCDs are very high, especially around low
tide, the dSCDs decrease rapidly for higher elevation angles.
The decrease of dSCDs for higher elevation angles is gen-
erally expected for tropospheric absorbers, because the light
path through the trace gas layer is longer for lower elevation
angles. However, the separation of the different elevation an-
gles can also be caused by a vertical gradient of the trace gas
itself. Since the source of IO is located on the ground, one
would expect a vertical gradient of the IO concentration. To
distinguish between the two effects radiative transport mod-
elling would be necessary. The quite heterogenous distribu-
tion of IO and rather high noise would make the radiative
transfer modelling and its interpretation a quite difficult task
that is beyond the scope of this work. However, we used an
approximation via O4 to obtain information about the vertical
distribution of IO: the profile of O4 is essentially invariable

(except for small changes due to changing air density) and
therefore changes in the dSCDs of O4 are caused by changes
of the light path due to scattering in the atmosphere. For a
constant profile of IO in the lowest few hundred meters, one
would expect the IO/O4 ratio to be rather constant for dif-
ferent elevation angles, whereas for a vertical gradient with
higher IO concentrations close to the ground, the ratio should
be higher for lower elevation angles. Figure 10 shows the
IO/O4 ratio for the five days of measurement. For 2◦ ele-
vation angles, the ratio is significantly higher, indicating a
strong vertical gradient.

4.2 LP-DOAS measurements

OIO could not be identified unambiguously during the
5 days. Even though the column densities exceed the sta-
tistical 2σ detection limit (1.2×1014 molec/cm2 or ≈12 ppt
on the long and 1.8×1014 molec/cm2 or≈70 ppt on the short
light path) several times by up to a factor of 2, the fact that
the analysis shows strong scattering and yields negative col-
umn densities of the same order of magnitude as the positive
values (up to about−4×1014 molec/cm2 on the short, and
−5×1014 molec/cm2 on the long light path) makes the in-
terpretation difficult. Although the analysis was stable using
different fit parameters, no further conclusions about the hor-
izontal distributions can be drawn at this time.

OIO measurements are reported from various sites: At
Mace Head up to 6.7 ppt were reported (Hebestreit, 2001;
Saiz-Lopez and Plane, 2004b), Allan et al.(2001) report up
to 3.0 ppt from Cape Grim, Tasmania,Stutz et al.(2007) saw
up to 30 ppt in the Gulf of Maine andMahajan et al.(2009)
saw a maximum of 8.7 ppt in Roscoff, France. For our mea-
surements, the OIO mixing ratios are below the detection
limit of our instrument when measuring along the long light
path. Therefore our results are not in contradiction to earlier
studies. However, since Mweenish Bay is an area of high
seaweed density, one could speculate that the OIO mixing
ratios at Mweenish Bay could be higher than those reported
from, e.g. Mace Head.

Since I2 is evaluated in the same spectral wavelength range
as OIO, its evaluation shows the same problems. Again,
the column densities exceed the statistically derived detec-
tion limit several times by about a factor of 2, but due to
the short light path, the results show a strong scattering also
towards negative column densities. Similar to OIO the analy-
sis proved to be stable, but anyway no conclusions about the
horizontal distribution can be derived. The average detec-
tion limit was 4.9×1014 molec/cm2 or ≈50 ppt on the long
light path and 7.3×1014 molec/cm2 or≈282 ppt on the short
light path. The maximum in negative column densities ob-
tained from the evaluation was about−5.5×1014 molec/cm2

and−8.9×1014 molec/cm2, respectively.
I2 has so far been observed at Mace Head (Saiz-Lopez and

Plane, 2004b; Bitter et al., 2005; Peters et al., 2005; Huang
et al., 2010), at Roscoff, France (Mahajan et al., 2009) and
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Fig. 5. Example for the spectral identification of IO using the passive MAX-DOAS instrument. The spectrum was recorded 30 August 2007,
14:05 GMT under 4◦ elevation angle. The corresponding differential slant column density of IO is(5.5±0.4)×1013molec/cm2.

at Mweenish Bay (Saiz-Lopez et al., 2006b; Huang et al.,
2010) where maximum mixing ratios of 140.7 ppt, 52.3 ppt
and 193.3 ppt are reported, respectively. Of special interest
for our measurements are the results ofHuang et al.(2010),
who measured up to 193.3 ppt of I2 at the MRI when also
LP-DOAS measurements were performed. However,Huang
et al. (2010) used an in-situ technique and were measuring
very close to the ground in the intertidal area. Although the
detection limit of the long light path is considerably lower
than the reported concentrations, 50 ppt along the entire light
path and at about 5 m height would be required. So the fact,
that we were not able to detect I2, is probably an indication
that it is not homogenously distributed.

IO was detected on both light paths on each day. The aver-
age detection limit was 2.2×1013 molec/cm2 or≈2.2 ppt on
the long light path and 3.6×1013 molec/cm2 or ≈14 ppt on
the short light path. The maximum observed column densi-
ties were 8.0×1013 molec/cm2 and 7.4×1013 molec/cm2, re-
spectively.

4.3 Discussion and comparison

Figure 7 shows the time series of IO column densities on
both light paths (black stars: long light path, blue triangles:
short light path). The blue line indicates tidal height and the
grey shaded areas mark the periods of darkness. The peaks
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Fig. 6. IO dSCDs, different colors/symbols represent different ele-
vation angles. A clear separation between different elevation angles
can be seen with higher signals for lower angels, indicating a strong
vertical gradient. For 1 September a typical error bar is given.

in IO are correlated to minima in tidal height and maxima in
solar radiation. This was also observed during earlier cam-
paigns at Mace Head (e.g.,Alicke et al., 1999; Saiz-Lopez
et al., 2006b), and also at the French Atlantic Coast (Peters
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Fig. 7. Time series of IO on both active LP-DOAS light paths. The blue line indicates the tidal height and grey shaded areas mark periods of
darkness. Blue triangles correspond to the IO column density seen over the short light path, black stars to the long light path. In the upper
panels, solar radiation and wind direction are shown. The peaks in IO coincide with minima in tidal height and maxima in solar radiation.
The column densities measured on both light paths are comparable indicating most of the IO signal originating in the intertidal area.

et al., 2005; Mahajan et al., 2009). Stutz et al.(2007) saw no
dependence of the IO signal on tidal height, which is so far
unexplained.

A striking feature is the observation that the column densi-
ties on the long light path are about the same as on the short
although also some differences are found. This is a strong
indication that the signal comes to a large fraction from the
intertidal area. Converting the maximum IO column den-
sity (7.4±2.3)×1013 molec/cm2 of the short light path into
mixing ratios, assuming 1034 m path length and homoge-
nous mixing, yields (29±8.8) ppt. Assuming that IO is also
inhomogenously distributed within the intertidal area, this
is in good agreement with modelling studies ofBurkholder
et al. (2004), who state that 50 to 100 ppt of IO are needed
to explain nucleation events with particle concentration of
106 cm−3 similar to those that were observed each of the 5
days. An example for the correlation between enhanced IO
column densities measured along the long light path and par-
ticle formation is illustrated in Fig.2. The particle burst (up-
per panel) at noon coincides with elevated IO column den-
sities (lower panel). A plot with total particle concentration
vs. IO column densities can be found inHuang et al.(2010).
The reason that our IO signal is still below the necessary 50–
100 ppt, that are needed, might be the strong vertical gra-
dient, we see in the MAX-DOAS data. As our light path
crosses the seaweed at several meters height, the concentra-
tions further down, are probably significantly higher.

We also feel that we can explain the slight differences
in the column densities seen at the two light paths. On
30 August we started measurements on the short light path
at 14:13 GMT. Until 2 September, the column densities are
about the same as for the long light path. On 3 September
the column density of the short light path exceeds the column
density of the long light path by about 50%. This is not due
to a change in wind direction (same wind direction on 30 Au-
gust and 3 September), but because of the slightly different
light paths and because of different sources. Figure1 shows
that the long light path crosses less intertidal area in front
of the instrument due to a slight angle between the viewing
directions. Figure8 illustrates the LP-DOAS measurement
set-up for different water levels. While the intertidal area
below the short light path is exposed to ambient air during
low tide for all days, due to the steep coast line, more inter-
tidal area in front of Finish Island is exposed close to low
spring tide (30 August). During spring tide the deep water
seaweedLaminaria Digitataexposed in front of Finish Is-
land probably makes up the difference in column densities
due to the shorter fraction of intertidal area at the MRI for
the long light path, whereas the following days its IO input
decreases. Note that in the afternoon of 31 August, the fibre
had to be exchanged. The fibre effects explained in Sect.2.1
can cause a bias in the observed concentrations and therefore
the column densities observed after 31 August, 14:00 might
be underestimated.
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Fig. 8. Sketch of measurement set-up. Low tide water levels for 30
August, 1 and 3 September, 2007 are shown. The short light path
crosses mainlyLaminaria Saccharina, which are exposed during
low tide for all days of measurement. The long light path crosses
Laminaria Saccharinafirst andLaminaria Digitata on the other
side of Mweenish Bay. Due to the steeper coast line on the other
side of the bay, more seaweed is exposed along the long light path
during periods of low spring tide (highlighted with box).

Figure 9 shows a comparison of the 2◦ and 4◦ MAX-
DOAS IO dSCDs (blue stars and black circs, respectively)
with the column densities of the LP-DOAS instrument (long
light path: black crosses, short light path: pink triangles).
An absolute agreement between the active and the passive
data is not expected, since the light paths are significantly
different. However, the data correlate well and it can be seen
that the 2◦ MAX-DOAS dSCDs are largely higher than the
LP-DOAS column densities, while the 4◦ results are about
the same magnitude or lower than the LP-DOAS results. A
striking feature is that the 2◦ MAX-DOAS results are often a
factor of 2 higher than the 4◦ results. This is not only because
of a longer light path, but also due to a vertical gradient of
IO (Fig. 10).

Figure 11 shows the correlation between the 2◦ MAX-
DOAS dSCDs and the LP-DOAS column density along
the long light path. The data show strong scatter, but al-
though the intertidal area in front of the instrument is crossed
just once, the MAX-DOAS shows higher column densities
most of the time. This occurs mainly during low tide (see
Fig. 8). There are probably two sources, which explain the
higher MAX-DOAS signal: First, the MAX-DOAS instru-
ment probably also probes the intertidal area on the other
side of Finish Island (Fig. 3 shows that in the deeper wa-
ter behind Finish IslandLaminaria Hyperboreais located,
which is a very strong emitter of iodine precursors;Ball et al.,
2009), and second, it is possible, that light reflected from the
surface and therefore passing a layer with very high IO con-
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Fig. 10. Ratio of IO and O4 column densities. For 2◦ elevation
angle the ratio is significantly higher, indicating a strong vertical
gradient of IO.

centrations, causes the higher signal. While water only has
an albedo below 10%, very high concentrations of IO close
to the surface could have a significant impact on the results.
Additionally light not reflected by the surface, but scattered
by, e.g. aerosols close to the ground contributed to the mea-
sured IO signal.

As we know from the LP-DOAS results, the IO signal
comes almost exclusively from the intertidal area, which
means that the MAX-DOAS signal originates not only from
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Fig. 11. Correlation between LP-DOAS (long light path) and 2◦
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measurements. Only data above the detection limit are shown.

the intertidal zone in front of the MRI, but also from intertidal
areas further away. If the IO was located only in the intertidal
area, its lifetime must be very short. This also means that its
concentration should decrease rapidly with height which is
in good agreement with the strong decrease of the IO dSCDs
towards higher elevation angles. But this also means that
the additional signal, the MAX-DOAS detects (its light path
only crosses the intertidal area in front of the MRI once) most
likely does not come from too far away, as even for 2◦ eleva-
tion after 2 km, the instrument looks at a height of 70 m (see
Fig. 8).

5 Conclusions

During this study OIO and I2 could not be observed above
the detection limit for both light paths and both techniques.
Therefore no information about their horizontal distribution
could be obtained and more measurements with longer ab-
sorption paths and better detection limits just crossing inter-
tidal area are needed.

IO could clearly be detected, with the observation angle
dependence of the observed dSCDs indicating a vertical gra-
dient in the IO concentration. Comparing the IO column
densities of two different LP-DOAS light paths, where one
light path was just crossing intertidal area, suggests that IO
is almost exclusively located in this area. Assuming that its
distribution in the intertidal area is also inhomogenous, we
feel that we can confirm the so-called “hot-spot-theory” (e.g.,
Burkholder et al., 2004; Saiz-Lopez et al., 2006a), that was
introduced to explain the formation of nucleation events as
they have also been observed during this study.
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