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Abstract. Two proton-transfer-reaction mass spectrometry
systems were deployed at the Bio-hydro-atmosphere inter-
actions of Energy, Aerosols, Carbon, H2O, Organics and
Nitrogen-Southern Rocky Mountain 2008 field campaign
(BEACHON-SRM08; July to September, 2008) at the Man-
itou Forest Observatory in a ponderosa pine woodland near
Woodland Park, Colorado USA. The two PTR-MS systems
simultaneously measured BVOC emissions and ambient dis-
tributions of their oxidation products. Here, we present mass
spectral analysis in a wide range of masses (m/z40+ to 210+)

to assess our understanding of BVOC emissions and their
photochemical processing inside of the forest canopy. The
biogenic terpenoids, 2-methyl-3-butene-2-ol (MBO, 50.2%)
and several monoterpenes (MT, 33.5%) were identified as
the dominant BVOC emissions from a transmission cor-
rected mass spectrum (PTR-MS), averaged over the day-
time (11 a.m. to 3 p.m., local time) of three days. To as-
sess contributions of oxidation products of local BVOC, we
calculate an oxidation product spectrum with the OH- and
ozone-initiated oxidation product distribution mass spectra
of two major BVOC emissions at the ecosystem (MBO and
β-pinene) that were observed from laboratory oxidation ex-
periments. The majority (∼ 76%) of the total signal in the
transmission corrected PTR-MS spectra could be explained
by identified compounds. The remainder are attributed to ox-
idation products of BVOC emitted from nearby ecosystems
and transported to the site, and oxidation products of uniden-
tified BVOC emitted from the ponderosa pine ecosystem.

Correspondence to:S. Kim
(saewung@ucar.edu)

1 Introduction

Emissions and oxidation processes of biogenic volatile or-
ganic compounds (BVOC) in the troposphere have been in-
tensively studied for several decades (Wiedinmyer et al.,
2004; Guenther et al., 1995; Fuentes et al., 2000; Andreae
and Crutzen, 1997). These studies indicate that global bio-
genic VOC emissions (∼ 1150 Tg C/year; Guenther et al.,
1995) are an order of magnitude higher than anthropogenic
emissions (∼ 160 Tg C/year; Benkovitz et al., 2004). Their
oxidation processes directly affect local and global air qual-
ity. For example, Ryerson et al. (2001) found that reactive
BVOC (e.g., isoprene) are an important factor controlling
ozone formation downwind of power plant plumes in the
southeastern US. Kanakidou et al. (2005) reviewed the im-
portance of BVOC for processes influencing the formation
of secondary organic aerosol and cloud condensation nu-
clei, which have significant implications for global climate
(IPCC 2007). In addition, Guenther (2002) and Kesselmeier
et al. (2002) concluded that reactive BVOC have significant
implications for the global carbon cycle.

Our understanding of BVOC emissions and photochem-
istry has significantly improved in the past decade (e.g.
Guenther et al., 2006 and Atkinson and Arey, 2003) yet
a number of recent laboratory and field studies indicate
that significant issues related to unexplored BVOC or their
oxygenated products remain unsolved. For example, Zhao
et al. (2004) reported a high yield (∼ 30%) of C4 and
C5 carbonyl compounds from the oxidation of isoprene
(C5H8), yet these species have not been measured in am-
bient air due to technical difficulties (Goldstein and Gal-
bally, 2007). A field study in a ponderosa pine forest canopy
(Lee et al., 2005) reported that total monoterpene (MT)
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concentrations, measured by proton transfer reaction-mass
spectrometry (PTR-MS) were consistently higher (∼ 30%)
than sums of the speciated MT concentrations, measured by
the gas chromatography method. The investigators suggest
that this difference indicates that substantial amounts of re-
active MT are not detected by conventional Gas Chromatog-
raphy (GC) analytical methods. Indeed, significant missing
OH reactivity (Di Carlo et al., 2004) and unexpected chemi-
cal ozone loss (Kurpius and Goldstein, 2003), reported inside
of forest canopies, suggest that undetected BVOC could have
important implications for photochemistry.

Here we present a detailed mass spectral analysis
(m/z=40+ to 210+) of BVOC emissions using PTR-MS
and GC-MS. We compare branch enclosure BVOC emis-
sion measurements with ambient VOC distributions in a pon-
derosa pine forest. The universal sensitivity of PTR-MS for
most VOC exhibiting a proton affinity greater than water pro-
vided a capability to examine unidentified BVOC. In addi-
tion, complementary measurements were made by GC-MS
techniques. Recent work on quantifying the impact of mass
discrimination characteristics of the PTR-MS system (from
m/z40+ to m/z210+; e.g. Kim et al., 2009 and Taipale et al.,
2008) provide new constraints for quantification of unidenti-
fied BVOC and their oxidation products in the higher molec-
ular weight mass range (e.g.> 100 amu). Using these con-
straints, we compare the observed ambient spectra of for-
est air with the laboratory observed OH and ozone initiated
oxidation product mass spectra of two major BVOC emis-
sions in the ecosystem, 2-methyl-3-butene-2-ol (MBO) and
β-pinene. Our analysis examines the main uncertainties as-
sociated with sources of missing organic carbon in forest en-
vironments (e.g., primary production of BVOC vs. photo-
chemical production) (Di Carlo et al., 2004, Lou et al., 2009;
and Holzinger et al., 2005).

2 Methods

2.1 Site

The field study was conducted at the Manitou Forest Obser-
vatory (MFO, https://wiki.ucar.edu/display/mfo/Manitou+
Forest+Observatory) from 21 July to 19 September 2008.
The MFO is located in the Manitou Experimental Forest (el-
evation 2286 m, latitude 39◦6′0′′, and longitude 105◦5′30′′),
maintained by the US Forest Service. The site is repre-
sentative of the Central Rocky Mountains ponderosa pine
zone. Year long trace gas monitoring at the site (Smith et
al., in preparation) indicates that relatively clean air masses
from the southwest predominate and anthropogenic pollu-
tion plumes from nearby cities such as Colorado Springs and
Denver were rarely transported to the site.

2.2 Branch enclosure system

A 5 L Teflon bag with two 1/4′′ Teflon tube fittings (Welch
Fluorocarbon, Dover, NH) enclosed a ponderosa pine branch
with mature needles that was located approximately four me-
ters above the ground. Ambient air was pumped through a
charcoal scrubber to remove VOC and ozone and then intro-
duced into the enclosure at a rate of∼ 2.5 slm (standard liter
per minute). VOC concentrations in the scrubbed air entering
the enclosure were measured once every hour for background
subtractions. Mass spectra obtained by PTR-MS during the
night when BVOC emissions were significantly lower than
those during the day indicated that there was no significant
background interference with the BVOC emission measure-
ments. Air temperature inside the enclosure was measured
using a K-type thermocouple and logged on a computer. We
found that BVOC emissions were always higher during the
first day following installation of the enclosure. To avoid
BVOC artifacts due to mechanical disturbance during instal-
lation, data collected during the first day after the installation
were therefore excluded. Measurements of BVOC emissions
were conducted for four full days after emissions had sta-
bilized. After each measurement period, the enclosure was
opened, exposing the branch to ambient conditions for 2 days
before enclosing it again for subsequent measurements. At
the conclusion of the experiment, the branch was harvested,
and needles were dried at 70◦C for ∼ 48 h and weighed.

2.3 PTR-MS and GC-MS

Two high sensitivity PTR-MS systems (IONICON Analytik,
Innsbruck Austria) were deployed during the field cam-
paign. General information for the analytical technique can
be found in Blake et al. (2009) and references therein. Kim
et al. (2009) and Karl et al. (2005) presented information
on the analytical characteristics and calibration procedures
for the specific instruments used in this study. Since we ex-
plore a wide range of molecular masses (m/z=40+ to 210+),
the mass discrimination of the system was carefully charac-
terized before and after the field campaign with a certified
standard gas (Matheson Tri Gas, USA) containing 14 aro-
matic compounds from benzene (MW 78) to trichloroben-
zene (MW 180). The relative sensitivity over the mass range
generally declines in an exponential function. In addition,
we calibrated relative sensitivities atm/z205+, the molecu-
lar weight of the protonated sesquiterpene (SQT) parent ion
with a triisopropylbenzene standard generated by a capillary
diffusion system (CDS) located at the University of Colorado
at Boulder (Helmig et al., 2004). The experiment demon-
strated that the exponential fitting line, based on the certified
aromatic standards, predicts the transmission efficiency rea-
sonably well (Kim et al., 2009). The average deviation from
the transmission curve is estimated to be∼ 15%, an error
very similar to the estimation of Taipale et al. (2008).
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Branch enclosure and ambient air samples were also an-
alyzed using GC-MS methods. In situ measurements were
made at the field site using a portable GC-MS with an in-
ternal microtrap concentrator and a 30 m×0.32 mm ID 1 mm
film DB-1 column, temperature programmed from 40◦C to
200◦C (Hapsite Smart, INFICON, East Syracuse, NY, USA).
Air from the enclosure was directly routed to the portable
GC-MS to collect 1 L samples on the microtrap and used
for quantitative speciation of MBO, and the dominant MT,
oxygenated-MT and qualitative speciation of SQT. Higher
volume branch enclosure and ambient air samples (6 L) were
collected onto stainless steel two-stage sorbent tubes filled
with Tenax and Carbotrap, and then thermally desorbed and
analyzed with the portable GC-MS. An ozone trap (LpDNPH
ozone scrubber (KI), Supelco USA) was used on the ambi-
ent air-sampling inlet. To examine tree-to-tree variations of
BVOC emission, leaf cuvette samples with Tenax/Carbotrap
sorbent tubes were also analyzed using a GC-flame ioniza-
tion detector (FID). Additionally, diurnal variations of ambi-
ent BVOC were measured by collecting air in stainless steel
canisters (2 L), which were subsequently analyzed by an Ag-
ilent GC-MS in laboratories in Boulder, CO and Portland,
OR.

2.4 Environmental chamber

After the field campaign, we conducted laboratory oxidation
experiments on two of the major BVOC species (MBO,β-
pinene) observed at the Manitou forest site using a stainless
steel environmental chamber (Shetter et al., 1987), 2 m in
length with a volume of 47 L. For each oxidation experiment,
the concentrations of reactants and products were monitored
by both a Bomem DA3.01 Fourier transform infrared spec-
trometer with scan range of 800–3900 cm−1 and the PTR-
MS system, monitoring oxidation products from each ex-
periment for the same mass range of the field measurement
(m/z40+–210+). The experimental details of OH and ozone-
initiated experiments can be found in Orlando et al. (2000).
OH was generated by photolysis of organic nitrite (i-butyl ni-
trate) in the presence of NO. Aliqouts of ozone were added
every 10 to 15 min until at least∼ 70% of reactants had re-
acted. Typical experiments were conducted in the time span
of 20 to 30 min to minimize possible wall losses. We simu-
lated high NO environments for the chamber experiments so
that we can compare oxidation products of BVOC at MFO
which is usually in the high NO regime (NO> 100 pptv).

3 Results

3.1 Fragmentation patterns

For accurate interpretations of mass spectra, it is essential
to have a comprehensive understanding of the fragmentation
patterns of analyte ions. Fragmentation patterns of various

compounds have been extensively investigated with differ-
ent reagent ion systems and chemical ionization has been
clearly shown to result in less pronounced fragmentation than
electron impact ionization (Harrison, 1992). A number of
studies using PTR-MS have reported fragmentation patterns
of BVOC (e.g. Kim et al., 2009 and Tani et al., 2003). In
this section, we summarize fragmentation patterns of BVOC
groups for the H3O+ reagent ion system based on their func-
tional groups. We focus here on BVOC relevant to this study,
and refer to other references (de Gouw and Warneke, 2007)
for other VOC.

In the Brønsted acid chemical ionization reagent system,
the larger differences in proton affinity between the analyte
and the conjugate base of the reagent ion cause more pro-
nounced fragmentation due to the excess energy. Chem-
ical ionization by H3O+, which has a relatively moder-
ate proton affinity (PA=166.5 kcal/mol) among the Brønsted
acid reagent ions, leads to moderate fragmentation patterns.
Break-up patterns of molecular ions are highly dependent on
functional groups as summarized in Table 1. In addition,
for PTR-MS applications, higher ratios of the electric field
strength to the number density in the drift tube (E/N) cause a
more pronounced degree of fragmentation (Kim et al., 2009,
Tani et al., 2003). Usually, E/N is set in the range between
100 and 140 Td (10−17 V cm2) and the experimental results
presented here were collected at E/N of∼ 120 Td (unless oth-
erwise noted). In this section, we will semi-quantitatively
discuss fragmentation patterns of the BVOC relevant to this
study. More quantitative information can be founded in the
studies refereed in the discussion.

Typically, MT (Tani et al., 2003) and SQT (Dhooghe et al.,
2008; Kim et al., 2009; Demarcke et al., 2009) decompose
by splitting off the same 56 amu (C4H8) neutral fragment.
This leaves the fragment ionsm/z81+ for MT andm/z149+

for SQT as the dominant fragments regardless of the struc-
ture of the isomers. Chemical structure, however, can af-
fect the relative abundances of the parent and fragment ions.
p-Cymene, a monoterpenoid compound with the molecular
mass of 134 amu has a neutral C3H6 fragment that leads to an
ion detected atm/z93+ (∼50% abundance at∼ 120 Td; Tani
et al., 2003). This implies thatp-cymene could be a signifi-
cant interference for toluene measurements in environments
with largep-cymene concentrations. Therefore, complemen-
tary methods such as GC-MS should be employed to estimate
toluene emissions from plants with careful assessments of
m/z93+ signals fromp-cymene (Heiden et al., 1999; White
et al., 2009).

During proton transfer reactions, alcohols tend to split off
a H2O group as the major neutral fragment. This leads for
example to a relatively small parent ion abundance for MBO
(20–30%) and a negligible parent ion abundance (e.g., less
than 5%) for substituted MT alcohols, such as linalool (De-
marcke et al., 2009) or borneol. Substituted MT alcohols
are therefore detected at the same masses as MT,m/z81+

and 137+. Bornyl acetate (MW=196) is also detected at
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Table 1. A summary of fragmentation patterns of BVOC, relevant to this study. Major product ions (relative abundance> 10%) are listed
and minor product ions are listed in the brackets at a drift tube energy of∼120 Td.

Classes Species Fragments

Terpenoid

∗Monoterpenes (M. W. 136) m/z81+ and 137+ (67+, 93+ and 95+)
+Sesquiterpenes (M. W. 204) m/z149+ and 205+ (81+, 95+, 109+, 123+, 135+, and 137+)
∗ p-cymene (M. W. 134) m/z93+ and 135+

Alcohol
MBO (M. W. 86) m/z69+ and 87+(41+)

Linalool (M. W. 155) m/z81+ and 137+

Borneol (M. W. 155) m/z81+ and 137+

Ketone
∗∗nopinone (M. W. 138) m/z139+ (121+)
∗camphor (M. W. 152) m/z153+

Aldehyde

glycolaldehyde (M. W. 60) m/z61+ and 43+
∗∗pinonaldehyde (M. W. 168) m/z151+, 107+, and 71+(43+, 81+, 99+, 109+, 123+,and 169+)
++Caronaldehyde (M. W. 168) m/z169+, 151+, and 123+ (107+, 109+, 125+, 139+, and 151+)

HMPr (M. W. 88) m/z71+ and 89+

Epoxide α-pinene oxide (M. W.152) m/z153+, 135+, 109+ (43+, 93+, and 95+)

Ether methyl chavicol (M. W. 148) m/z149+

Ester +++Methyl salicylate (M. W. 152) m/z153+

∗ Tani et al. (2003 and 2004),∗∗ Wisthaler et al. (2001) and Schoon et al. (2004)
+ Kim et al. (2009) and Demarcke et al. (2009),++ Schoon et al. (2004),+++ Karl et al. (2008)
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Fig. 1. (a) An averaged mass spectrum and(b) an averaged transmission-corrected mass spectrum from branch enclosure measurements
(11 a.m. to 3 p.m. of 12 August to 14 August 2008).

m/z137+ and 81+ after losing a neutral fragment with the
molecular composition of C2H4O2. Many studies have re-
ported noticeable emissions of these oxygenated terpenoid
compounds (e.g., Ciccioli et al., 1999); thus, care needs to
be taken when estimating MT emissions based on PTR-MS

alone. The protonated ions of most aldehyde and epoxide
species tend to lose H2O in the drift tube as summarized
in Table 1. Two ketoaldehyde species, pinonaldehyde and
caronaldehyde, are first generation oxidation products ofα-
pinene and 3-carene, respectively. The fragmentation pattern
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Table 2. Observed compounds/compound classes, product ions and abundances (%) in the transmission-corrected mass spectrum (3rd
column). The proton transfer reaction rate corrected abundances (PTR Corr. Abd., %) along with proton transfer rate constants (PTR
constants in 10−9 cm3 s−1) are also summarized in 6th and 5th column.

Species Product Ions
(m/z)

Abundances Detected Species PTR Constants PTR Corr. Abd.

MBO 69+ and 87+ 50.74 2.6 50.15

MT 81+ and 137+ 29.97 β−pinene (25.1%), 3-carene (17.1 %),
limonene (15%), myrcene(17.3%) and
ten other species

2.3 33.48

MT in other masses 93+, 133+, and 135+ 2.81 p-cymene,o-cymene,
and menthatriene

2.4 3.05

oxygenated-MT 153+ and 151+ 2.49 verbenone, car-3-en-2-one,
and carvone (m/z151+),
and mostly camphor (m/z153+)

4.4 1.45

m/z169+ 169+ 0.36
SQT 205+ 0.15 mostly isolongifolene 3.0 0.13
Acetaldehyde 45+ 3.36 3.4 2.57
Acetone 59+ 8.35 3.0 7.15
Acetic Acid 61+ 1.79 2.3 2.02

of pinonaldehyde has been reported twice using two different
ion reaction chamber configurations-a drift tube (PTR-MS;
Wisthaler et al., 2001) and a flow tube (SIFT-MS; Schoon
et al., 2004). Results from the two studies are qualitatively
similar in that the dehydrated fragment ion (m/z151+) is
the dominant product; other observed fragment ions exhibit
the same masses but are more abundant in PTR-MS mass
spectra due to extra kinetic energy in the drift tube reactor
of PTR-MS. The fragment ion distribution of caronaldehyde
observed by the SIFT-MS technique is slightly different from
that of pinonaldehyde observed by SIFT-MS. Along with the
dehydrated ion (m/z151+), a significant fraction of the par-
ent ion (m/z169+) and another major fragment (m/z123+)

were observed, both with abundances comparable to that
of m/z151+. These differences could originate from struc-
tural differences of the two compounds (e.g., the ring sys-
tems). The results suggest that fragmentation patterns of
other first generation oxidation products of MTs (e.g. limone-
naldehyde) need to be examined for the accurate assessment
of product ion yields in photochemical kinetic studies (e.g.,
Ng et al., 2006). Finally, ketones and ethers listed in the table
are detected mostly (> 90%) at the parent ion masses.

3.2 BVOC Emissions from ponderosa pine

For the first week of the field campaign, a PTR-MS sys-
tem was set up to measure mass spectra from a branch en-
closure. A three-day averaged mass spectrum (12 August
to 14 August 2008) of the branch enclosure sample is pre-
sented in Fig. 1a for daytime (11 a.m. to 3 p.m.) condi-

tions. Fig. 1b presents the transmission-corrected spectrum.
The scale on the y-axis represents the relative abundance of
the mass spectra normalized to the acetone peak (m/z59+).
Based on the fragmentation patterns, summarized in Table 1,
the identified BVOC species and their relative abundances
in the transmission-corrected spectrum are summarized in
Table 2. The table also summarizes the speciation of MT,
oxygenated-MT, and SQT, identified by GC-MS and avail-
able proton transfer reaction rates of each species. Emission
strengths measured by PTR-MS are proportional to the rela-
tive abundances normalized by proton transfer reaction con-
stants as summarized in the last column of Table 2. MBO and
MT are the dominant BVOCs emitted from ponderosa pine as
observed in earlier studies (Baker et al., 2001). The emission
strength of MT that was measured by GC-MS is∼ 72% of
that measured by PTR-MS, a result consistent with the find-
ings of Lee et al. (2005), who suggested the existence of re-
active MT that can only be measured by PTR-MS. Less than
5% of the discrepancy can be explained by the contributions
of oxygenated MT, such as linalool and bornyl acetate, which
were detected onm/z81+ and 137+. In addition, the GC-MS
detected elevated levels of toluene from the branch enclosure
(∼ 4 times higher than ambient concentration). With sub-
traction of thep-cymene background based on the results of
Tani et al. (2004), we can estimate that toluene emissions
were less than 1% of MT emissions. This is much lower
than the reported value for stressed pine needles but similar to
that observed for unstressed needles by Heiden et al. (1999).
Although pronounced acetone, acetaldehyde and acetic acid
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Table 3. Daily variations of emission rates of four BVOC observed from branch enclosures, measured by PTR-MS. Leaf cuvette measure-
ment results are also summarized for measurements made at the same ecosystem with different ponderosa pine trees. Emission capacity
(E30) andβ (Guenther et al., 1993) derived from this study and previous studies of ponderosa pine in different ecosystems are also presented.

Date MBO (µg g−1 hr−1) MT (µg g−1 hr−1) oxygenated-MT (µg g−1 hr−1) SQT (µg g−1 hr−1) Temp (◦C)

21 August 2008 4.85 3.6 0.400 0.0343 30.9
25 August 2008 4.67 4.66 0.438 0.0825 30.5
26 August 2008 5.07 4.52 0.460 0.0453 30.3
27 August 2008 4.56 3.67 0.427 0.0425 30.7
28 August 2008 3.57 2.44 0.197 0.0243 27.0

2 September 2008 2.43 1.81 0.156 0.0179 24.3
3 September 2008 3.08 1.51 0.130 0.00641 28.9
4 September 2008 2.47 1.02 0.109 0.00623 26.4

∗∗30 July to 4.70 (2.43) 1.97 (0.73) ∗∗∗NA
25 September 2008

Basal Emission E30=3.92 E30=2.4, E30=0.0218,
β=0.15 β=0.16

Previous Studies ++E30> 7 ∗E30=0.163–1.455, ∗E30=0.080–0.100,
∗β=0.159–0.781 ∗β=0.209–1.763

+E30=0.5, +E30=0.070,
β=0.11 β=0.15

∗Bouvier-Brown et al. (2009);∗∗Leaf cuvette-GC FID measured averages (for a total of 12 days in the periods)
∗∗∗Mostly under the detection limit;+Helmig et al. (2007);++Harley et al. (1998)

(the GC-MS results confirmed acetic acid rather than glyco-
laldehyde, also detected at the samem/zof 61+) peaks were
observed in the spectrum, the flux of these compounds is
strongly dependent on their compensation point and on the
concentrations in the surrounding air. Since their concentra-
tion in the branch enclosure differs from that of ambient air,
ecosystem-scale flux measurements would be preferable to
estimate their fluxes (Kesselmeier et al., 1997; Schade and
Goldstein, 2001; Karl et al., 2005; Jardine et al, 2008). The
total counts listed in Table 2 represent 93% of the total counts
in the spectrum of Fig. 1b. This suggests that we have a rea-
sonably good understanding of the composition of BVOC
emissions from these ponderosa pine in the mass spectral
range investigated here for compounds that can be detected
by PTR-MS. However, the lower sensitivities of PTR-MS
techniques for high mass compounds of PTR-MS techniques
(M.W.> 150) could mean that we are missing some heavier
compounds.

After a week of conducting mass scan measurements, we
changed the PTR-MS measurement mode to multiple ion
detection, which enables shorter averaging times due to a
better signal to noise ratio. These measurements were con-
ducted for three weeks, focusing on emission rates of MBO,
MT, SQT, and oxygenated-MT (m/z=153+). Mean measured
daytime emission rates (11 a.m. to 3 p.m.) along with daily
temperature variations are summarized in Table 3. The av-
erage emission ratios for MT/MBO and SQT/MT were 0.72
(± 0.16) and 0.01 (± 0.004), respectively. During the same

campaign we conducted ecosystem-scale gradient measure-
ments using a second PTR-MS instrument. From these we
calculated an ecosystem-scale flux ratio of 0.50± 0.15 and
0.04± 0.01 for MT/MBO and SQT/MT respectively. The re-
sults can be interpreted in the context of chemical reactivity
inside of the forest canopy. More comprehensive approaches
including investigations of photochemical processes inside
of the forest canopy and measurements on a large num-
ber of branches to characterize branch-to-branch variability
are planned for future studies at the MFO site and will ad-
dress these differences more quantitatively. Emission rates of
oxygenated-MT listed in Table 3 are calculated based on the
signals onm/z153+, the sensitivity measured for MT and the
proton transfer reaction rate of camphor (4.4×10−9 cm3 s−1;
Tani et al., 2003). The estimated emission rates are signif-
icantly lower than those of MT but much higher than SQT
emission rates, though daily emission rate variations of SQT
indicate a wide range (e.g., one order of magnitude). Such
large emission variations have been reported previously on
longer timescales (Arey et al., 1995; Ciccioli et al., 1999;
Vuorinen et al., 2005; Ruuskanen et al., 2007, Bouvier-
Brown et al., 2009) but the underlying endogenous (e.g., de-
velopmental stage of branch) and exogenous (e.g., tempera-
ture and light) controlling factors remain uncertain. Table 3
also contains the results from an exponential fitting function
between temperature and emission rates used to parameterize
emissions.
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The exponential fitting scheme is analogous to the algo-
rithm of Guenther et al. (1993), E(temp)=E30exp(β temp-
30), where E30 indicates the emission capacity at 30◦C for
a given dry needle mass andβ indicates the temperature re-
sponse factor. Analogous measurements of E30 andβ from
recent ponderosa pine studies are also shown in Table 3. The
β-values determined in the different studies show reasonable
agreement, although the small differences (e.g.∼ 0.05) in β

could still lead to significant differences in BVOC emission
estimation. Emission capacity varies significantly between
different studies. Leaf cuvette measurements of various pon-
derosa pine trees at the Manitou forest site (Table 3) indicated
reasonable agreement with the branch emission measure-
ment results for MBO and MT. In addition, the low emissions
of SQT in the branch enclosure measurement were consis-
tent with the results of leaf cuvette measurements for various
ponderosa pine individuals. Bouvier-Brown et al. (2009) ob-
served large variations of emission capacity (factor of 8) for
different ponderosa pine individuals at a different ecosystem
(the Blodgett Forest research station) suggesting that plant-
to-plant variations among the same species in an ecosystem
can be significant although some of the variability is likely
caused by artifacts associated with enclosure measurement
techniques. These relatively large emission variations, again,
have been reported from experiments for many plant species
and ecosystems and could be caused by biotic or abiotic
stresses (e.g. herbivory and violent weather events; Duhl et
al., 2008).

3.3 BVOC and their oxidation product distributions in
the forest canopy

Figure 2 presents the diurnal variations of ambient concen-
trations of MBO, MT, acetone (m/z59+) and glycolalde-
hyde+acetic acid (m/z61+), averaged over a three-week pe-
riod (18 August to 6 September 2008). The diurnal variations
of MBO and MT, two major BVOC emitted by the ecosys-
tem, show a clear opposite pattern. Emissions of MBO are
strongly light dependent (Harley et al., 1998) leading to max-
imum mixing ratios during the day despite a shorter chem-
ical lifetime and dilution into a deeper boundary layer. A
similar diurnal trend was also observed at a ponderosa pine
ecosystem in California (Schade and Goldstein, 2001). On
the other hand, the lower boundary layer depth during the
night along with higher oxidant mixing-ratios (e.g. OH and
ozone) during the day seems to be the main controlling fac-
tor of the diurnal variation of MT concentrations, with max-
imal mixing ratios occurring at early morning despite lower
emissions resulting from cooler temperatures (Hewitt et al.,
1995). The dominant MT species observed during the field
campaign period wasβ-pinene (26%), followed closely by
α-pinene (22%) and 3-carene (21%). The results correspond
with emission measurements from the branch enclosure sys-
tem. The diurnal variation of compounds with sources that
include both direct emissions and BVOC oxidation such as

acetone, possibly contributed by direct emissions, and acetic
acid is more complex. The main reason is the interplay be-
tween photochemical production during daytime and varia-
tions in boundary layer height throughout the day.

In order to compare differences in diurnal oxidation prod-
uct distributions between the day when MBO was the domi-
nant BVOC emission and the night when MT was the domi-
nant BVOC emission, Fig. 3 shows an MBO-dominated day-
time spectrum (2 to 3 p.m. on 14 August; Fig. 3a) as well as a
MT-dominated nighttime spectrum (1 to 2 a.m. on 18 August;
Fig. 3b). Figure 3c and d present transmission-corrected
mass spectra for day and night, respectively. Transmission-
corrected spectra were calculated based on acetone (m/z59+)

as a reference mass. Major peaks and their transmission-
corrected counts from the spectra are summarized in Ta-
ble 4. The table also shows mixing ratios of NOy and SO2
during the time period, which indicate that the air masses
were not significantly influenced by pollution, a conclusion
supported by the relatively weak peak strengths of benzene
(79+) and toluene (93+), even though ambient toluene con-
centrations from PTR-MS measurements might reflect an up-
per limit. Formic acid exhibits the highest contribution dur-
ing both day and night. Other oxidation products (acetalde-
hyde, acetone, acetic acid+glycolaldehyde, 2-hydroxy-2-
methylpropanal (HMPr), methyl ethyl ketone (MEK)) were
also detected in significant amounts.m/z153+, most likely
an oxygenated-MT (e.g., camphor), was also detected in
significant amounts during both day and night. A number
of studies using GC techniques have reported emissions of
oxygenated-MT that could be detected onm/z153+ by PTR-
MS. Noticeable emissions of camphor and other oxygenated-
MT have been reported especially from conifers (Ortega et
al., 2008). In this ecosystem, we confirmed the emission of
oxygenated-MT based on both GC-MS and PTR-MS mea-
surements. At the same time, we also observed the com-
pound class with significant concentrations in ambient air. In
addition, some unidentified masses in the spectra are sum-
marized in Table 4,m/z75+, 57+, and 101+ (hydroxyace-
tone, a fragment of hydroxyacetone, and C5 hydroxycar-
bonyl, respectively) in the table could be attributable to ox-
idation products of isoprene (Paulot et al., 2009), which is
a minor BVOC emission from this ecosystem but is emitted
in greater amounts from some upwind ecosystems. Indeed,
only small amounts of isoprene (∼ 0.1–0.3 ppbv) were found
in canister samples, collected on site and analyzed via GC-
MS. The concentrations did not show any strong diurnal vari-
ation, suggesting that isoprene at this site is transported from
other ecosystems (e.g., aspen groves, oak shrublands, spruce
forests, riparian willow zone) with isoprene oxidation prod-
ucts produced during transport. The significance of trans-
ported isoprene oxidation products in a ponderosa pine dom-
inated ecosystem was also reported by Dreyfus et al. (2002)
at the Blodgett Forest research station in California. The
compounds/compound classes listed in Table 4 (including
m/z75+, 57+ and 101+) account for 76% and 75% of the
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1766 S. Kim et al.: Emissions and ambient distributions of Biogenic Volatile Organic Compounds

1.2

1.0

0.8

0.6

0.4

M
B

O
 (

p
p

b
v)

2015105

Local Time (hour)

0.6

0.5

0.4

0.3

0.2

0.1

M
T

 (p
p

b
v)

16x10
-3

14

12

10

8

6

S
Q

T

1.4

1.2

1.0

0.8

0.6

0.4
A

ce
ti

c 
A

ci
d

 (
p

p
b

v)

1.8

1.6

1.4

A
ceto

n
e (p

p
b

v)

 Acetic Acid+Glycolaldehyde (m/z 61+)
 Acetone+Glyoxal (m/z 59+)

 MBO
 MT
 SQT
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Fig. 3. Representative ambient mass spectra of(a) the daytime (2 to 3 p.m. on 14 August 2008) and(b) the nighttime (1 to 2 a.m. on
18 August 2008) periods. Their transmission corrected mass spectra are presented in(c) and(d), respectively.

observed ambient mass spectra (without the inclusion of even
masses to focus on hydrocarbon (CxHy) and oxygenated-
hydrocarbon (CxHyOz) compounds) during day and night
respectively. The larger fraction of unidentified counts in
ambient mass spectra (∼ 24%), compared to those observed
from branch enclosure measurements (∼ 7%), suggests the
influence of photochemical VOC production observed in this
clean environment. The discussion, again, is limited due to
the low sensitivity of PTR-MS for higher mass compounds.
Recent technical breakthroughs such as a time-of-flight de-
tector or ion trap mass spectrometers are expected to expand
our understanding of the chemistry of semi-volatile organic
compounds (Mielke et al., 2008; Jordan et al., 2009).

3.4 Laboratory kinetics experiments

To quantitatively assess contributions of oxidation products
of BVOC in this eco-system, we conducted laboratory oxida-
tion experiments for two major BVOC emissions, MBO and
β-pinene in dry conditions. OH- and ozone-initiated oxida-
tion products and their yields fromβ-pinene have been pre-
viously quantified with PTR-MS by Wisthaler et al. (2001)
and Lee et al. (2006), respectively but the products of OH
or ozone initiated oxidation of MBO have not been re-
ported with PTR-MS. For each oxidation experiment, the
PTR-MS was operated in a mass-scanning mode (m/z40+

to 210+). The mass range is much wider than those from
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Fig. 4. The transmission-corrected PTR-MS spectrum of the OH initiated MBO oxidation experiment.

Table 4. Major peaks in the ambient transmission corrected spectra
and their normalized counts (Fig. 3).

Species m/z+ Transmission Corrected Counts
Day Night

Acetaldehyde 45 84.73 34.28
Formic Acid 47 251.75 211.63
Acetone 59 145.06 39.02
Acetic Acid 61 79.19 24.01
MBO 69 and 87 48.07 16.71
HMPR 71 and 89 34.20 13.99
Methyl Ethyl Ketone 73 24.64 8.11
MT 81 and 137 13.52 73.59
Oxygenated-MT 153 23.66 17.27
*MS75 75 14.64 4.76
**MS57 57 31.46 13.76
+MS101 101 23.59 13.65
MS109 109 23.70 23.19
NOy 5.2 ppbv 2.7 ppbv
SO2 0.36 ppbv 0.06 ppbv

∗Possibly hydroxy acetone
∗∗ Possibly butene or fragment of hydroxy acetone
+ Possibly C5 hydroxycarbonyl

Table 5. Relative abundances of the OH initiated oxidation prod-
ucts of MBO. The estimated fractional molar product yields are pre-
sented in the brackets. The glycolaldehyde abundance and yield are
calculated with considerations of the fragmented portion (∼50%,
see the text for details)

Products PTR-MS ∗FT-IR

Formaldehyde NA 0.29–0.35
Acetone 100 (0.51) 0.52–0.67
HMPr 23.7 (0.14) 0.19–0.31
glycolaldehyde 83.8 (0.43) 0.50–0.78

∗Carrasco et al. (2007) and Atkinson and Arey (2003)

the previous studies ofβ-pinene oxidation experiments es-
pecially towards the higher mass end. A background mass
spectrum for OH oxidation experiments was taken for all
chemicals (e.g. MBO, NO, organic nitrite, and air matrix
∼ 800 torr) introduced into the environmental chamber. For
ozone experiments, we also obtained background spectra be-
fore ozone was injected into the environmental chamber. The
background mass spectrum was observed before each batch
of experiments. As oxidation reactions progressed, spectra
were taken and the blank spectrum subtracted to get the net
product distribution spectra due to photo-oxidation.

An example of a net spectrum is presented in Fig. 4.
The mass discrimination-corrected spectrum in the figure
shows the product distributions from the oxidation of MBO
by OH. Peaks of the spectrum are normalized by ace-
tone counts (m/z59+), the dominant peak in the spectrum.
Other pronounced peaks can be matched with known product
molecular ions such as 2-hydroxy-2-methylpropanal (HMPr,
m/z89+) and its dehydrated ion (m/z71+), and glycolalde-
hyde (m/z61+). Although acetic acid could be detected on
the same mass, the possibility was excluded from the FT-IR
data. The protonated glycolaldehyde ion was shown to have
a dehydrated fragment ofm/z43+ with intensity equal to
the parent ion abundance in the E/N configuration of labora-
tory experiments (∼ 130 Td). However, due to interferences
from OH precursors onm/z43+, the pronounced peak at this
mass could not be quantified in the product distribution spec-
trum. The relative abundances of products and their prod-
uct yields (brackets) calculated from spectra are summarized
in Table 5. The table also shows product yields calculated
from previous FT-IR experiments (Carrasco et al., 2007 and
Atkinson and Arey, 2003 and references therein). Overall,
the FT-IR observed product yields of this study show reason-
able agreement with previous studies. The estimated yield of
acetone from the PTR-MS experiments in Table 5 shows rea-
sonable agreement with previous FT-IR experiment results.
The glycolaldehyde yield is estimated from the calculated
proton transfer reaction constant (kAOD=2.97×10−9 cm3 s−1
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from the average-dipole-orientation theory) and the esti-
mated product ion counts, twice that of the parent ion
(m/z61+) counts in the spectrum, to account for fragmen-
tation. The HMPR yield in the table was also calcu-
lated based on the calculated proton transfer reaction con-
stant (kAOD=2.80×10−9 cm3 s−1 from the average-dipole-
orientation theory). PTR-MS detected acetone, HMPr and
formic acid and FT-IR detected formaldehyde, acetone, and
formic acid as major ozone-initiated oxidation products of
MBO in dry conditions. Carrasco et al. (2007) reported the
same results in dry conditions. However, the same study also
found that only HMPr and formaldehyde are detected as ox-
idation products in humid condition (R.H.> 20%).

Product distributions ofβ-pinene oxidation with OH and
ozone indicate reasonable agreement with previously re-
ported results (Wisthaler et al., 2001; Lee et al., 2006; Atkin-
son and Arey, 2003 and references there in). Both PTR-MS
and FT-IR measured nopinone as a major oxidation prod-
uct. FT-IR detected formaldehyde and acetone and PTR-MS
detected acetone, formic acid, hydroxy nopinone (only by
ozone oxidation), and 3-oxonopinone as oxidation products.
PTR-MS detected relatively small amounts ofm/z169+ in
the product spectrum by ozone-initiated oxidation. The peak
is possibly from dehydrated fragments of protonated pinic
acid (m/z187+). The product mass spectrum of OH oxida-
tion experiments indicates pronouncedm/z101+ (with a rel-
ative abundance of 25.7) similar to what we observed in the
ambient spectra at the Manitou forest site. However, the fact
that the nopinone signal (m/z139+) is relatively weak in the
ambient spectrum prevents us from speculating that the sig-
nificant m/z101+ signal in the ambient spectrum is from a
β-pinene oxidation product. The oxidation products abun-
dances described above explain 75.9% of total counts in the
OH oxidation spectrum and 75.4% of total counts from the
ozone oxidation spectrum. For comparison, about 95% of
the total counts from MBO oxidation experiments could be
attributed to the known compounds.

To compare the product distributions of the oxidation ex-
periments with the daytime ambient spectrum in the forest
canopy, we conducted a simple time-dependent calculation
to get ratios of (glycolaldehyde)/(MBO) and (nopinone)/(β-
pinene). The calculations were constrained by the measured
daily variations of MT, MBO (Fig. 2) and ozone. Daily vari-
ations of OH concentrations were set to follow daily varia-
tions of JNO2, calculated by the TUV (Total Ultraviolet and
Visible http://cprm.acd.ucar.edu/Models/TUV/) model with
a maximum value of 2.5×106 molecules cm−3 (OH). The
absolute OH concentrations are not important for our pur-
pose because we calculate the ratios of the oxidation prod-
ucts and the precursors rather than absolute concentrations of
products. The yields of glycolaldehyde and nopinone from
MBO and β-pinene oxidation, respectively, were assigned
the values found in this study. The OH loss rates of gly-
colaldehyde (kglycolaldehyde−OH = 1.1×10−11 at 298 K) and
nopinone (knopinone−OH = 1.7×10−11 at 298 K) were taken

from Bacher et al. (2001) and Calogirou et al. (1999), respec-
tively. The daily variations of glycolaldehyde and nopinone
in the model become consistent in 48 hours of model time.
From the stabilized diurnal variations, the average ratios of
(glycolaldehyde)/(MBO) (=1.62) and (nopinone)/(β-pinene)
(=0.824) between 2 p.m. to 3 p.m., corresponding to the time
period of the average daytime ambient mass spectrum as
shown in Fig. 3c. Based on these ratios, a composite spec-
trum was calculated from four mass spectra obtained in the
laboratory oxidation experiments. The oxidation product dis-
tribution mass spectra were scaled based on ambient oxidant
concentrations of OH (assumed to be 2.5×106 molecules
cm−3) and ozone (45 ppbv from ambient measurements) and
the amount of MBO andβ-pinene in the ambient spectrum
of Fig. 3c. The calculated composite spectrum along with the
ambient spectrum is presented in Fig. 5.

The composite spectrum is dominated by the known oxi-
dation products of MBO andβ-pinene such as acetone, gly-
colaldehyde, HMPr, and nopinone. Those compounds com-
prised more than half of the total counts in the ambient spec-
trum as described in the above section. However, a sig-
nificant fraction of peaks in the ambient spectrum are not
present in the composite spectrum. The additional peaks
may come from oxidation products of other MT species such
asα-pinene and 3-carene, which represented 22% and 20%
of the ambient MT concentrations. However, the relatively
weak signal onm/z151+, a major fragment for both pinon-
aldehyde (anα-pinene oxidation product) and caronaldehyde
(a 3-carene oxidation product) suggests that photo-oxidation
products of these two MTs can only account for a small
fraction of unidentified peaks. Therefore, further investiga-
tions such as possible oxidation product contributions from
oxygenated-MT (m/z153+) are necessary. As ambient mass
spectra indicated influences of transported oxygenated prod-
ucts of VOC not emitted in the ecosystem (e.g. isoprene), a
significant portion of unidentified peaks in the spectra may be
attributable to this process. In addition, the possibility of sig-
nificant emissions of semi-volatile organic compounds, de-
tected by PTR-MS with low sensitivity (i.e. with amu> 150),
leads us to speculate that their oxygenated products could
contribute to the unidentified peaks, although many stud-
ies have demonstrated that a significant portion of oxidation
products of SVOC is partitioned into the aerosol phase due
to their low vapor pressure (Kroll and Seinfeld, 2008).

4 Conclusions

We examined emissions and photochemical processes within
a ponderosa pine ecosystem with comprehensive PTR-MS
and GC-MS measurements. Most of the peaks in the mass
spectra of the branch enclosure emission system could be as-
signed to known BVOC, which were identified by GC-MS.
The identified species comprise most of the signals (∼ 93%)
in the transmission corrected mass spectrum, observed by
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Fig. 5. The transmission corrected daytime ambient mass spectrum (red from Fig. 3c) and the steady-state product distribution spectrum
(black) of MBO andβ-pinene. Detailed procedures for calculating the product distribution spectrum are described in the text.

PTR-MS. Both PTR-MS and GC-MS observed MBO and
MT as the major emissions. Emission measurements from a
leaf cuvette system with GC-FID analysis showed relatively
consistent emission rates of MBO and total MT from dif-
ferent ponderosa pine trees in the ecosystem. Significantly
lower amounts of SQT emissions were quantified by PTR-
MS and GC-MS than emission rates previously reported for
ponderosa pines. As the importance of SQT has been high-
lighted for their significant SOA (secondary organic aerosol)
formation potential (Sakulyanontvittaya et al., 2008), com-
prehensive research on the biotic and abiotic factors con-
trolling SQT emission is necessary. Oxygenated-MT such
as camphor were also quantified by both PTR-MS and GC-
MS. The estimated emission rates were in the range of 0.1
to 0.4 µg g−1 hr−1, lower than MT emission rates but signifi-
cantly higher than SQT emission rates.

The observed ambient temporal variation patterns of MBO
and MT, the major BVOC emitted from the ecosystem,
and their major oxidation products, acetone and glycolalde-
hyde+acetic acid (m/z61+) were controlled by diurnal emis-
sion, chemistry, and boundary layer characteristics, and were
similar to observations reported previously. In the transmis-
sion corrected ambient mass spectrum obtained during day-
time,∼ 76% of the total signal could be explained by known
compounds. To explore sources of unidentified peaks, OH-
and ozone-initiated oxidation spectra of the primary emis-
sion species at the site (MBO andβ-pinene) were generated
using a laboratory chamber facility. In general, the oxidation
product distributions in the PTR-MS spectra corresponded
with those found in previous studies. Using four different
laboratory-derived product distribution spectra (from oxida-
tion of both MBO andβ-pinene with OH and ozone), we
calculated the oxidation product distribution spectrum of the
ecosystem. This spectrum could not explain most of the
unidentified peaks. The potential sources for these uniden-

tified species include 1) BVOC oxidation products trans-
ported from ecosystems upwind, and 2) oxidation products
of unidentified BVOC emitted from the ecosystem that are
not detected due to analytical limitations of PTR-MS and
GC techniques (e.g. semi-volatile organic compounds). Re-
cent technical breakthroughs such as the time-of-flight mass
spectrometry technique are expected to address these issues.
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