

Transboundary thermal groundwater Transenergy project

Teodóra Szőcs, Annamária Nádor, Ágnes Rotár-Szalkai, György Tóth

Geological Institute of Hungary

20th GROUNDWATER WORKING GROUP C PLENARY MEETING, BUDAPEST, HUNGARY, 27-28 APRIL, 2011

This project is implemented through the CENTRAL EUROPE Programme co-financed by the ERDF.

47°34'31.65" N

19°30'05.94" E

Hungary shares (transboundary) aquifers with:

Austria Croatia Slovakia Romania Slovenia Serbia Ukraine

Main goals of Transenergy

A user friendly web-based decision supporting tool (interactive web portal), which transfers expert know-how about hydrogeothermal utilization (single-well - balneology and doublets - geothermal energy) and sustainable reservoir management to stakeholders (decision makers, water- and mining authorities, present and potential investors, scientific associations and wider public interested), such as:

- >complex assessment of thermal groundwater bodies
- >scenario models for different water extractions: predictable quality and quantity changes
- >experiences of present (cross-border!) interactions, best practice recommendations
- >sustainable utilization

Shallow geothermal potential (Ground-Source Heat Pumps) are not part of assessment

SLO-AT-HU cross border region Bad-Radkersburg-Hodos pilot area

Styrian Basin

Maximum basin depths ~3.500m Maximum reservoir temp. ~130°C Heat flow 70-130 mW/m²

Mura-Zala Basin

Maximum basin depths ~5.500m Maximum reservoir temperatures ~200°C Heat flow 60 -150 mW/m²

Surface heat flow density

In mW/m2

29,19 29,19 - 20

AT-HU cross-border region: Lutzmannsburg - Zsira

Zsira-1 - Abszolút vízszint (mBf)

AT-SK cross-border region: Vienna basin

AT-HU-SK crossborder region: Central depression of Danube basin

PRE-TERTIARY BASEMENT
CONTOUR MAP OF THE
CARPATHIAN BASIN
BENEATH

AUSTRIA, CZECHOSLOVAKIA

SK-HU cross-border region: thermal karst of Komárom-Sturovo

Current status of investigation — Common database

Current status of investigation — Utilization

Overview of legislations

Database of thermal water users and authorities who provide the licences for use

308 operating thermal wells in total

Amount of thermal water usage by countries; 2009

Type of usage

Aquifer proportions

Temperature distribution of extracted thermal water

Changes due to production

Current status of investigation — Geological model

Determination of hydrostatic units

- 1. Pleistocene sediments
- 2. Upper Pannonian sediments
- 3. Lower Pannonian sediments / Post Sarmatian Miocene sediments
- 4. Sarmatian sediments
- 5. Badenian sediments
- 6. Palaeogene formations
- 7. Post Triassic Mesozoic formations (delineation of Upper Cretaceous limestones)
- 8. Triassic karstic limestone and dolomite complex
- 9. Fractured crystalline basement

Hydrogeological models

Supra regional model

- Identification of main flow systems and their connections
- Characterization of regional hydrogeological processes
- Boundary condition determination for the scenario models

1:500 000

Scenario models

- Survey of cross border hydrogeological issues
- Predictive modelling of the applications of different technologies
- Predictive modelling of different levels of thermal water use

1:100 000; 1:200 000

Model calibration

Chemical and isotope data Monitoring data (spatial, temporal changes) Production data

Geothermal models

Concluding remarks

- ➤ Present utilization of geothermal energy is still far below its potential, synergies with water management should be in focus
- >Only harmonized, multi-national management strategies can lead to sustainable utilization of transboundary (groundwater, geothermal) resources; good status maintenance, achievement

Transenergy project

assessment of 5 transboundary pilot areas in the W-ern Pannonian basin (SLO, AT, HU, SK)

Thank you for your attention!

Utilization concepts

single well thermal water extraction – balneology (re-injection is not possible du to contamination)

geothermal doublets: production - reinjection wells (energetic

purposes)

Benefits

- >increased flow rates
- >optimum heat recovery
- > maintenance of pressure
- >land subsidence control
- **>** disposal of the cooled brine

Drawbacks

total annual use

- >,,waste water" contamination of the aquifer (e.g. bacteria, gas, chemicals)
- premature cooling (thermal breakthrough) of production wells
- permeability impairment induced by particles

Hungary	geothermal heat pumps
	■ individual space heating
	☐ district heating
	greenhouse heating
	■ fish farming
	animal farming
	agriculture drying
	□ industrial uses
	■ bathing and sw imming

TJ/year	Hungary
geothermal heat pumps	518
individual space heating	232
district heating	930
greenhouse heating	2388
fish farming	44
animal farming	17
agriculture drying	123
industrial uses	159
bathing and swimming	5356
cooling / snow melting	0

-eu.geologie.ac.at

9767

trans te