Vortrag am 5.11.20049:00 – 9:30"Instabilität von Hangflanken im vorderen Schmirntal und deren Prognoserelevanz
für den Brenner Basistunnel"Florian RIEDL, Geologische Bundesanstalt Wien
Neulinggasse 38
1031 Wien

Zusammenfassung

Die Hangbewegungen "Lorleswald" und "Hochgenein" befinden sich im Schmirntal, einem Seitental des Wipptales, und liegen mit einer Fläche von rund 3,5 km² zur Gänze in den Bündner Schiefern der Glocknerdecke.

Auf Basis einer detaillierten strukturgeologischen, geomorphologischen und geotechnischen Bearbeitung lassen sich die Talzuschübe als "tiefgreifend" klassifizieren. Für eine tiefgreifende Hangverformung sprechen neben den geotechnischen Ergebnissen, die "konkavokonvexe Hangmorphometrie" ("Hochgenein") und die starke Versteilung der Talzuschubsstirn ("Lorleswald").

Begünstigt wird die Instabilität der Hänge durch ein Zusammentreffen spezieller lithologischer und strukturgeologischer Gegebenheiten. Wechsellagerungen von kompetenten Kalkmarmoren mit inkompetenten Schwarzphylliten, die nahezu hangparallel einfallen, ein duktiler Faltenbau und spröde Strukturen definieren die geologischstrukturgeologischen Rahmenbedingungen.

1. Einleitung

Im Sommer 2004 wurde im Auftrag der BBT-SE (Brenner Basistunnel Gesellschaft) eine Aufnahme der Talzuschübe "Lorleswald" (orographisch linkes Schmirntal) und "Hochgenein" (orographisch rechtes Schmirntal) durchgeführt. Diese Hangbewegungen liegen im geplanten Trassenbereich des Brenner Basistunnels. Untersuchungsgegenstand war das Aufzeigen von möglichen Auswirkungen der Massenbewegungen auf den Tunnelbau bzw. umgekehrt die Beeinflussung der instabilen Hänge durch den Tunnelbau.

Die vorliegende Arbeit soll als Zwischenbericht verstanden werden, da eine Fertigstellung der laufenden Untersuchungen erst im Herbst 2005 erfolgen wird.

- Langsame und tiefgreifende Deformationsvorgänge an Talflanken werden u.a. als "Bergzerreißung" (Ampferer, 1939), "Talzuschub (Stiny, 1941), "deap seated rock slide" (Terzaghi, 1962) oder "Sackung" (Clar u. Weiss, 1965; Zischinsky, 1969b) beschrieben.

Tiefgreifende Hangdeformationen haben Auswirkungen auf technische Bauwerke, wie z. B. auf Verkehrswege- und Untertagebauten, auf Stauräume und Wildbachverbauungen.

Spaun (1985) berichtet über die beträchtlichen Erschwernisse bei Ausbauund Sicherungsmaßnahmen im Tunnelvortrieb, verursacht durch Spannungsumverteilungen im gestörten Gebirge.

Poscher (1990) zeigt die Zerstörung von konventionellen Sperrenbauwerken am Beispiel des Talzuschubs "Lahnstrichbach" ("Zillertal", Tirol) auf.

Dalgic (2003) dokumentierte folgende geotechnischen Probleme, die beim Bau des "Tuzla Tunnel" (Türkei), im Bereich von tiefgreifenden Störungs- und Scherzonen auftraten:

> Instabilität der Ortsbrust und erhöhte Verbruchgefahr während des Vortriebes

 Starke Deformation in bestimmten lithologischen Einheiten (quellfähige

Tonminerale,...)

- Versagen von technischen Stützbauwerken
- Exzessiver Wasserzutritt

Die Zerstörung bzw. die Beeinträchtigung dieser Bauwerke erfolgte durch aktiven Gebirgsdruck, der sich durch eine Übersteilung des Hangfußes äußert. Ein negativer Rückkoppelungseffekt und eine weitere Destabilisierung der Talflanken entsteht durch die erhöhte Hangfußerosion des einschneidenden Vorfluters.

2. Aufgabenstellung und Methodik

Die Ziele dieser Arbeit waren u.a. die Lokalisierung der tiefgreifenden Scher- bzw. Gleitzonen, die Erfassung der Geometrie der Hangverformungen und die Bestimmung der geotechnische Eigenschaften. Daraus resultierend konnte die kinematische Interpretation der Talzuschubsprozesse abgeleitet werden.

Eine detaillierte Geländeaufnahme ist Voraussetzung für die Einschätzung von solchen tiefgreifenden Hangdeformationen.

Nachstehende Untersuchungsmethoden wurden angewandt:

- Luftbildauswertung
- Geologisch strukturgeologische Kartierung
- Geomorphologische Detailkartierung (1:5.000)
- Geotechnische Festgesteinsklassifizierung
- Hydrogeologische Übersichtskartierung

2.1 Geomorphologie

Die geomorphologische Legende orientiert sich nach den Richtlinien der WLV (Scheikl, Wanker, Poscher, 1997). Die Abtragsprozesse wurden nach ihrer Aktivität von rezent bis relikt eingestuft.

2.2 Geotechnische Charakterisierung

Die Festgesteinsklassifikation erfolgte mittels Geological Strength Index (GSI, Hoeck et al. 1998) für schwach und stark geschieferte Gesteine. In ausgewählten Bereichen wurde ergänzend zum GSI der geotechnische Dokumentationsvorschlag für Felsaufschlüsse von Rockenschaub (1991) angewandt.

2.2.1 Geological Strength Index (GSI)

Der GSI ist durch die Beschreibung der Struktur ("structure") und der Oberflächenbeschaffenheit ("surface conditions") definiert.

Die Strukturtypen werden unterteilt in: *intact rock, blocky, very blocky, blocky/disturbed, disintegrated, foliated/laminated/sheared;* die Oberflächenbeschaffenheit wird in *very good, good, fair, poor, very* poor eingestuft. (vgl. Klassifikationstabelle Hoeck et al. 1998).

2.2.2 Geotechnische Dokumentationsvorschlag (Rockenschaub, 1991)

Dieser Dokumentationsvorschlag bezieht sich auf folgende Parameter (vgl. Rockenschaub, 1991):

- Mittlerer Trennflächenabstand (Kluftziffer k, TA 1– TA 6)
- Mittlere Kluftkörpergröße (KG 1 KG 5)
- Mittlerer linearer Auflockerungsgrad (AG 1 AG 4)
- Beurteilung der Gebirgsfazies (sehr gut schlecht)

2.3 Hydrogeologie

Ergänzend zu den angeführten Methoden wurde eine erste Temperatur- und Leitfähigkeitsmessung sämtlicher Quellen vorgenommen, um mögliche Hinweise auf deren Wasserwegigkeiten bzw. deren Verweildauer zu erhalten. Die Messung beschränkte sich auf die hydrogeologische und hydrologische Kartierung von Quellen, Vernässungszonen und Gerinnen.

3. ERGEBNISSE

3.1. GEOLOGISCHER ÜBERBLICK

Das Projektgebiet liegt in den Bündner Schiefern der Glocknerdecke, am westlichen Rand des Tauernfensters. Innerhalb der Glocknerdecke treten Wechselfolgen von Kalkglimmerschiefern, Kalkphylliten, kalkfreien Phylliten und untergeordnet Grünschiefern (Prasiniten) auf. Die Bündner Schiefer wurden grundsätzlich, abhängig von ihrem Karbonatgehalt, in "kalkarme" und "kalkreiche" Typen unterteilt. Die "kalkarmen Bündner Schiefer" bestehen vorwiegend aus Phylliten, Schwarzphylliten und Kalkphylliten, die "kalkreichen" hingegen aus Kalkschiefern, Kalkmarmoren und Kalkglimmerschiefern.

3.1.1 Lithologisches Inventar

Kalkarme Bündnerschiefer (Talzuschub "Lorleswald")

Zwischen der Gammerspitze und der Ottenspitze ist der Gratbereich durch das Auftreten von graphitreichen Schwarzphylliten, kalkarmen dunklen Phylliten und untergeordnet Kalkmarmoren gekennzeichnet.

Schwarzphyllite

Der erhöhte graphitische Anteil, die wenig feste, dünnblättrige Ausbildung der Schieferung und das schwarze Aussehen beschreiben diesen in der Regel karbonatfreien Gesteinstyp.

Phyllite (kalkarm, dunkel)

Im Gegensatz zu den Schwarzphylliten zeigen diese Phyllite einen geringeren Graphit- und Kalkgehalt. Der Geländebefund ergab, aufgrund der dunkelgrauen bis schwarzen Gesteinsfarbe und dem dünnblättrigem Gefüge, Ähnlichkeiten zu den Schwarzphylliten.

Kalkmarmore

Am Grat "Leiten" sind, schieferungskonkordant und in Wechsellagerung mit den kalkarmen Phylliten und Schwarzphylliten, hellgraue massige Kalkmarmore aufgeschlossen, die Bankungen im dm- bis m-Bereich aufweisen.

Kalkreiche Bündnerschiefer (Talzuschub "Hochgenein")

Kalkschiefer, Glimmermarmore

Das kompakte Aussehen, die schwach ausgeprägte Schieferung und die hell- bis okerbraune Gesteinsfarbe lässt eine deutliche Differenzierung zu den Kalkphylliten und Kalkmarmoren zu.

Kalkphyllite

Dieser hellgraue bis blaugraue Gesteinstyp enthält einen erhöhten Karbonatanteil. Der Phyllit ist gekennzeichnet durch kompaktere kalzitische Zwischenlagen im mm-Bereich, was eine Verminderung der Teilbeweglichkeit zur Folge hat.

3.1.2 Strukturgeologische Aufnahme

Der duktile Faltenbau innerhalb der Bündnerschiefer und die überprägende spröde Deformation bewirken eine Verschlechterung des Gebirgsverbandes.

			Foliation	Folds	Stretchin g lineation
	Depositio n	Appearance/na me	S₀ first foliation, compositional layering	-	-
Abb. 2		Orientation	overprinted by IsoF ₁ ; S ₀ is transposed by S ₁	-	-
	D1	Appearance/na me	S₁ (main foliation)	isoclinal, IsoF ₁	StrLin1
Modifiziertes Deformationsschema aus der BBT Projektphase I für das		Orientation	N of the 'Tuxer Kern' moderately steep N-NNW- dipping, in the Pfitsch- Valley SW- to S-dipping	fold axes: shallowly W plunging, axial planes: variably steep N- NNW dipping (occasional ly S)	parallel to IsoF₁ fold axes
nordwestliche	D ₂	Appearance/na me	no new foliation formed	tight, F2	no stretchin g lineation
(Rockenschaub et al.		Orientation	-	fold axes: refolded by F3, originally shallowly NW- plunging	-
2001)	D ₃	Appearance/na me	APS ₃ of the Nordrahmenzon e, pressure solution S ₃ of the Brenner Normal Fault	tight folds, F₃	StrLin₃

Im Bereiche der Talzuschubsprozesse "Lorleswald" und "Hochgenein" dominieren die Deformationsphasen D1 und D3. D1 beschreibt die flach liegenden isoklinalen Falten (F1). D3 wird repräsentiert durch den engen südvergenten Faltenbau (F3). Die Deformationsphase D2 wurde von Ledoux (1982) im östlicheren Bereich (Hintertux) beschrieben und ist im Projektgebiet nur sehr untergeordnet vertreten. Die Achsenebenen von F1 entsprechen der dominanten Hauptschieferung, welche mit 40-50° nach NW-N einfällt. Die Achsenebenen der F3 – Faltungen weisen ein Einfallen zwischen 20-30° nach \pm N auf. Die Faltenachsen tauchen in Richtung W (270°) bis WNW (290°) ab.

4. Morphologische Charakteristik

4.1 LUFTBILDAUSWERTUNG

Aufgrund der Luftbildauswertung können die Talzuschübe in verschiedene charakteristische Zonen gliedern werden.

Talzuschub "Lorleswald"

- Zugspalten im vorderen und hinteren Gratbereich (Zone I)
- Gestuftes treppenartiges Hangprofil (Zone II)
- Separation in vier Teilbewegungskörper (Zone III)
- Versteilung der Talzuschubsstirn (Zone III)

Talzuschub "Hochgenein"

- Zugspalten untergeordnet im Abrissbereich (Zone I)
- Kesselförmiger, konkaver Muschelausbruch (Zone I u. Zone II)
- Konvexes Hangprofil (Zone III)
- Fehlende Versteilung der Talzuschubsstirn (Zone IV)

Die aus der Luftbildauswertung vermuteten differenzierten Bewegungsmechanismen der Talzuschübe wurden im Zuge der Geländearbeiten bestätigt. Die markantesten morphologischen Unterschiede liegen im Abrissbereich. Die Hangbewegung "Hochgenein" weist einen kesselförmigen konkaven Muschelausbruch auf, und "Lorleswald" ist im Gratbereich gekennzeichnet durch die zunehmende Ausbildung von Zugspalten.

4.2 MORPHOLOGISCHE VERHÄLTNISSE INNERHALB DER HANGBEWEGUNG

4.2.1 Talzuschub "Lorleswald"

Nach Abschluss der Geländearbeiten wird der Talzuschub "Lorleswald" in folgende drei Zonen unterteilt:

- Zone I: Gratbereich Zugspalten / Abrisskante (2170 1850 m ü.d.M.)
- Zone II: Mittlerer Hangbereich (1850 1450 m ü.d.M.)
- Zone III: Unterer Hangbereich Talzuschubsstirn (1450 1200 m ü.d.M.)

Zone I: Gratbereich - Abrisskante und Lineamente (2170 – 1850 m ü.d.M.)

Das Erscheinungsbild ist geprägt durch das vermehrte Auftreten von subrezenten bis fossilen Zugspalten, Doppelgratbildungen bis hin zur beginnenden Berzerreißung ("Ottenspitze"). Die Zugspalten im hinteren Gratbereich ("Leiten") lassen den Ausstrich von Gleit- bzw. Scherzonen vermuten, welche Streichrichtungen von NW-SE einnehmen.

Rezente gravitative Sekundärprozesse sind im untergeordneten Ausmaß vorhanden und treten vereinzelt in Form von Felsstürzen im Bereich "Leiten" auf.

Zone II: Mittlerer Hangbereich (1850 - 1450 m ü.d.M.)

Im Vergleich zum Gratbereich, wo Hangneigungen von 35 – 55° auftreten, wurden im mittleren Abschnitt flachere Winkel von 15 – 25° ermittelt. Vorwiegend

relikte Rotationsrutschungen mit erkennbaren relikten Anbrüchen ("scarps") und untergeordnet kleinräumigeren Vernässungszonen kennzeichnen diesen vegetationsreichen Abschnitt.

Zone III: Unterer Hangbereich - Talzuschubsstirn (1450 – 1200 m ü.d.M.)

Der untere Abschnitt erstreckt sich von der "Muchner Siedlung" bis zum Schmirnbach. Die Übersteilung zum Schmirnbach, die ausgebildete Erosionskante und die aktiven Sturzprozesse innerhalb der Uferanbrüche deuten in diesem Bereich auf noch nicht abgeschlossene Prozesse hin. Durch die Verbauung des Schmirnbaches mittels Staffelung und Konsolidierungssperren wurde die erhöhte Sohl- und Seitenerosionswirkung des Vorfluters bereits reguliert.

4.2.2 Talzuschub "Hochgenein"

Der Talzuschub "Hochgenein" wird auf Basis der morphologischen Gegebenheit zonal gegliedert:

- Zone I: Gratbereich Muschelausbruch (1950 1820 m ü.d.M.)
- Zone II: Sackungsbereich (1820 1620 m ü.d.M.)
- > Zone III: Mittlerer Hangbereich Konvexometrie (1620 1320 m

ü.d.M.)

> Zone IV: Unterer Hangbereich (1320 – 1150 m ü.d.M.)

Zone I: Gratbereich Muschelausbruch (1950 – 1820 m ü.d.M.)

Der ausgeprägte Muschelausbruch wurde bereits in der Luftbildauswertung erkannt und gibt erste Hinweise auf die Kinematik der Hangverformung. Der Gratbereich weist mit seinen einzelnen Lineamenten ("Zugspalten") und den wenig geklüfteten Felsstufen relativ stabile Verhältnisse auf.

Zone II: Sackungsbereich (1820 – 1620 m ü.d.M.)

Im Grenzbereich zwischen Zone I und Zone II treten vermehrt Vernässungsund Versickerungszonen zutage. Die elektrischen Leitfähigkeiten der Wässer decken ein Spektrum von 250 – 300 μ S/cm ab und die Wassertemperaturen liegen zwischen 8 und 13°C.

Zone III: Mittlerer Hangbereich - Konvexometrie (1620 – 1320 m ü.d.M.)

Das konvexe Hangprofil reicht, im Vergleich zum Talzuschub "Lorleswald", nicht bis zum Hangfuß. Die Hangneigungen von 28 - 34° sind deutlich steiler als jene von Zone II, die Neigungswinkel von 8 – 18° aufweist.

Kleinmaßstäbliche sekundäre Escheinungen wie aktive Boden- oder Rinnenerosionen prägen die Abschnitte zwischen 1400 und 1550 m ü.d.M.

Die bis zu 100 m hohen Felsstufen zeigen ähnlich stabile Verhältnisse wie sie in Zone I beschrieben wurden.

Zone IV: Unterer Hangbereich (1320 – 1150 m ü.d.M.)

Die fehlende Hangversteilung, die konstante Neigung von ca. 28° und die mangelnde Erosion des Vorfluters sind u. a. Indizien für abgeschlossene Prozesse.

Flachgründige Rotationsrutschungen auf einer Höhe von 1200 – 1240 m ü.d.M. sind Zeugen relikter Hangexplosionen, verursacht durch ein Starkniederschlagsereignis im Jahre 1976.

5. Geotechnische Festgesteinsklassifikation

Die gebirgsfazielle Aufnahme der Festgesteine (vgl. 2.2) erfolgte nach den Arbeiten von Rockenschaub (1991) und Hoeck et al. (1998).

5.1 TALZUSCHUB "LORLESWALD"

5.1.1. GSI – Geological Strength Index

Den unter 3.1.1 angeführten Lithologien (Phyllite, Schwarzphyllite,...) werden "structure" - Werte der Kategorie *"foliated/laminated/sheared"* zugewiesen. Die vereinzelt, im dm-Bereich eingeschalteten, kompetenten Kalkmarmore, wurden nicht separat berücksichtigt. Begründet durch die geringe Mächtigkeit einerseits und andererseits durch die geringe laterale Erstreckung.

Gebunden an die Abrisskante, an die seitliche Begrenzung und an den Hangfuß wird die "surface condition" mit *"poor"* bis *"very poor"* (GSI: 7 - 12) beschrieben.

Der östliche Fortsatz am Gratbereich weist bis auf eine Höhe von ca. 1800 m ü.d.M. verbesserte GSI - Werte von 17 - 22 auf.

Innerhalb von Zone II (vgl. 4.2.1) wird der Gebirgszustand mit GSI - Werten von 24 – 30 klassifiziert.

5.1.2. Geotechnische Dokumentationsvorschlag

Ein deckungsgleiches Verhaltensmuster zeigen die Parameter aus dem geotechnischem Dokumentationsvorschlag von Rockenschaub (1991). In den instabilen Bereichen wurden erhöhte Trennflächenabstände (TA 4: 30 - 10 cm), Kluftkörpergrößen (KG 3: 60 - 20 cm) und erhöhte mittlere lineare Auflockerungsgrade (AG 4: > 30 mm/m) aufgenommen. Daraus kann eine "schlechte" Beurteilung der Gebirgsfazies abgeleitet werden.

	Abb. 5					
Geotechni	ische Parameter - Talzuschub "Lo	orleswald"				
Abkürzungen: f/l/s-structure: fc	oliated/laminated/sheared; TA: mittlere	er Trennflächenabstand; KG: mittlere				
Kluftkörpergröße; AG: mittlerer linearer Auflockerungsgrad						
	GSI	Dokumentationsvorschlag				
	(Hoeck et al 1998)	(Rockenschaub 1991)				
	structure: f/l/s					
Abrisskante, seitliche	surface condition:	TA 4: 30 - 10 cm				
Begrenzung	"poor" bis "very poor"	KG 3: 60 - 20 cm				
und Hangfuß	(7 – 12)	AG 4: > 30 mm/m				
	structure: f/l/s					
	surface condition:	TA 3: 100 - 30 cm				
Östliche Gratbereich	"poor"	KG 3: 60 - 20 cm				
	(17 – 22)	AG 3: 15 - 30 mm/m				
	structure: f/l/s					
	surface condition:	TA 2: 300 - 100 cm				

5.2 TALZUSCHUB "HOCHGENEIN"

Zone II

5.2.1. GSI – Geological Strength Index

Die geotechnische Gebirgsfazies innerhalb des Talzuschubes "Hochgenein" ist charakterisiert durch höhere GSI – Werte als in Talzuschub "Lorleswald". Begründet ist dies unter anderem durch die Einlagerung kompakter Kalkschiefer, die in Wechsellagerungen mit den Kalkphylliten eine Mächtigkeit von bis zu 200 m besitzen (1300 – 1500 m ü.d.M.).

"fair" bis "poor"

(24 - 30)

KG 2: 200 - 60 cm AG 2: 5 - 15 mm/m

In Zone I und Zone III (vgl. 4.2.2) treten Gebirgszustände auf, die mit *"foliated/laminated/sheared rock structure"* GSI – Werte von 15 – 19 einnimmt. Mit Ausnahme der westlichen Begrenzung, wo verschlechterte Werte zwischen 9 – 14 aufgenommen wurden, zeigt der Talzuschub "Hochgenein" insgesamt einen stabileren Gebirgsverband als "Lorleswald".

Geotec	Abb. 6 hnische Parameter - Talzuschub Abkürzungen siehe Abb. 5	"Hochgenein"
	GSI Dokumentationsvo (Hoeck et al 1998) (Rockenschaub 1	
Westliche TZ-Grenze	structure: f/l/s surface condition: "poor" bis "very poor" (9 – 14)	TA 4: 30 - 10 cm KG 3: 60 - 20 cm AG 4: > 30 mm/m
Zone I und Zone III	structure: f/l/s surface condition: <i>"poor"</i> (15 – 19)	TA 3: 100 - 30 cm KG 3: 60 - 20 cm

6. Kinematik der Hangbewegungen

Auf Basis einer detaillierten Geländebeobachtung konnte, trotz fehlender geophysikalischen Untersuchungen, die Kinematik der Hangbewegungen geklärt werden.

Die geologische und strukturgeologische Ausgangssituation ist repräsentiert durch hochteilbewegliche Phyllite. Diese Phyllite haben polyphas duktile, semiduktile bis spröde Deformationsstadien durchlaufen (vgl. 3.1.2).

Köhler (1985) beschreibt die geomechanische Eigenschaft der Phyllite. Das wichtigste Merkmal ist die ausgeprägte engständige Schieferung, die dem Gestein eine erhöhte Teilbeweglichkeit verleiht (vgl. 3.1.1).

Der Talzuschub "Lorleswald" als auch der Talzuschub "Hochgenein" kann nach dem Klassifikationsschema von Hermann (1996) in das "Finale Stadium" gestellt werden.

Die geomorphologische Charakteristik mit den überwiegend relikten/subrezenten Prozessen und der konkavokonvexen Hangmorphometrie lassen diese Einstufung zu.

Der markante Muschelausbruch bei "Hochgenein" spricht unter anderem dafür, dass es sich um einen *"rotationalen Talzuschub"* handelt (vgl. Bunza, 1982).

"Lorleswald" hingegen deutet aufgrund dem fehlendem konkaven Abrissbereich, dem hangparallelem Schieferungseinfall und der Separation in vier Teilbewegungskörper auf einen *"gleitenden Talzuschub"* hin.

Die geometrisch ermittelten und die im Gelände angetroffenen Indizien lassen folgenden Tiefgang der Scher- bzw. Gleitzonen konstruieren:

Talzuschub "Lorleswald":60 bis 80 m

Talzuschub "Hochgenein": 100 bis 120 m

Das Vorkommen der Zugspalten auf unterschiedlichen Höhen erhärtet die Vermutung, dass mehrere Scher- bzw. Gleitzonen ausgebildet sind, wie sie Moser & Glumac (1983) am Beispiel "Gradenbach" annehmen.

Geodätische, geophysikalische als auch hydrogeologische Untersuchungen (δ^{18} O-Isotopen) sind jedoch Grundvoraussetzung um die Kinematik und Deformationsraten solch tiefgreifender Hangverformungen quantitativ eindeutig erfassen zu können.

Dank

Zu Dank bin ich Herrn Dr. Rockenschaub (Geologische Bundesanstalt, Wien) für wertvolle Hinweise und für die Durchsicht des Manuskripts verpflichtet.

Dem Auftraggeber BBT-SE für die zur Verfügung gestellten digitalen Daten (Orthofotos, Höhenmodell) und für die Zustimmung zur Publikation.

Literatur

- Ampferer, O. (1939): Über einige Formen der Bergzerreißung. Sitzber. Akad. Wiss., Mathem. naturwiss. Kl., Abt. 1, Bd. 148, H. 1& 2: 1–14; Wien.
- Bunza, G. (1982): Systematik und Analyse alpiner Massenbewegungen. in: Geologischmorphologische Grundlagen der Wildbachkunde, Schriftreihe des Bayerischen Landesamtes für Wasserwirtschaft, Heft 17, 1-84; München.
- Clar, E. u. Weis, P. (1965): Erfahrungen im Talzuschub des Magnesit-Bergbaues auf der Millstätter Alpe. – Berg- und Hüttenmänn. Monatsh. 110, 447-460; Wien.
- Dalgic, S. (2003): Tunneling in fault zones, Tuzla tunnel, Turkey. Tunneling and Underground Spaces Technology 18, 453-465; Istanbul
- Hermann, S. (1996): Initiale Bergzerreißung als Gefahrenherd für Bergstürze, Nährgebiet für Muren und Großrutschungen. Beispiele aus dem Naturpark Sölkertäler, Österreich. – Int. Symp. Interpraevent, Bd. 1, 409-418; Garmisch-Partenkirchen.
- Hoeck, E., Marinos, P., Benissi, M. (1998): Applicability of the geological strength index (GSI) classification for very poor and sheared rock masses. The case of the Athens schist formation.

- Bull. Eng. Geol. Environ. 57, 151-160;

- Köhler, M. (1985): Großräumige Massenbewegungen in Quarzphylliten und ihre baugeologischen Auswirkungen. – Geotechnik 1/85, 8-14; Essen (VGE).
- Moser, M. und Glumac, S. (1983): Geotechnische Untersuchungen zum Massenkriechen in Fels am Beispiel des Talzuschubes Gradenbach (Kärnten). – Verh. G.B.-A., 1982/3, 209-241; Wien.
- Poscher, G. (1990): Geotechnische und morphologische Untersuchungen im Bereich des Talzuschubes "Lahnstrichbach" / Fügenberg. – Geol. Paläont. Mitt. Innsbruck, Bd. 17, 39-49; Innsbruck.
- Rockenschaub, M. (1991): Vorschlag zur geotechnischen Dokumentation von Felsaufschlüssen. Mitt. Ges. Geol. Bergbaustud. Österr., 37, 37-49; Wien.
- Rockenschaub et al. (2001): Endbericht der Projektierungsphase I des Brenner Basistunnels. Unveröffentl. Bericht, Geologische Bundesanstalt; Wien
- Scheikl, M., Wanker, W. u. Poscher, G. (1997): Innovative ingenieurgeologische Methoden im alpintechnologischen Sektor. – Unveröffentl. Bericht, Büro ILF, 77-96; Innsbruck.
- Spaun, G. (1985): Tunnelbau in instabilen Hängen. Geotechnik, 1/85; Essen (VGE).
- Stini, J. (1941): Unsere Täler wachsen zu. Geol. u. Bauwesen, 13, Bd. 3, 71-79; Wien (Spinger).
- Terzaghi, K. (1962): Stability of Steep Slopes on Hard Unweathered Rock. Geotechnique, Bd. 12, 251-270; London.
- Zischinsky, U. (1969 b): Über Bergzerreißungen und Talzuschub. Geol. Rundschau, Bd. 58, 3, 974-983; Stuttgart (Enke).