

Deep thermal transboundary aquifers Transenergy project

Annamária Nádor

Geological Institute of Hungary

WORKSHOP ON TRANSBOUNDARY WATER RESOURCES MANAGEMENT IN WESTERN AND CENTRAL EUROPE, BUDAPEST, HUNGARY, 8-10 FEBRUARY, 2011

Outline of presentation

GROUNDWATER and ENERGY

Hydrogeothermal vs. geothermal energy utilization:

- > Driving forces on the enhanced use of renewables
- **≻**Goals vs. reality: share of renewables
- >Hydrogeothermal systems and utilization concepts

Joint geothermal resources – transboundary / bordering (thermal) groundwater bodies

Examples and some "messages to take home" from a Central Europe project: TRANSENERGY

Why renewables?

BP statistical review of world energy 2003

Growing energy demand coupled with restricted and uneven distribution of fossil fuels

Climate change debate: Enhanced use of fossil fuels \rightarrow increased atmospheric CO_2 concentration by 31 % since 1750 (280 \rightarrow 379 ppm), highest values during the last 420 ky \rightarrow global warming, extreme events

Ambitious goals...

Global targets - Kyoto Protocol: 8% drop of greengouse gases below 1999 level during 2008-2012

- >cut energy consumption (fossil fuels) and carbon-dioxide emisssions
- >increase energy efficiency

Europe: "20/20/20 by 2020" COM(2006)848, decision of the EU Spring

Summit, 2007

- **>20%** cut of energy consumption
- >20% cut of CO₂ emission
- >20% of renewable energy consumption

...and reality electricity generation

	Potential capacity (EJ/y) (WEA, 2000)	Installed capacity (GWe)	Produced electricity (TWh)
Geothermal	5000	10	65,7
Solar	1575	16	19,6
Wind	640	121	222,6

Rybach, 2010

wind and solar PV: exponential growth geothermal power develops "only" linearly

accelerated growth:

Enhanced Geothermal Systems (EGS)

...and reality \(\Bigcirc \text{ direct utilization} \)

Lund et al., 2010

		Utilization TJ/yr	
		2000	2010
	geothermal heat pumps	23,275	214,782
	space heating	42,926	62,984
	greenhouse heating	17,864	23,264
	aquaculture pond heating	11,733	11,521
	agriculture drying	1,038	1,662
	industrial uses	10,22	11,746
	bathing and swimming	79,546	109,032
_	cooling / snow melting	1,063	2,126
	others	9,56	3,034
	total	190,699	438,071

Composition of total energy use: EU vs. Hungary (2004)

Source: Energiaközpont Kht

Hungary's import dependency (hydrocarbons and uranium) is 78,5%

Renewables and share of geothermal energy in Hungary

Total: 54,8 PJ (4,7% of primary energy use)

Source: Energiaközpont Kht

Proportion of geothermal energy	2005	2008	2010	2015	2020 total RES target 13% (186,4 PJ)
Renewable electricity production (GWh)	0	0	0	65	442
Renewable heat production (PJ)	3,63	4	4,5	7	9

Hydrogeothermal vs. geothermal energy utilization?

EU Directive on Promotion of Renewable Energy Sources 2009/28/EC

Art.5: The gros final consumption of energy from renewable sources shall be calculated as a sum of:

- >gros final consumption of electricity from renewable energy sources
- >gros final consumption of energy from renewable sources for heating and cooling
- >final consumption of energy from renewable sources in transport

except for Ground-Source Heat Pumps and Enhanced Geothermal Systems the extraction of heat is possible only by the extraction of its carrying medium (thermal water)

WATER MANAGEMENT ISSUE

Hydrogeothermal systems

Fluid convection: heating → thermal expansion → heated fluids of lower density rise and are replaced by colder fluids of high density recharging from the margins of the system

Balanced fluid/heat production: not producing more than the natural recharge re-supplies (heat and fluid)

Utilization concepts

single well thermal water extraction – balneology (re-injection is not possible du to contamination)

geothermal doublets: production - reinjection wells (energetic

purposes)

Benefits

- >increased flow rates
- >optimum heat recovery
- > maintenance of pressure
- > land subsidence control
- > disposal of the cooled brine

Drawbacks

total annual use

- >,,waste water" contamination of the aquifer (e.g. bacteria, gas, chemicals)
- premature cooling (thermal breakthrough) of production wells
- permeability impairment induced by particles

geothermal heat pumps
■ individual space heating
☐ district heating
greenhouse heating
■ fish farming
animal farming
■ agriculture drying
☐ industrial uses
■ bathing and sw imming

TJ/year	Hungary
geothermal heat pumps	518
individual space heating	232
district heating	930
greenhouse heating	2388
fish farming	44
animal farming	17
agriculture drying	123
industrial uses	159
bathing and swimming	5356
cooling / snow melting	0

-eu.geologie.ac.at

9767

Water Framework Directive (2000/60/EC)

Shared between 10 EU member states and 9 non-member states

Hungary shares transboundary aquifers with:

Austria Slovakia Slovenia

Croatia Romania Serbia **Ukraine**

Danube River Basin District: Delineated Groundwater Bodies in the DRBD

http://transenergy-eu.geologie.ac.at

TRANSENERGY: Transboundary Geothermal Energy Resources of Slovenia, Austria, Hungary and Slovakia

Most important reservoirs in the Pannonian basin

- present-day pattern of Late Miocene strata
- (1) Fractured, karstified basement rocks
- (2) Neogene clastic basin fill sediments

Energy content of the fractured-karstified basement reservoirs

Energy content of the porous basin fill reservoirs

Main goals of Transenergy

A user friendly web-based decision supporting tool (interactive web portal), which transfers expert know-how about hydrogeothermal utilization (single-well - balneology and doublets - geothermal energy) and sustainable reservoir management to stakeholders (decision makers, water- and mining authorities, present and potential investors, scientific associations and wider public interested), such as:

- >assessment of heat in place, limited technical and economic potentials
- >complex assessment of thermal groundwater bodies
- >scenario models for different water extractions: predictable quality and quantitiy changes
- >experiences of present (cross-border!) interactions, best practice recommendations
- > sustainable utilization

Shallow geothermal potential (Ground-Source Heat Pumps) are not part of assessment

Cross-border geoscientific models

- > geological models
- >hydrogeological models
- >geothermal models
- >scenario modelling

supra-regional area 1:500 000

- >thermal karst of Komarno-Sturovo area (HU-SK) 1:200 000
- >central depression of the Danube basin (A-SK-HU) 1:200 000
- **≻**Lutzmannsburg Zsira area (A-HU) 1:100 000
- ➤ Vienna basin (SK-A) 1:100 000
- ➤ Bad Radkersburg Hodoš area (A-SLO-HU) 1:200 000

MODEL CALIBRATION

- >hydrogeochemical data (rock-water interaction, flow paths)
- >production parameters

Nederios Guide Paris Paris Dambe hasin Dambe hasin Cutrainne burg-zira Cutrainne burg-zira

SLO-AT-HU cross border region

Heat flow 60 -150 mW/m²

Maximum reservoir temperatures ~200℃

Blumau - ORC electricity facility

Negationerals with Viena basin Danube basin One of the Control o

AT-HU cross-border region: Lutzmannsburg Zsira

Maximum basin depths ~2.000m Maximum reservoir temp. ~70℃ Heat flow 70-110 mW/m²

Zsira-1 - Abszolút vízszint (mBf)

AT-SK cross-border region: Vienna basin

AT-HU-SK crossborder region: Danube basin

Concluding remarks

- >Present utilization of geothermal energy is still far below its potential, synergies with water management should be in focus
- ➤ Utilization of conventional hydrogeothermal systems require sound reservoir management strategies: production at sustainable levels
- >Only harmonized, multi-national management strategies can lead to sustainable utilization of transboundary (geothermal) resources

Transenergy project

assessment of 5 transboundary pilot areas in the W-ern Pannonian basin (SLO, AT, HU, SK) various settings and utilization conflicts

Japanese macaques hanging out at the hot springs in Macaca Yamanouchi

