

Fachabteilung Geophysik

Projekt ÜLG77/2017

Weiterentwicklung geophysikalischer Prospektionsmethoden für Lockersedimentvorkommen unter

besonderer Berücksichtigung begleitender rohstoffspezifischer Untersuchungen in ausgewählten Testgebieten

Jahresbericht 2017/2018

von

BIEBER, G.; DIPPENAAR, E.; RÖMER, A.; SCHATTAUER, I.; JOCHUM, B.

17 S., 14 Abb., 6 Tab.

Wien, November 2018

PROJEKTLEITUNG 1:MAG. G. BIEBER (gerhard.bieber@geologie.ac.at)PROJEKTLEITUNG 2:MAG. K. MOTSCHKA (klaus.motschka@geologie.ac.at)

PROJEKTDAUER: RAHMENVERTRAG 2017 - 2022

MITARBEITERINNEN UND MITARBEITER:

DI CHRISTIAN BENOLD CARLOTTA GUARDIANI MSC. MARTIN HEIDOVITSCH DR. SEBASTIAN PFLEIDERER MAG. JULIA RABEDER HEINZ REITNER DR. ALBERT SCHEDL DR. PETER SLAPANSKY G MAG. BARBARA TRÄXLER DR. INGEBORG WIMMER-FREY DR. EDMUND WINKLER GEOCHEMIE GEOPHYSIK TECHNIKER ROHSTOFFGEOLOGIE ROHSTOFFGEOLOGIE GIS-BEARBEITUNG ROHSTOFFGEOLOGIE GEOLOGIE ROHSTOFFGEOLOGIE TONMINERALOGIE GEOPHYSIK

Allen Mitarbeiterinnen und Mitarbeitern sei herzlich für die gute Zusammenarbeit gedankt! Die Projektdurchführung erfolgte im Rahmen des Lagerstättengesetzes im Auftrag des Bundesministeriums für Bildung, Wissenschaft und Forschung und des Bundesministeriums für Nachhaltigkeit und Tourismus.

INHALTSVERZEICHNIS

Zusammenfassung	. 1
1 Ausgangslage	. 2
2 Einleitung und Aufgabenstellung	. 3
2.1 Vorbereitung, Durchführung und Auswertung von 3 Geoelektrikmesskampagnen	. 3
2.2 Erhebung und Aufbereitung von Aufschlussdaten - Zusammenführung / Visualisierung vorhandener Daten in ein GIS Projekt	. 5
2.3 Auswertung Geoelektrik	. 7
2.4 Auswertealgorithmus AEM für rohstoffspezifische Fragen	11
2.5 Gebietsweise Erstbearbeitung	13
3 Vorschau	16
4 Literaturverzeichnis	17

ZUSAMMENFASSUNG

Anhand der Daten aus der aerogeophysikalischen Untersuchung Wörgl 2011 und der geologischen Kartierung (Geofast 1:50.000, Neukirchen, Blatt 121) wurden im Raum Wörgl, basierend auf der Auswertung der Elektromagnetik (elektrischer Widerstand), unterschiedliche Lockergesteinskörper identifiziert, die als potentielle Rohrstofflagerstätten gelten könnten.

Diese, hinsichtlich Aerogeophysik (Widerstandsverteilung) und Geologie ausgewählten pleistozänen Lockersedimentkörperareale, wurden in drei Untersuchungskampagnen (Oktober 2017 – Juni 2018) mit einem engmaschigen Netz von **10** Geoelektrikprofilen im Raum Hopfgarten detailliert untersucht. Insgesamt stehen damit entlang der Brixentaler u. Windauer Ache 15 Geoelektrikprofile für die Bearbeitung zur Verfügung.

Um hier die Aussagekraft der Widerstandsverteilung aus der Aeroelektromagnetik hinsichtlich der Quantität und Qualität von Lockersedimenten detaillierter beurteilen und optimieren zu können, wurden diese Geoelektrikprofile sowohl in hochohmigen als auch in niederohmigen Bereichen der AEM, jeweils bei genetisch ähnlich entwickelten, quartären Ablagerungen, gemessen. Damit sollen Hinweise auf unterschiedliche Zusammensetzungen der Sedimentkörper, wie ein hoher Kies- und Sandanteil oder ein hoher Schluff- bzw. Ton-Anteil, die die unterschiedlichen Widerstandwerte verursachen, gewonnen werden.

Für diese Darstellung wurden für alle 15 geoelektrischen Messprofile zwei unterschiedliche, aber vergleichbare Einteilungen der Widerstandsbereiche gewählt. Dies deshalb, um damit unterschiedliche, für rohstoffspezifische Fragen relevante Widerstandsbereiche herausarbeiten zu können. Damit ist einerseits eine vergleichende, andererseits eine differenziertere Ansprache der vertikalen und lateralen Widerstandsverteilung aus der Geoelektrik zu dem Widerstandsbild aus der AEM in unterschiedlichen Tiefen für die rohstoffspezifische Charakterisierung möglich.

Für die lithologische und rohstoffspezifische Ansprache wurden diverse Aufschlussdaten erhoben und in Bezug zu den geophysikalischen Ergebnissen aus der AEM und der Geoelektrik gebracht. Die Zusammenführung / Visualisierung vorhandener Daten erfolgte GIS basiert, wobei die Erstauswertung, getrennt für jeden einzelnen Bereich, durchgeführt wurde. Für diese Übersichtsinterpretation werden in einem ersten Schritt für jedes Teilgebiet die Ergebnisse der AEM-Widerstandsauswertung in den Tiefen von 5 und 30 Metern mit den Ergebnissen der geoelektrischen Tiefen-Widerstandsplots verglichen und in Bezug zu den Aufschlussdaten gesetzt.

Um die Interpretierbarkeit der Aero-Elektromagnetik hinsichtlich einer Lockersediment-Prospektion zu verbessern, wurde ein 3D-ArcScene Projekt erstellt. Dabei werden die Ergebnisse der AEM-Inversion des gesamten Datensatzes im Projektgebiet als 1D-Modellblöcke im Raum visualisiert und an jedem Messpunkt detailliert entlang der jeweiligen Flugprofile wiedergegeben.

1 AUSGANGSLAGE

Im Zuge der qualitativen und quantitativen, österreichweiten Erhebung und Bewertung von Lockersedimenten hinsichtlich rohstoffrelevanter Parameter wird durch den Einsatz geophysikalischer Methoden die Entwicklung einer integrativen Prospektionsmethode verfolgt. Ein Ziel liegt in der raschen Vorabschätzung der Rohstoffqualität regenerativer Kies-Sand-Vorkommen im Übersichts-Maßstab.

Damit entsteht sowohl ein Tool zur raschen Abschätzung von Kubaturen (Volumetrierung) als auch ein wichtiger Beitrag zu einer gesamtösterreichischen Rohstoffallianz für eine rasche Vorabschätzung und qualitative/quantitative Bewertung von Baurohstoffen. Interessante Synergien ergeben sich durch die Einpflege der Materialkennwerte für die Erweiterung der geophysikalischen Datenbank GEOPHYSIS.

Durch die enge Zusammenarbeit von Wissenschaftlern mit Produktionsbetrieben werden die interdisziplinäre Kommunikation und der transdisziplinäre Austausch von Informationen gefördert.

Kurzbeschreibung der Projektziele:

- Erarbeitung und Bewertung der Aussagemöglichkeiten bestimmter geophysikalischer Parameter/Methoden für eine Beurteilung der Quantität und Qualität von Lockersedimenten
- Methodische Weiterentwicklung und Verfeinerung integrierter Prospektionsstrategien (Geophysik, Mineralogie, Geochemie, Sedimentpetrologie) für eine rohstoffspezifische Charakterisierung ausgewählter Lockersedimentvorkommen
- Zuordnung von geophysikalischen Messparametern (Flächen-, Linienund • Punktinformationen) zu geologisch/lithologischen Geländeaufnahmen (z.B. Bohrprofilen, Abbauaufschlüssen) und begleitenden labortechnischen Analysen (Mineralogie, Tonmineralogie, Granulometrie, Geochemie)

2 EINLEITUNG UND AUFGABENSTELLUNG

Die Rahmenprojektdauer beträgt 5 Jahre, sodass nach Erhebung und Konzeptionierung jährlich ein thematischer Schwerpunkt abgearbeitet wird. Die Arbeiten 2017/18 beziehen sich auf den Schwerpunkt: Lockergesteine/Regenerat im Gebiet Wörgl.

Das Geologische Kartenblatt GK 121 Neukirchen am Großvenediger ist gegenwärtig ein Schwerpunktprogramm der Geologischen Landesaufnahme. Die Daten der aerogeophysikalischen Befliegung Wörgl (2001) sollen im Hinblick auf quartäre Lockergesteine und Massenbewegungen ausgewertet werden, um über einen Konnex mit vorhandenen geologischen Daten ein bestmögliches synthetisches Modell der Verbreitung und des Tiefganges der Einheiten bzw. Phänomene zu erhalten. Die Bearbeitung gliedert sich in folgende Blöcke (Tab.1), die nachfolgend besprochen werden.

	Beispiele
aus Geologie (GEOFAST ER 1:50.000, Neukirchen, GK 121)	Gebiet 8
FA AEM - e (Aeroelektromagnetik - spez. elektrischer Widerstand)	Gebiet 5
ank, Geoelektrik (spez. ie elektrischer Widerstand)	
	spez. elektrischer Widerstand) wank, Geoelektrik (spez. elektrischer Widerstand) G Aufschlussdaten

Tabelle 1: Bearbeitungsblöcke (Workflow) bezogen auf den Arbeitsschwerpunkt Wörgl.

Die Literatur- und Datenerhebungen in Bezug auf geophysikalische Prospektionsmethoden für Lockersedimente (national, international) wurden in Zusammenarbeit mit der Fachabteilung Rohstoffgeologie durchgeführt. Im September 2017 wurden in einem halbtägigen Workshop die Ergebnisse aus der Elektromagnetik hinsichtlich einer Weiterentwicklung geophysikalischer Prospektionsmethoden (z.B. Geoelektrik) unter besonderer Berücksichtigung begleitender rohstoffspezifischer Untersuchungen in ausgewählten Testgebieten besprochen und die weitere Vorgangsweise festgelegt.

Anhand der Daten aus der aerogeophysikalischen Untersuchung Wörgl 2011 und der geologischen Kartierung (Geofast 1:50.000, Neukirchen, Blatt 121) wurden im Raum Wörgl, basierend auf der Auswertung der Elektromagnetik (elektrischer Widerstand), unterschiedliche Lockergesteinskörper identifiziert, die als potentielle Rohrstofflagerstätten gelten könnten. Die geologische Basis stellt die Karte aus REITNER (2005) dar.

2.1 Vorbereitung, Durchführung und Auswertung von 3 Geoelektrikmesskampagnen

Diese, hinsichtlich Aerogeophysik (Widerstandsverteilung) und Geologie ausgewählten pleistozänen Lockersedimentkörperareale, wurden in drei Untersuchungskampagnen (Oktober 2017 – Juni 2018) mit einem engmaschigen Netz von 10 Geoelektrikprofilen im Raum Hopfgarten detailliert untersucht. Insgesamt stehen damit entlang der Brixentaler u. Windauer Ache 15 Geoelektrikprofile für die Bearbeitung zur Verfügung. Um hier die Aussagekraft der Widerstandsverteilung aus der Aeroelektromagnetik hinsichtlich der Quantität und Qualität von Lockersedimenten detaillierter beurteilen und optimieren zu können, wurden diese Geoelektrikprofile sowohl in hochohmigen als auch in niederohmigen Bereichen der AEM, jeweils bei genetisch ähnlich entwickelten, quartären Ablagerungen, gemessen. Damit sollen Hinweise auf unterschiedliche Zusammensetzungen der Sedimentkörper, wie ein hoher Kies- und Sandanteil oder ein hoher Schluff- bzw. Ton-Anteil, die die unterschiedlichen Widerstandwerte verursachen, gewonnen werden. Die Abfolge der Geoelektrik-Messkampagnen im Untersuchungsjahr 2017/18 im Bezug zur Widerstandsverteilung der AEM und zur Geologie ist in den Tabellen 2 bis 6 dargestellt. Die farblich hinterlegten Widerstandsbereiche aus der AEM entsprechen den höher- bzw. niederohmigen Widerstandsbereichen in der Abbildung 1.

Die Geoelektrikprofile wurden

- in Bereichen mit **geologisch/lithologisch ähnlichem Aufbau**, aber **unterschiedlichen Widerstandswerten** aus der AEM
- in Bereichen mit geologisch/lithologisch ähnlichem Aufbau und ähnlichen Widerstandswerten aus der AEM
- in Bereichen mit anstehendem Festgestein

gelegt.

Datum	Profilbezeichnung	Bereich	Länge /	Widerstandsbereich	Geologie
			Eindringtiefe	AEM	(Geofast, Blatt 121)
04.10.2017	Wörgl Profil 1	4	276 / 58	niedrig	Staukörper a. Eisrand
04.10.2017	Wörgl Profil 2	2	276 / 58	niedrig	Löhnersbach Form.
05.10.2017	Wörgl Profil 3	3	276 / 58	hoch	Staukörper a. Eisrand
05.10.2017	Wörgl Profil 4	5	366 / 67	niedrig	Staukörper a. Eisrand

Tabelle 2: Geophysikalische und geologische Parameter der geoelektrischen Messkampagne 1 (Oktober 2017).

Datum	Profilbezeichnung	Bereich	Länge / Eindringtiefe	Widerstandsbereich AEM	Geologie (Geofast, Blatt 121)
18.10.2017	Wörgl Profil 5	2	276 / 58	niedrig	Löhnersbach Form.
19.10.2017	Wörgl Profil 6	3	276 / 58	hoch	Staukörper a. Eisrand

 Tabelle 3: Geophysikalische und geologische Parameter der geoelektrischen Messkampagne 2 (Oktober 2017).

		Geologie
Eindringtiefe	AEM	(Geofast, Blatt 121)
276 / 58	hoch	Staukörper a. Eisrand
276 / 58	hoch	Staukörper a. Eisrand
276 / 58	niedrig	Schwemmfächer / Staukörper a. Eisrand
276 / 58	niedrig	Staukörper a. Eisrand
	Eindringtiefe 276 / 58 276 / 58 276 / 58 276 / 58 276 / 58	Eindringtiefe AEM 276 / 58 hoch 276 / 58 hoch 276 / 58 niedrig 276 / 58 niedrig

Tabelle 4: Geophysikalische und geologische Parameter der geoelektrischen Messkampagne 3 (Mai 2018).

Datum	Profilbezeichnung	Bereich	Länge /	Widerstandsbereich	Geologie
			Eindringtiefe	AEM	(Geofast, Blatt 121)
18.03.2002	Hopfgarten Profil 1	8	585 /111	hoch	Staukörper a. Eisrand
18.03.2002	Hopfgarten Profil 2	8	490 / 103	hoch	Staukörper a. Eisrand

Tabelle 5: Geophysikalische und geologische Parameter der geoelektrischen Messkampagne alt 1 (März 2002).

	Prombezeichnung	Bereich	Lange / Eindringtiefe	Widerstandsbereich AEM	Geologie (Geofast, Blatt 121)
28.03.2007	Westendorf Profil 1	10	710 / 150	niedrig	Alluvialterrasse, Staukörper a. Eisrand
29.03.2007	Westendorf Profil 2	9	830 / 180	niedrig	Staukörper a. Eisrand

 Tabelle 6: Geophysikalische und geologische Parameter der geoelektrischen Messkampagne alt 2 (März 2007).

2.2 Erhebung und Aufbereitung von Aufschlussdaten - Zusammenführung / Visualisierung vorhandener Daten in ein GIS Projekt

Für die Planung und um die unterschiedlichen Daten miteinander vergleichen und bearbeiten zu können, wurden in einem ersten Schritt folgende geologische Informationen (Aufschlussdaten) erhoben und ergänzend verwendet, um den internen Aufbau der Sedimentkörper in Bezug zu den elektrischen Widerstandswerten aus der Geoelektrik und der AEM analysieren zu können. Die Bearbeitung und Visualisierung erfolgt GIS-basiert (siehe Abb. 1)

- Probenahmepunkte und geologische Beschreibungen von REITNER (2005);
- Abbaudatenbank, FA Rohstoffgeologie
- IRIS-Bergbau-Datenbank, FA Rohstoffgeologie
- Bohrprofile TIRIS.

In der Abb. 1 sind die einzelnen Bereiche (Untersuchungsstandorte) mit allen Geoelektrikprofilen und Aufschlussdaten im Bezug zur elektrischen Widerstandsverteilung aus der AEM in unterschiedlichen Tiefen von 5 und 30 Metern dargestellt.

G Jahresbericht 2017/18 ÜLG-077 - Prospektionsmethoden für Lockersedimentvorkommen

Abbildung 1: Linke Abbildung – GEOFAST-Karte Neukirchen (KREUSS, 2008, Rohdigitalisierung – Stand 2012); Mittlere und rechte Abbildung - Verteilung des elektrischen Widerstands aus der Aeroelektromagnetik (AEM) in unterschiedlichen Tiefen von 5 und 30 Metern. Zusammenführende Darstellung der Widerstandsverteilung aus der AEM und der Geoelektrik mit Aufschlussdaten (kleine rote Kreise: Probenahmepunkte von REITNER (2005); kleine rote Kreise mit orangem Inhalt: Aufschlussdaten mit Beschreibung; kleine blaue Kreise: Information Abbaudatenbank FA Rohstoffgeologie, kleine hellblaue Vollkreise: Bohrprofile TIRIS; kleine grüne Vollkreise: Information IRIS Bergbau-Datenbank FA Rohstoffgeologie) für die Bewertung potentieller Rohrstofflagerstätten. Die Geoelektrikprofile (rote Linien) wurden in Bereichen mit geologisch ähnlichem Aufbau aber unterschiedlichen Widerstandswerten (gelbe und violette Kreise) aus der AEM, situiert. Zum Vergleich werden auch Bereiche mit geologisch/lithologisch ähnlicher Entwicklung und ähnlichen Widerstandswerten aus der AEM verglichen.

2.3 Auswertung Geoelektrik

Für die Weiterentwicklung der geophysikalischen Prospektionsmethoden mit der Methodik der der einzelnen geoelektrischen Geoelektrik wurde die Auswertung Messungen als Widerstandstiefenplot entlang der einzelnen Messprofile dargestellt. Für diese Darstellung wurden für alle 15 geoelektrischen Messprofile zwei unterschiedliche, aber vergleichbare Einteilungen der Widerstandsbereiche gewählt. Dies deshalb, um damit unterschiedliche, für rohstoffspezifische Fragen relevante Widerstandsbereiche herausarbeiten zu können. Damit ist einerseits eine vergleichende, andererseits eine differenziertere Ansprache der vertikalen und lateralen Widerstandsverteilung aus der Geoelektrik zu dem Widerstandsbild aus der AEM in unterschiedlichen Tiefen für die rohstoffspezifische Charakterisierung möglich.

Diese für ein und dasselbe Geoelektrikprofil unterschiedlich betonten Widerstandsbereiche, werden, getrennt für die Jahre bis 2017 und für das Jahr 2018, gegenübergestellt (Abb. 2 und 4). Damit ist einerseits eine vergleichende, andererseits eine differenziertere Ansprache der vertikalen und lateralen Widerstandsverteilung aus der Geoelektrik zu dem Widerstandsbild aus der AEM in unterschiedlichen Tiefen für die rohstoffspezifische Charakterisierung möglich.

Um speziell auf die Eigendynamik der Widerstandsverteilungen der einzelnen Geoelektrikprofile eingehen zu können, wurden diese auch mit einer individuellen Widerstandsverteilung dargestellt (Abb. 3 und 5).

Mit den Ergebnissen (spezifischer elektrischer Widerstand) aus diesen geoelektrischen Messungen werden die Ergebnisse der Aeroelektromagnetik (Abb. 6) hinsichtlich rohstoffrelevanter Fragestellungen in Detailgebieten verfeinert. Im Abgleich mit Aufschlussdaten (Bohrprofile –TIRIS; Abbaudaten FA Rohstoffgeologie; Lockergesteinsdaten – REITNER (2005)) erfolgte eine Erstinterpretation hinsichtlich der Aussagemöglichkeit der eingesetzten Methoden (Abb.7 bis 13).

Abbildung 2: Gegenüberstellung/Vergleich der Inversionsergebnisse der geoelektrischen Messungen 2017 und der Messkampagne alt (2002/2007) im Untersuchungsgebiet Wörgl. Jedes Geoelektrikprofil ist mit zwei einheitlichen, aber unterschiedlichen Einteilungen der elektrischen Widerstandswerte (colorbar) dargestellt.

Abbildung 3: Inversionsergebnisse der geoelektrischen Messungen 2017 und der Messkampagne alt (2002/2007) im Untersuchungsgebiet Wörgl. Jedes Geoelektrikprofil ist entsprechend seiner Widerstandsverteilung nur mit einer Einteilung der elektrischen Widerstandswerte (colorbar) dargestellt.

Abbildung 4: Gegenüberstellung/Vergleich der Inversionsergebnisse der geoelektrischen Messungen 2018 im Untersuchungsgebiet Wörgl. Jedes Geoelektrikprofil ist mit zwei einheitlichen, aber unterschiedlichen Einteilungen der elektrischen Widerstandswerte (colorbar) dargestellt.

Abbildung 5: Inversionsergebnisse der geoelektrischen Messungen im Untersuchungsgebiet Wörgl. Jedes Geoelektrikprofil ist entsprechend seiner Widerstandsverteilung individuell nur mit einer Einteilung der elektrischen Widerstandswerte (colorbar) dargestellt.

2.4 Auswertealgorithmus AEM für rohstoffspezifische Fragen

Um die Interpretierbarkeit der Aero-Elektromagnetik hinsichtlich einer Lockersediment-Prospektion zu verbessern, wurde ein 3D-ArcScene Projekt erstellt. Dabei werden die Ergebnisse der AEM-Inversion des gesamten Datensatzes im Projektgebiet als 1D-Modellblöcke im Raum visualisiert und an jedem Messpunkt detailliert entlang der jeweiligen Flugprofile wiedergegeben (Abb. 6). Bereiche, die von technischen Störfeldern überlagert sind, können auf diese Weise schnell identifiziert werden. Ziel dieses neuen Processing-Teiles ist es, eine interaktive und umfassende Interpretation möglich zu machen, da sämtliche Zusatzinformationen (Geoelektrik, geologische Karten, hydrogeologische Details, Situationskarten usw.) im Raum verortet sind, gedreht, gezoomt und an- bzw. ausgeschalten (transparent) werden können.

Als nächster Schritt ist geplant, die Ergebnisse der im Messgebiet Wörgl durchgeführten umfangreichen Geoelektrik-Kampagne zu nutzen, um Startbedingungen für die AEM Inversion zu definieren. In diese Startbedingungen fließen besonders Informationen aus diversen Untergrundaufschlüssen (Bohrungen, Schürfe, Geoelektrik...) ein. Damit wird ein, speziell für diese geologische Situation, angepasster Auswertealgorithmus für die AEM geschaffen. Dieses optimierte Processing wird, jeweils angepasst an die vorliegende geologische Situation und Fragestellung, in klar definierten Teilgebieten eingesetzt und soll zu einer räumlichen, aus der AEM abgeleiteten, geologischen Interpretation für dieses Teilgebiet, beitragen. Durch die Zuordnung bestimmter Widerstands-Bereiche zu geologisch-lithologischen Sequenzen können diese nun separiert, visualisiert und verfolgt werden. Ein erstes Beispiel für die Einbindung der Geoelektrikprofile in die AEM Auswertung ist in der Abbildung 7 zu sehen.

Abbildung 6: Ergebnisse der 1D Modellierung aus der AEM an jedem Messpunkt (Modellblöcke) entlang von Flugprofilen als Tiefen-Widerstandsplot versus laterale Interpolation des Widerstandes der 1.Schicht (z= 0m(GOK) - 2m).

Spez. Elektrischer Widerstand [Ωm] 0,210000 0,210001 - 5,000000 5,000001 - 10,000000 10,000001 - 15,000000 15,000001 - 20,000000 20,000001 - 30,000000 30,000001 - 40,000000 40,000001 - 50,000000 50,000001 - 70,000000 70,000001 - 90,000000 90,000001 - 110,000000 110,000001 - 150,000000 150,000001 - 200,000000 200,000001 - 300,000000 300,000001 - 400,000000 400,000001 - 500,000000 500,000001 - 700,000000 700.000001 - 1000.000000 1000,000001 - 5000,000000

AEM Wörgl

Abbildung 7: A) Gegenüberstellung der 1D Modellierung aus der AEM an jedem Messpunkt (Modellblöcke) entlang von Flugprofilen als Tiefen-Widerstandsplot versus Tiefenwiderstandsverteilung aus den Geoelektrikprofilen B), C) mit unterschiedlichen Widerstandswertebereichen (B: 20-2000 ohm-m; C: 200-1000 Ωm).

2.5 Gebietsweise Erstbearbeitung

In den vorherigen Abschnitten wurde aufgezeigt, wie die diversen Untersuchungsgebiete (Bereiche) anhand der geologischen-lithologischen Verhältnisse und den Widerstandswerten aus der AEM, festgelegt wurden.

In diesen 15 Teilgebieten (Bereiche) wurden insgesamt 15 Geoelektrikprofile vermessen und ausgewertet. Für die lithologische und rohstoffspezifische Ansprache wurden diverse Aufschlussdaten erhoben und in Bezug zu den geophysikalischen Ergebnissen gebracht.

Die gebietsweise Erstbearbeitung erfolgt getrennt für jeden Bereich. Für diese Übersichtsinterpretation werden in einem ersten Schritt für jedes Teilgebiet die Ergebnisse der AEM-Widerstandsauswertung in den Tiefen von 5 und 30 Metern mit den Ergebnissen der geoelektrischen Tiefen-Widerstandsplots verglichen. Dies erfolgt dermaßen, dass diese Tiefenbereiche in den Geoelektrikprofilen mit einem Balken markiert sind. Dies erfolgt jeweils für ein Profil, aber mit drei unterschiedlich dargestellten Widerstandsverteilungen (vergleiche Abschnitt 2.3).

Damit ist einerseits eine vergleichende, andererseits eine differenziertere Ansprache der vertikalen und lateralen Widerstandsverteilung aus der Geoelektrik zu dem Widerstandsbild aus der AEM in unterschiedlichen Tiefen für die rohstoffspezifische Charakterisierung möglich.

Zusätzlich zu diesem ersten optischen Vergleich, werden sämtliche vorhandenen Aufschlussdaten (Bohrprofile, Kornsummenkurven, Geländebeschreibungen, Informationen aus diversen Datenbanken....) als Interpretationshilfe verwendet. Dieser hier skizierte Bearbeitungsschritt erfolgt in der Erstbearbeitung für alle 15 Bereiche. Im Vergleich der einzelnen Bereiche zueinander ist damit eine erste Übersichtsinterpretation möglich.

In den nachfolgenden Abbildungen ist diese Vorgangsweise für das Gebiet 8 dargestellt.

Übersichtsinterpretation Bereich 8

Die Geoelektrikprofile Hopfgarten 1 und 2 befinden sich in einem Bereich mit oberflächlich hohem elektrischem Widerstand, zurückzuführen auf einen hohen Kies-Anteil an der Oberfläche. Mit zunehmender Tiefe wird das Material feiner und verursacht dadurch einen niedrigeren elektrischen Widerstand, sowohl in der AEM als auch in der Geoelektrik.

Die Genese dieses Körpers erfolgte vor dem Würm-Hochglazial in Form fluviatiler Schotter. Dieser Schotter wurden dann von einer Grundmoräne des Würm-Hochglazials überdeckt. Während der Eiszerfallsphase entwickelten sich Wasserbecken, die von der Basis gegen das Hangende mit Ton, Schluff, Sand und Kies aufgefüllt worden sind (Deltasedimentation).

Bereich 8 - Hopfgarten

Abbildung 8: Verteilung des elektrischen Widerstands aus der AEM in 6 Metern Tiefe, Bereich 8.

Abbildung 10: Ausschnitt Bereich 8, GEOFAST-Karte Neukirchen (KREUSS, 2008, Rohdigitalisierung – Stand 2012).

Quantile-Skala (Qu)

. [MM]

e.

0

79

157 196

275

353 470

10 000

Abbildung 9: Verteilung des elektrischen Widerstands aus der AEM in 30 Metern Tiefe, Bereich 8.

Abbildung 11: Inversionsergebnisse Geoelektrikprofil Hopfgarten – Profil 1 – unterschiedliche Einteilung des Widerstandswertebereichs.

Abbildung 12: Inversionsergebnis Geoelektrikprofil Hopfgarten – Profil 1 – individuelle Einteilung des Widerstandswertebereichs.

Profil Schönbachtal - E' Klösterl (Prae-LGM)

Abbildung 13: Kornsummenkurven der Sedimente im Gebiet Klösterle (aus REITNER, 2005).

Abbildung 14: Korngrößenanalyse der Sedimentprobe 121/01/70sum.

3 VORSCHAU

Im Berichtsjahr 2017/18 lag der Schwerpunkt der Arbeiten in der Planung und Durchführung von Geoelektrikprofilen. Diese werden bis in den Herbst 2018 mit zusätzlich notwendigen Profilen komplettiert, um hier mit einer repräsentativen Anzahl von Fallstudien, in Bezug zu der Widerstandsauswertung der AEM, für die Charakterisierung ausgewählter Lockersedimentvorkommen arbeiten zu können.

Um die Aussagekraft der Widerstandsverteilung aus der Aeroelektromagnetik hinsichtlich der Quantität und Qualität von Lockersedimenten detaillierter beurteilen und optimieren zu können, werden diese Geoelektrikprofile sowohl in hochohmigen, als auch in niederohmigen Bereichen der AEM, jeweils bei genetisch ähnlich entwickelten, quartären Ablagerungen, vermessen.

Nach Erhebung, Aufbereitung und Zusammenführung bestehender Aufschlussdaten liegt das vornehmliche Ziel darin, zusätzlich zu den bereits bestehenden Aufschlussdaten und basierend auf den Ergebnissen der geophysikalischen Untersuchungen, an ausgewählten Standorten eine spezifische Sedimentprobenahme zur Kalibrierung der geophysikalischen Messmethoden (Geoelektrik) durchzuführen. Damit soll die Zuordnung des spezifischen elektrischen Widerstandes, sowohl aus der AEM, als auch aus der Geoelektrik für die rohstoffrelevante Ansprache von Lockersedimenten verbessert und verfeinert werden.

Parallel dazu wird mit der Auswahl geeigneter Testgebiete für die rohstoffspezifische Charakterisierung von hochreinen Quarzsanden begonnen. Erste Testmessungen sind im Bereich der Vorlandmolasse (z.B. Aschach an der Donau) und entlang der Böhmischen Masse (östlich von Linz, Raum Steyregg) für Frühjahr/Sommer 2019 geplant.

4 LITERATURVERZEICHNIS

- KREUSS, O. (2008): Geofast Zusammenstellung ausgewählter Archivunterlagen der GBA 1:50.000 ÖK121 Neukirchen am Großvenediger: Stand 2012, Wien (GBA).
- REITNER, J. M. (2005): Quartärgeologie und Landschaftsentwicklung im Raum Kitzbühel St. Johann i. T.
 Hopfgarten (Nordtirol) vom Riss bis in das Würm-Spätglazial (MIS 6-2). Dissertation Fakultät für Geowissenschaften, Geographie und Astronomie der Universität Wien, XIII+ 190 S. + Anhang, Wien.