ARTINSK- UNO CARBON-SCHWÄMME

VOM URAL UND VOM IIMAN.

VON

TH. TSCHERNYSCHEW.

(MIT FÜSE TAFELS).

$$
\rightarrow K+2-
$$

St. PETERSBURG.
Gedruckt bei C. Bikkenfeli, (W. O., \&. Linie, Nol).
1898.

Нанечатано по расиоряженію Имиераторскаго C.-ІІетеро́ургскаго Минералогическаго Общества.

Ueber die Artinsk- und Carbon-Schwämme vom Ural und vom Timan.

Von Th. Tschernyschew.
(Mit fünf Tafeln.)
Unsere Kenntnisse in Betreff der oberpalaeozoischen Spongien Russlands waren bisher überaus spärlich. Alle Angaben darüber beschränkten sich auf die Beschreibung zweier aus Carbonablagerungen stammender Formen: Siderospongia sirenis Trautsch. ${ }^{1}$), aus dem untern Kohlenkalke Central-Russlands, und Palaeoaplysina laminaeformis Krot. ${ }^{2}$), aus den obern Kohlenkalken des Ural. Alle beide genannte Spongien wurden von den Autoren, denen wir ihre Beschreibung verdanken, der Ordnung der Ceraospongien, d. h. den Schwämmen mit hornigem Skelet zugewiesen. Hinsichtlich der ersten kann ich bemerken, dass ich dank der Liebenswürdigkeit des Herrn J. La-

[^0]
- 2 -

husen in der Lage gewesen bin, dic ron ihm angefertigten vorzüglichen Praeparate von Siderospongia sirenis zu studiren und dass diese nicht den mindesten Zweifel an der Zugehörigkeit dieses Schwammes zur Ordnung der Hexactinelliden übrig lassen.

Das in meinen Händen befindliche Artinsk- und CarbonMaterial vom Ural und vom Timan ist in beträchtlichem Masse geeignet, diese kärglichen Daten zu ergänzen und entbehrt weder rein palaeontologischer, noch geologischer Bedeutung. Am zahlreichsten und mannigfaltigsten sind darunter dic ArtinskSchwämme und bei ihrer Lagerungsweise und ihrem Erhaltungszustande will ich zunächst verweilen.

Einige von den unten beschriebenen Artinsk-Spongien habe ich schon im Jahre 1885 während meiner Forschungen im westlichen Theile des Süd-Urals gefunden; allein die interessantesten und mannigfaltigsten Reste dieser Art habe ich im Sommer des Jahres 1896 gesammelt, wo ich die Steinbrüche untersuchte, die Behufs Erlangung von Bausteinen für die Eisenbahnanlagen in den Artinsk-Kieselmergeln angelegt wurden. Diese Steinbrüche liegen am Flusse Ascha, etwa 15 Werst oberhalb der Eisenbahnbrücke auf der Linie Ascha-Minjar. Abgesehen von den unten beschriebenen Spongien finden sich daselbst auch rorzüglich erhalten Medlicottia artiensis Gruen., M. Orbignyi Vern., Paralegoceras Tschernyscheuti Karp., Gastrioceras Iossae Vern., Nautilus posttuberculatus Karp., Productus cancriniformis Tschern., Pr. Stuckenbergi Krot. und eine Masse von Einzelkorallen (Polycoelia profunda Germar).

Ausser diesem Punkte an der Ascha bin ich noch in den kieseligen Artinsk-Mergeln am Flusse Ui-Teljak (Nebenfluss des Sim) etwa 10 Werst von seiner Mündung auf Spongienskelete gestossen. Hier fanden sich neben den Schwämmen (Pemmatites artiensis Tschern., Stuckenbergia artiensis Tschern.)
verkieselte Schalen von Gastrioceras Iossae Vern., Reticularia lineata Mart., Mentzelia semiplana Waag., Rhynchopora Nikitini Tschern., Camarophoria pinguis Waag. etc.

Westlich ron der Ascha fanden sich am Flusse Sarwa (recliter Zufluss des Saldybasch, der sich von links in die Ufa ergiesst) Reste von Spongien auch hier in Gesellschaft einer reichen Artinsk-Fauna: Athyris pectinifera Sow., Spirifer alatus Schloth., Spiriferina cristata Schloth., Sp. Saranae Vern., Reticularia lineata Mart., Rhynchopora Nikitini Tschern., Camarophoria plicata Kut., C. pinguis Waag., Streptorhynchus pelargomatus Schloth., Productus artiensis Tschern., Pr. pustulatus Keys., Pr. fusciatus K ut., Pr. praepermicus Tschern., Pr. pseudoaculeatus Krot., Pr. tenuistriatus Vern., Pr. cancriniformis Tschern., Marginifera typica Waag..

Das Gestein, das an den drei bezeichneten Punkten die organischen Reste einschliesst, ist durchaus gleichartig, ziemlich reich an kohlensaurem Kalk und löst sich leicht in Salzsäuro auf, wobei sich als Niederschlag ein überaus feiner aschgrauer: Schlamm absetzt, in dem man unter dem Mikroskop, abgesehen von einer nicht individualisirten thonigen Masse mit einzelnen Quarzkörnern, eine Fülle von Schwamm-Spicula erblickt.

Die vorherrschende Form dieser Spicula ist die einer gestreckten, meist gekrümmten Spindel (Taf. I, Fig. 1-11). Daneben kommen nicht selten solche in Gostalt einer längern (Taf. I, Fig. 14-17, 20) oder kürzern (Taf. I, Fig. 18-19) Walze, gleichfalls oft gekrümmt, vor. Bedeutend seltner lässt sich die Stäbchenform mit einem hakenartig gebogenen Ende beobacliten (Taf. I, Fig. 21-22).

Die verkieselten Skelete unserer Spongien, die nicht selten an der Oberfläche des sie einschliessenden verwitterten Gesteins hervortraten, liessen sich in den meisten Fällen durch Behandlung: mit Salzsäure leicht ausscheiden. Nur in den Fällen, wo die
ursprüngliche kieselige Substanz durch kohlensauren Kalk ersetzt war, musste man sich mit mechanischer Praeparation der Oberfläche des Schwammes und mit der Untersuchung des Skeletbaus nach mikroskopischen Praeparaten begnügen.

An der mit Säure behandelten Oberfäche unserer Schwämme lässt es sich mit Hilfe einer starken Loupe stellenweise deutlich erkennen, dass ihr Skelet aus Lithistidennnadeln besteht, während die Canäle ron Monactivelliden- (Taf. II, Fig. 4-6) und Hexactinellidennadeln (Taf. II, Fig. 1-3) erfüllt sind, die sich mit einander verflochten unter verschiedenen Winkeln kreuzen und vollkommen denen gleichen, die wir in der Mergelmasse finden.

Unter den Monactinellidennadeln gelangen alle Typen zur Beobachtung, die v. Zittel ${ }^{1}$) in seiner classischen Monographie über das Genus Coeloptychium beschrieben hat. Bei gleichfalls völliger Aehnlichkeit mit den Skeletspicula verschiedener Repraesentanten der Gattung Reniera 0 . Schmidt ${ }^{2}$) zeigen unsere Monactinellidennadeln die nämliche Mannigfaltigkeit in ihrer Gestaltung, wie sie Hinde aus den Carbonablagerungen Englands ${ }^{3}$) und aus den kieseligen Permocarbon-Gesteinen Spitzbergens ${ }^{4}$) beschrieben hat. Was hingegen die Hexactinellidennadeln betrifft, so zeigen sie vorwiegend die Form cines Ankers mit langem Schaft, der in ein Köpfchen mit vier oder sechs kurzen Armen
${ }^{1}$) K. v. Zittel. Über Coeioptychium. Ein Beitrag zur Kenntniss der Organisation fossiler Spongien. Abhandl. d. Math.-Phys. Cl. d. K. Bayerischen Ak. d. Wiss., Bd. XII, 3. Abth. pag. 36-40. 1875.
${ }^{2}$) 0 . Schmidt. Die Spongien des Adriatischen Meeres, pag. 72.
${ }^{3}$) G. J. Hinde. A Monograph of the British fossil Sponges. Part 1. 2. pas. 141-145. Palaeontogr. Soc. Vol. XL, XLl. 1886, 1887.
${ }^{4}$) G. J. Hinde. On the Chert and Siliceous Schists of the Permo-Carboniferous Strata of Spitzbergen, and on the characters of the Sponges therefrom, which have been described by Dr. E. Dunikowski. Geol. Mag., Dec. III, Vol. V. pag. 241-251. 1888.
ausgeht (Taf. II, Fig. 1-3, 5), ähnlich wie sie Carter ${ }^{1}$) und Hinde ${ }^{2}$) am Wurzeltheile (dem Fusse) von Hyalostelia Smithi aus den Carbonablagerungen (Yoredale Series) von England beschrieben haben. Selten sind Ankerformen mit geraden Armen zu beobachten, die strahlig um einen verticalen Schaft angeordnet sind (Taf. I, Fig. 34-36). In ihrem Typus erinnern diese Spicula an die nagelförmigen Nadeln, die die oben citirten Autoren an der Oberfläche von Hyalostelia Smithi gefunden und beschrieben haben, und an die fleischigen Nadeln, die Hinde ${ }^{3}$) in Gesteinspraeparaten von Axels-Ö angetroffen hat.

Das Vorhandensein von Längscanälen hat sich bei vielen Spicula sowohl von Monactinellidentypus (Taf. I, Fig. $6-8$, $31-32$), als auch bei denen von Hexactinellidentypus constatiren lassen (Taf. II, Fig. 2), allein in den meisten Fällen sind diese Canäle in höherem oder geringerem Masse deformirt und nehmen eine perlschnurartige Gestalt an (Taf. I, Fig. 24-28), zerfallen in eine Reihe einzelner kleiner Höhlungen oder verschwinden endlich völlig. Offenbar steht diese Erscheinung im Zusammenhang mit dem Modificationsprocess der Spiculasubstanz und mit der Zernagung der Canalwände.

An unsern Praeparaten kann man deutlich sämmtliche Stadien in der Umwandlung der Nadeln in einen dunkelbrauen undurchsichtigen Stoff beobachten, der bei manchen von den unten beschriebenen Arten (Pemmatites artiensis, Haplistion (?) orientale) die Hauptmasse ausmacht,die die Wassercanäle ausfüllt und einzelne durchsichtige Narleln aus feinem Quarzaggregat einschliesst. Im Allgemeinen bestätigt das Bild, das wir erblicken, wenn wir Dünn-

[^1]schliffe unserer Schwämme unter dem Mikroskop betrachten. vollkommen dic Ansicht Dunikowskis ${ }^{1}$), der mit vollem Recht annimmt, der grösste Theil der Monactinelliden-Nadeln, die er an den ihm vorliegenden Spongien ron Spitzbergen bemerkte, gehe beim Metamorphosirungsprocess in solche undurchsichtige Körper über. Dem lässt sich noch hinzufügen, dass, nach den Dimensionen der aus Quarz bestehenden durchsichtigen Nadeln und der braunen undurchsichtigen Körper zu urtheilen, diese sich vorwiegend auf Kosten kleiner Spicula entwickelt haben.

Abgesehen von den zahlreichen Nadeln und einzelnen Quarzkörnern begegnen uns in der thonigen Masse, die dic Canäle unscrer Schwamme ausfüllt, auch Foraminiferen, Fragmente ron Muschelschalen (Brachiopoden?) und andere kleine organische Bruchstücke.

Oben ist bereits crwahnt worden, dass der Charakter der Spicula, aus denen das Skelet unserer Artinsk-Schwämme zusammengesetzt ist, untrüglich ihre Zugehörigkeit zur Ordnung der Lithistiden, speciell zu den Unterordnungen der Rhizomorinen und der Tetracladinen bezeugt. Die Einzelheiten des Skeletbaus unserer Spongien, sowie die Gestaltung ilhrer Nadeln sollen weiter unten bei der Beschreibung der einzelnen Speciesformen mitgetheilt werden. Hier will ich nur darauf hinweisen, dass ein Theil davon der Gattung Pemmatites angehört, die von Dunikowski ${ }^{*}$) und Hinde ${ }^{3}$) auf Grund des von Nathorst und dem Freiherrn G. de Geer im Permocarbon von.Spitzbergen erbeuteten Materials beschrieben worden sind.

Zur nämlichen Unterordnung der Rhizomorinen zählen auch dic Vertreter der Gattung Kazania (K. elegantissima, K. Gruene-

[^2]waldti), die A. Stuckenberg ${ }^{1}$) aus den Oberen Carbon- und Artinsk-Ablagerungen des Central-Urals beschrieben hat. Die Anfertigung von Schliffen der bezeichneten Repraesentanten des Genus Kazania hat es mir erstens klar gemacht, dass diese Formen nicht, wie A. Stuckenberg angenommen hatte, zu den Korallen, sondern zu den Spongien gehören, und zweitens, dass der Skeletbau von Kazania elegantissina sich von dem der Gattung Pemmatites nur durch die complicirtere Verzweigung der Querfasern zwischen den Fibern und durch eine besondere Anordnung der spindelförmigen und der Lithistidennadeln innerhalb der einzelnen Fasern unterscheidet. Was dagegen Kazania Gruenewaldti betrifft, so ist ihre äussere Uebereinstimmung mit den Vertretern des Genus Haplistion Young and Young so gross, dass ich, wie es aus der weiter unten mitgetheilten Beschreibung von Haplistion Gruenewaldti and H. orientale hervorgeht. Grund habe anzunehmen, die Ansicht Hindes ${ }^{2}$), der diese (Gattung den Monactinelliden und nicht den Lithistiden zuwies, sei, zweifelhaft.

Hinsichtlich der dritten von A. Stuckenberg zur Gattung Kazanicu gerechneten und unter dem Namen K. ufimiana ${ }^{3}$) beschriebenen Form haben meine Untersuchungen ergeben, dass auch sie zu den Lithistiden gehört, jedoch zur Unterordnung der Tetracladinen, und ich proponire, sie als Typus cines eigenen Genus Stuckenbergia hinzustellen, dem ich diese Benennung zu Ehren A. Stuckenberg's beilege, der viele Arbeiten zur Beschreibung der Korallen und Bryozoen Russlands geliefert hat.

Ebenso wenig ist es ohne Interesse, dass der Kieselkalk, worin am Flusse Ufa gegenüber dem Dorf Tschigwinzewa alle

[^3]von A. Stuckenberg der Gattung Lazania zugewiesenen Formen gefunden worden sind, in reicher Fülle Monactinellidenund ankerförmige Hexactinellidennadeln vom nämlichen Typus enthält, wie die oben beschriebenen aus den Artinsk-Mergeln an der Ascha, am Ui-Teljak und an der Sarwa.

Abgesehen von den oben bezeichneten Materialien haben mir noch einige vorzüglich erhaltene Schwämme vorgelegen (Pemmatites artiensis, P. arcticus, Haplistion (?) (Gruenewaldti), die von Herrn Bessonow in der Umgegend von Krasnoufimsk (Kamennyi Log und bei Soldatskaja Slobodka) gesammelt worden sind und sich gegenwärtig zugleich mit zahlreichen Schalen von Gastrioceras Iossae, Medlicottia Orbignyi und anderen Formen im Museum des Geologischen Comités befinden.

Die in vorliegenden Notizen beschriebenen Spongien vom Timan sind von meinem Collegen am Geologischen Comité L. Lutugin geliefert worden und stammen aus Kalksteinen die am Ufer des Flusses Nem (linker Nebenfluss der Wytschegda) zwischen dessen Zuflüssen Yn und Sis-ju zu Tage treten. Eines der von L. Lutugin erbeuteten Exemplare stellt eine vorzüglich erhaltene Kazania elegantissima Stuck. dar, während das andere mit Haplistion (?) Gruenewaldti Stuck. identisch ist. Der thonige Kalkstein, der diese Schwämme einschliesst, beherbergt viele Fossilien (Productus Gruenewaldti Krot., Marginifera uralica Tschern., Camarophoria plicata Kut., Spiriferina Saranae Vern. etc.): die für die oberen Horizonte des Kohlenkalks am Timan charakteristisch sind, und ist über und über von Monactinellidennadeln vom nämlichen Typus durchsetzt, wie auch der oben erwähnte Ural-Kalkstein an der Ufa gegenüber dem Dorfe Tschigwinzewa.

Das Gesammtrerzeichnis der aus den Obercarbon- und ArtinskAblagerungen am Ural stammenden Spongien ist folgendes:

Pemmatites macroporus Dun. (Artinsk-Horizont). Pemmatites arcticus Dun. (Artinsk-Horizont). Pemmatites artiensis Tschern. (Artinsk-Horisont). Pemmatites n. sp. cf. latitubo Dun. (Artinsk-Horizont). Kazania elegantissima Stuck. (Artinsk-Horizont und oberer' Kohlenkalk),
Kazania uralica Tschern. (Artinsk-Horizont).
Haplistion (?) Gruenewaldti Stuck. (Artinsk-Horizont und oberer Kohlenkalk).
Haplistion(?) orientale Tschern. (Artinsk-Horizont). Stuckenbergia ufensis Stuck. (Oberer Kohlenkalk).
Stuckenbergia artiensis Tschern. (Artinsk-Horizont).
Nach diesen einleitenden Bemerkungen gehe ich nunmehr zur Beschreibung unserer Ural- und Timan-Spongien über. Die Mehrzahl der vorliegender Arbeit beigefügten Mikrophotogramme sind vom Conservator am Geologischen Cabinet der Kaiserlichen Universität St. Petersburg, Herrn B. Popow hergestellt, dem für seine liebenswürdige Mitwirkung meinen aufrichtigsten Dank abzustatten ich für eine angenehme Pflicht halte.

LITHISTIDA.

Rhizomorina.

Genus Pemmatites Dunikowski, emend. Hinde.
1884. Pemmatites Dunikowski. Ueber Permo-Carbon-Schwämme von Spitzbergen, l. c. pag. 1-10.
1888. Pemmatites Hinde. Spitzbergen Cliert-Deposits, 1. e. pag. 249-250.

Diese Gattung ist, wie oben bereits erwähnt, von Dunikowski bei seiner Untersuchung des aus den Permocarbon-Ablagerungen
von Spitzbergen herrührenden Materials aufgestellt worden. Nach der von diesem Gelehrten gegebenen Diagnose umfasst das Genus Pemmatites kugelförmige, mehr oder weniger abgeplattete, nicht selten auch kuchen- oder walzenförmige Spongien. Der Körper des Schwammes zeigt entweder ziemlich deutlich strahlige Structur oder er besteht noch läufiger aus unregelmässigen Verzweigungen, die Spicula rom Typus der Monactinelliden enthalten. Das bei den aus Spitzbergen stammenden Vertretern mit Kieselerde ausgefülle Canalsystem bestelit aus rerticalen und horizontalen Gängen, die ein complicirtes Netz bilden. Die Verticalcanale gehen an der äusseren Oherfläche in kleine sternförmige Oscula aus, die warzenartig über die Deckschicht hervorragen. Nach dem Charakter des Skelets zu urtheilen haben die Repraesentanten des Genus Pemmatites in der Freileit gelebt, ohne sich an andere Gegenstände anzuheften.

Die Untersuchungen Dunikowskis wurden ron Seiten des bekannten Spongiologen Hinde einer cingehenden Kritik unterzogen und dieser gelangte, nachdem er das in den Handen jenes gewesene Material studirt hatte, hinsichtlich dessen, was man bei den Exemplaren aus Spitzbergen als Canäle aufzufassen habe und was ihr Skelet bilde, zu diametral entgegengesetzten Ergebnissen. Dunikowski erblickt in den dunklen Partien dieser Schwämme, die zwischen den durchsichtigen mit einander verflochtenen Fibern unregelmässige Zwischenräume bilden, echte Skeletfasern, in den darin eingebetteten Nadeln die Monactinel-liden-Spicula des Skelets selbst, die durchsichtigen mit einander verflochtenen Fasern dagegen beschreibt er als Canäle und meint, diese wären nach dem Absterben des Thieres mit Quarz ohne jede Beimischung fremder Bestandtheile ausgefüllt worden, die den dem Körper des Schwammes entsprechenden Partien diè dunkle Färbung verliehen hätten.

Nach aufmerksamem Studium der ihm von Prof. Lind-
ström übersandten Originale von Spitzbergen und der Praeparate Dunikowskis gelangte Hinde zu dem Schlusse, dass die durchsichtigen anastomosirenden Gänge - die Canäle Dunikowskis - in Wahrheit die Skeletfasern der Spongien seien und ursprïnglich aus Lithistidennadeln bestanden hätten. Der grösste Theil dieser hätte sich damn zersetzt und an ihre Stelle sei Chalcedon und Quarz getreten, währond andere entweder vereinzelt oder in Gesellschaft in ihrer natürlichen Lage in den Fasern eingebettet geblieben seien. Die dunkeln Partien der Schwämmedie Skeletfasern Dunikowskis - erklärf Hinde einfach als unregelmaissige Zwischenräume \%wischen den eigentlichen Skeletfasern: in diesen wäre zu Lebzeiten des Thieres die Wassercirculation ror sich gegangen, nach dessen Absterben aber hätten sie sich mit dem Meeresboden entnommenem Material gefüllt. feinem Schlamm mitzahllosen Nadeln, vorherrschend von zerstörten Monactinellidenschwämmen. Diese Erklärung steht mit unseren Kenntnissen in Betreff fossiler Schwämme, aber auch in Betreff recenter Spongien in Einklang, bei denen dic Canile und Zwischenräume zwischen den Skeletfasern meist mit Spicula verschiedener Form angefüllt zu sein pflegen, die in ihrem Charakter von den Nadeln, die dem Schwamme selbst eigen sind, völlig abweichen.

In Berücksichtigung dieser Thatsachen modificirt Hinde die Diagnose des Genus Pemmatites folgendermassen:

Diskusförmige, abgeplattete bis kugelförmige Schwämme, wahrscheinlich ohne Fuss oder irgend welche Anheftestelle. Das Skelet besteht aus Maschen von anastomosirenden cylindrischen Fasern, die aus ruthenförmigen Lithistidennadeln mit wurzelartigen oder höckerigen Seitenauswüchsen bestehen. Der Raum zwischen den Fasern bildet ein unbestimmt begrenztes Canalsystem mit runden oder polygonalen Mündungen an der Oberfläche des Schwammes. Die Lithistidenspicula sind von verschiedener

Grösse und Gestalt: zum grössten Theile bestehen sie aus einer geraden oder leicht gebogenen ruthenförmigen Axe, an den Enden aufgebläht oder stumpf zugespitzt, mit kurzen Lateralauswüchsen. Ihre Dimensionen schwanken zwischen 0,4 bis $0,6 \mathrm{~mm}$. in der Länge und um $0,06 \mathrm{~mm}$. in der Dicke. Die Deckschicht ist, Dunikowskis Angaben entgegen, nicht an einem einzigen der Exemplare von Spitzbergen zur Beobachtung gelangt.

Wie aus dieser Diagnose hervorgeht, findet alles von Hinde Aufgestellte seine volle Bestätigung darin, was wir an unseren Vertretern der Gattung I'emmatites vom Ural beobachten können. Dank dem besonders günstigen Erhaltungszustande ihres Kieselskelets kann man bei manchen davon schon mit Hilfe einer Loupe das ganze Netz der Lithistidennadeln verfolgen, das sich, der Richtung der miteinander verflochtenen Fasern entsprechend, in paralleler Lage ausbreitet. Hinsichtlich der Details im Skeletbau der verschiedenen uralischen Vertreter der besprochenen Gattung verweise ich auf meine Ausführungen bei Gelegenheit der Betrachtung der einzelnen Species.

Unter dem mir zu Gebote stehenden Material habe ich nur zwei Arten mit Spitzbergischen Pemmatiten identificiren künnen ${ }^{1}$), $-P$. macroporus Dun. und P. arcticus Dun. Was die dritte übereinstimmende Form betrifft, die Dunikowski als P. arcticus var. latituba beschrieben hat, gestattet die unvollständige Erhaltung sowohl unserer, wie auch der Spitzbergischen Exemplare keine vollkommene Beschreibung und Vergleichung; auf Grund unmittelbarer Nebeneinanderstellung kann man nur sagen, dass die uralische

[^4]Fornı als selbständige Species aufzufassen ist. Ferner scheide ich als besondere Art unter der Benennung Pemmatites artiensis vorzüglich erhaltene Spongien aus, deren Skelet sich nach Behandlung mit Säure in allen Feinheiten offenbart.

Pemmatites arcticus Dunikowski.

Taf. III. Fig. 11-18, 20-21.
1881. Pemmatites arcticus. Dunikowski, Ueber Permo-Carbon-Schwämme von Spitzbergen, l. c., pag. 14-15. Taf. II, Fig. 3, 4.
1888. Pemmatites arcticus. Hinde. Spitzbergen Chert Deposits, l. c., p. 250, pl. VIII, fig. 5.

Ellipsoidale Schwàmme, grösstentheils in verticaler Richtung stark zusammengedrückt. Das Skelet besteht aus radialen Fasern,

Fig. 1. Pemmatites arcticus Dun. Verticalschnitt, 2 mal vergrössert. Kamennyi Log bei Krasnoufirnsk.
die von der Centralpartie des Schwanmes ausgehen, und aus Querfasern, die in einer Anzahl von 3-4 von den Radialfasern ausgehen und sich gegen die Nachbarfasern richten.

Dank diesem Umstande sind an der mit Saure behandelten Oberfläche der Spongie Vorsprünge erkennbar, die den Radialfasern entsprechen und $0,7-1,1 \mathrm{~mm}$. im Durchmesser haben. Der Abstand zwischen zwei benachbarten Vorsprüngen schwankt zwischen 1,2 bis $1,8 \mathrm{~mm}$., die Querfasern sind 0,2 bis $0,5 \mathrm{~mm}$. dick. Die Combination ron Radial- und Querfasern bringt an der Oberffache des Scliwammes eine Reilie ron Maschen zu Woge, deren Breite $1,9-2,1 \mathrm{~mm}$. hetragt. Dic Skeletelemente (spicula), deren Lánge zwischen 0,36 und $0,48 \mathrm{~mm}$. schwankt, stellen sich in Gestalt eines knorrigen Axialtheiles dar, ron dem kurze Auswüchse ausgehen, und zeigen rollsie Uebereinstimmung mit den Spicula ron Pemmatites arcticus, wie sie sich an den von Spitzbergen herstammenden Vertretern dieser Species beobachten lassen. Hiervon habe ich mich durch unmittelbare Vergleichung der Durchschnitte ron uralischen Exemplaren mit denen ron Spitzbergen überzeugen können, die ich dank der Liebenswürdigkeit von Prof. Lindström aus dem Museum der Stockholmer Akademie erhalten hatte ${ }^{1}$).

Dunikówshi unterscheidet in seinem Aufatze üner die Spongien von Spitzbergen zwei Varietaten ron P. arcticus var. macropora und var. latituba, allein bereits Hinde (1. c.) bemerkt, es wäre begründeter, diese beiden Varietäten als sellständige Arten aufzufassen, wobei er sich hinsichtlich der var. macropora abgesehen von der etwas abweichenden Gestaltung der Spicula auf die beträchtlicheren Dimensionen der Radial- und Querfasern, sowie auch der Skeletmaschen stützt. Was die var. latituba betrifft, unterscheidet sich der Charakter ihrer Spicula sn wesentlich von denen bei P. arcticus, dass Hinde sogar

[^5]geneigt war, diese Varietat als Vertreter cines eigenen Genus hinzastellen.

Mehrere Exemplare von Pemmatites arcticus befinden sich in der von Herrn Bessonow eingesandten Collection, unter den Etiketten «Kamennyi Log., Kreis Krasnoufimsk» und «Steinbrüche in Soldatskaja Slobodka, bei Krasnoufimsk». Es ist nicht ohne Interesse, dass bei diesen Exemplaren ebenso, wie bei den am Flusse Ascha gesammelten, die den Wassercanälen entsprechenden Hohlräume zwischen den Fasern mit Gestein ausgefüllt sind, das in Fülle Monactinellidennadeln vom nämlichen Typus einschliesst, wie die oben beschriebenen aus den ArtinskMergeln an der Ascha. Auf Spitzbergen ist Pemmatites arcticus in den kieselhaltigen Productusgesteinen der Insel Axels-Ö in grosser Menge vorhanden.

Pemmatites macroporus Dunikowski.
Taf. II, Fig. 7-10, Taf. III. Fig. 3, 'Taf. JV', Fig. 5-4.
1884. Pemmatites arcticus var. macropora Dunikowski. Permo-CarbonSchwämme, I. c., pag. 15. pl. II, Fig. 1, 2, 5.
1888. Pemmatites macropora Hinde. Spitzbergen Chert-Deposits, l. c., pag. $249-250$, pl. VIII, Fig. 1, 2, 3, 4.

Kugelige, in verticaler Richtung zusammengedrückte Form, deren Skelet zahlreiche durch horizontal von ihnen ausgehende Querfasern verbundene Radialfasern zeigt. Der Durchimesser der radialen Stämme wechselt zwischen $1,3 \mathrm{~mm}$. und $2,4 \mathrm{~mm}$.. Auch der Abstand der Radialstämme von einander ist verschieden und schwankt zwischen $3,5 \mathrm{~mm}$. und $4,6 \mathrm{~mm}$., ron Centrum zu Centrum gerechnet. Bisweilen indess erscheinen die Radialfasern dicht bei einander und verschmelzen beinahe mit einander, während sie sich dagegen in anderen Fällen in der Näbe der Skeletperipherie spalten. Die Horizontalsfasern gehen von den Radial-
fasern in einer Anzahl von fünf bis sieben nach den Nachbarstämmen hin aus. Nicht selten wird übrigens dies Bild dadurch complicirt, dass die Querfasern sich theilen und dass jeder von den Zweigen sich quer gegen die Nachbarfaser stemmt. In Folge dessen bildet sich ein ganzes System von Maschen, ungleich an Gestaltung und Dimensionen, deren Charakter das von uns abgebildete, mit Salzsäure behandelte Exemplar (Taf. IV, Fig. 4) deutlich wiedergiebt.

Das complicirte Skeletsystem, das dieser Schwamm zeigt, ist auch in seinem Verticaldurchschnitt, der auf Taf. IV, Fig. 3 dargestellt ist, klar zu sehen.

Die Skeletelemente, die mit einer starken Loupe an der ausgewaschenen Oberfläche, an Dünnschliffen unter dem Mikroskop sichtbar sind, offenbaren in ihren Verzweigungen (Taf. II, Fig. 7-10) ziemlich beträchtliche Schwankungen; im Allgemeinen bestehen sie aus einem geraden oder leicht gekrümmten Axialtheil, der in eine stumpf zugespitzte Verjüngung oder in eine kleine Anschwellung ausgelit. Von diesen Axialspindeln zweigen sich in grösserer oder geringerer Zahl kurze Seitenauswüchse oder kleine warzenartige Höcker ab. Der Charakter der Verflechtung dieser Spicula stimmt gänzlich mit den Abbildungen überein, die Hinde für P. macroporus von Spitzbergen bietet. In paralleler Lagerung schliessen sie sich mit ihren Auswüchsen an einander und bilden im Ganzen ein so compactes Skelet, dass es nur überaus selten glückt, mit Hilfe einer Praeparirnadel eine davon abzulösen. Die Länge der Spicula beträgt 0,4 bis $0,5 \mathrm{~mm}$..

Dunikowski hat die besprochene Form als Varietãt von Pemmatites arcticus beschrieben, allein Hinde bemerkt mit voller Berechtigung in seiner kritischen Arbeit, sie unterscheide sich im Charakter ihres Skelets so wesentlich von P. arcticus, dass sie es in vollem Masse verdiene, als selbständige Art ausgeschieden zu werden. Pemmatites macroporus stamml aus den
kieselführenden Schichten der Insel Axels-Ö her, während die von mir beschriebenen Exemplare in den Artinsk-Mergeln am Flusse Ascha gefunden worden sind.

Pemmatites artiensis n. sp.
Taf. JI. Fig. 13, 16, Taf. IV. Fig. 1-2.
In ilhrem Gesammthabitus kommt diese Species dem Pemmatites macroporus sehr mahe, und unterscheidet sich von ihm nur durch stärkere Abplattung. Das Skelet von P. artiensis besteht gleichfalls aus Radialfasern, die vom Centrum ausgehen und durch Querfasern mit einander verbunden sind, allein bei dieser Art zeichnen sich die Fasern durch grössere Regelmässigkeit aus, was auf Taf. IV, Fig. 2 gut hervortritt.

An den peripherischen Partien der Fasern lässt sich eine dichotomische, häuflg auch eine trichotomische Gabelung in einzelue Zweige beobachten, die sich nach dem Ende hin verjüngen. Die dünnen horizontalen Querfasern, die in ihrem Durchmesser beträchtlich hinter den Radialfasern zurückbleiben, zeichnen sich gleichfalls durch grössre Regelmässigkeit aus, als bei Pemmatites macroporus: meist sendet jede Radialfaser bis 5 Querfasern aus, die ohne Unterbrechung bis zu den Nachbarstämmen reichen. Eine Collision von Querfasern und die Bildung unregelmässigerer Maschen kommt relativ selten vor. Aehnlich, wie bei der vorhergehenden Art, ist auch hier der Abstand zwischen den Stämmen nicht stets der gleiche und stellenweise kann man beobachten, wie zwei Fasern mit einander verschmelzen und in eine aus vier Zweigen bestehende Spitze ausgehen. Die Dicke der Verticalstämme beträgt etwa $1,6 \mathrm{~mm}$., die der Querfasern circa $0,5 \mathrm{~mm}$..

An praeparirten Skeleten sind die Lithistidennadeln sehr gut sichtbar, die den Verzweigungen des Skelets entsprechend parallel
gelagert sind. Der Typus der Nadeln nähert sich im Allgemeinen sehr dem bei Pemm. macroporus beobachteten, indem sie einen axialen Schaft zeigen, der mit stumpfen Lateralauswüchsen und kleinen Warzen besetzt ist. Die Dimensionen der Spicula sind etwas grösser, als bei Pemm. macroporus und ihre Lange beträgt bis $0,6 \mathrm{~mm}$.. Sie vereinigen sich zu einem sehr festen Skelet, ron dessen Olerfläche es sehr schwierig ist, unter der Loupe gut sichtbare Lithistidenspicula abzulösen.

Alle Hohlräume innerhalb des Skelets, die den Canälen des Schwammes entsprechen, sind mit einem Geflecht von Monactinelliden und Hexactinelliden-Nadeln ausgefült, das besonders bei der Behandlung mit Säure deutlich in die Erscheinung tritt.

Diese Species steht ihrem Gesammttypus nach dem Pemmatites macroporus Dun. ziemlich nahe, lässt sich aber nichts desto weniger von diesem durch

Fig. 2. Pemmutites artiensis Tchern. Längsschnitt eines Theiles der Skeletfaser. Nach photogr. Aufnalime. Vergrösscrung 24 mal. Fl. Vi-Teljak. die grössere Regelmässigkeit im Bau ihres Skelets, durch die etwas grösseren Dimensionen der Nadeln, sowie auch durch die complicirtere Verästelung der radialen Skeletfasern an ihrem äusseren Ende leicht davon unterscheiden.

Die von uns beschriebenen Exemplare sind in den ArtinskMergeln an den Flüssen Ascha und Ui-Teljak gefunden worden. Ein vorzüglich erhaltenes Exemplar ist in der Collection des Herrn Bessonow unter der Etiquette «Kamennyi Log, bei Krasnoufimsk» enthalten.

Pemmatites n. sp. cf. latitubo Dunikowski.
Taf. III, Fig. $19 \mathrm{a}, \mathrm{b}$.
1881. Pemmatites arcticus var. latituba Dunikowski. Permo-CarbonSchwämme von Spitzbergen, l. c., pag. 16, pl.I, fig.2, 12.
1888. Pemmatites (?) datitubus Hinde. Spitzbergen Chert-Deposits, l. c., pag. 249--250, pl. VIII. fig. 7.

Dieser Species gehört ein Exemplar an, das in Gesellschaft einiger anderer Artinsk-Spongien am Fl. Ascha gefunden worden ist. Leider war es, da die Skeletfasern zum Theil in kohlensauren Kalk umgewandelt waren, unmöglich, das Skelet durch Behandlung mit Salzsäure aus dem umgebenden Gesteine herauszupraejariren.

An Querschnitten und an der verwitterten Oberflache sieht man, dass die Radialfasern durch beträchtlichere Abstände von einander getrennt sind, als bei Pemm. macroporus, und dass die Querfasern sich quirlförmig von den einen Radialfasern nach den andoren strecken.

An unseren Praeparaten sind die Längsschnitte der Fasern mit den darin eingebetteten Lithistidennadeln gut erkembar (Textabbildung Fig. 3). Das Aussehen dieser Spicula gleicht denen selır, die bei Hinde auf den Durchschnitten von Pemmatites latitubus von Spitzbergen abgebildet sind. Nur wenige Nadeln sind indess so wohlerhalten, dass man ihre Länge (etwa $0,5 \mathrm{~mm}$.) und ihre Umrisse im Allgemeinen fixiren kann. Was dagegen die Dimensionen der Fasern betrifft, so ist ihre Breite bei unserer Artinsk-Form geringer, als bei den Originalen von Spitzbergen, ein Unterschied, der besonders an Praeparaten ins Auge fält, während er an angeschliffenen Durchschnitten weniger scharf erscheint. Da es unmöglich war, die Oberfläche von P. latitubus an den Originalen von Middlehook (Bellsund) her-
auszupraepariren, so kann auch von einer genauen Vergleichung mit unserem Excmplar keine Rede sein, doch liegt jedenfalls mehr Grund vor die ura-

Fig. 3 Pemmatites n. sp. cf. latitulo Dun. Längsschnitt einer Skeletfaser. Zeichnung nach photogr. Aufnalime. Vergrösserung 24 mal. Fl. Ascha. lische Form als neue Species aufzufassen, um so mehr, als auch der Horizont, worin sie vorkommt, bedeutend jünger ist, als die Kalke von Middlehook, worin der Spitzbergische Pemm. latitubus gefunden worden ist.

Auf Spitzbergen ist Pemm. latitubus in Kalken mit Cyathophyllum gefunden worden, die, wie wir weiter unten sehen werden, dem Cora-Horizont des Urals entsprechen. Das von uns beschricbene Exemplar stammt aus jüngeren, Artinsk-Ablagerungen.

Genus Kazania Stuckenberg, emend. Tschernyschew.
1895. Kazania Stuckenberg (part.). Korallen und Bryozoen der CarbonAblagerungen des Ural und des Timan. l. c., pag. 183.

Als Vertreter der Gattung Kazania hat A. Stuckenberg drei Formen beschrieben - Kazania elegantissima, K. Gruenewaldti und K. ufensis - und, da er sie für einigen Syringoporiden nalo stehend hielt, den Korallen zugewiesen. Ein eingehenderes Studium der Originale dieser Formen, dic sich im Museum des Geologischen Comités befinden, hat indess ergeben, dass alle diese drei Species den Lithistiden-Spongien angehören und zwar, dass K. elegantissima und K. Gruenewaldti untrügliche Merkmale der Unterordnung der Rhizomorina aufzuweisen
haben, während K. ufensis zur Unterordnung der Tetracladina zu zählen ist. Die äussere Aehnlichkeit der \boldsymbol{K}. Gruenewaldti mit Vertretern der Gattung Haplistion Young \& Young (H. vermiculatum) ist, wie schon oben bemerkt worden ist, so gross, dass wir vollen Grund haben, diese uralische Form der Gattung Haplistion einzureihen. Somit bleiben zwei Formen (K. elegantissima und K. ufensis) übrig, die verschiedenen Unterordnungen angehören, und nur für eine ron ilnen kann die Genusbenennung Kazania beibehalten werden. Da nur die von A. Stuckenberg als Charakteristika der Gattung Kazania angegebenen Kennzeichen bei K. elegantissima schärfer ausgeprägt sind, so schlage ich vor, diese Art als Typus des genannten Genus hinzustellen.

Im äusseren Ansehen erinnern die Repraesentanten der Gattung Kazania stark an die oben beschriebenen Pemmatiten und ihr Skelet, im Allgemeinen von sphaerischer, halbellipsoider Gestalt, besteht aus einem Geflecht von anastomosirenden cylindrischen Fasern. Diese sind von zweierlei Art: die cinen, dickeren, gehen radial von einem bestimmten an der Unterseite des Schwammes befindlichen Centrum aus, verzweigen sich nach der Peripherie hin dichotomisch und endigen in einen mehr oder weniger zugespitzten Kegel. Die Verbindung der Radialfasern zu einem festem Skelet geschieht mit Hilfe dünnerer Querfasern, die, in verschiedenen Richtungen auseinanderlaufend, sich häufig verästelnd und wieder zusammenfindend, im Ganzen ein höchst zierliches Netz bilden. Die Skelelemente, aus denen sich die Fasern zusammensetzen, sind deren Richtung entsprechend gelagert und zeigen eine Combination zweirl Typen ${ }^{\mathbf{1}}$). Die Central-

[^6]partic der Fasern besteht aus langen spindelförmigen Nadeln mit zugespitzten Euden, die sich mit anderen hineingewirrten kürzeren Spicula mit Auswüchsen und Höckern verflechten. Dieser axiale Theil der Fasern ist von Lithistidennadeln vom nämlichen Typus; wic bei Pemmatites artiensis umgeben.

Aus dieser Diagnose ist ersichtlich, dass die Gattung. Kazania sich vom Genus I'emmatites, abgesehen von der complicirteren Verästelung der Querfasern, hauptsächlich durch die zwiefache Gestaltung der die Fasern bildenden Skeletelemente unterscheidet.

Ausser Kazania elegantissima gehört der besprochenen Gattung noch ein kleiner, aber vorzüglich erhaltener Schwamm an, den ich weiter unten unter der neuen Bezeichnung K. uralica beschreiben werde.

Kazania elegantissima Stuckenberg.
Taf. II, Fig. 11-12, Taf. V, Fig. 2--3.
1805. Kazania elegantissima Stuckenberg. Korallen und Bryozoen der Steinkohlenablagerungen des Ural und des Timan, pag. 183, Taf. IV. Fig 2.

Die ausseren Merkmale dieser Species sind von A. Stuckenberg mit grosser Vollständigkeit beschrieben worden; was dagegen die Structur der einzelnen Skeletfasern betrifft, so ist es mir gelungen, an den Exemplaren von der Ufa (woher die Originale A. Stuckenbergs stammen) unzweifelhafte Lithistidennadeln zu entdecken, die keinen Zweifel darüber aufkommen lassen, dass die Voraussetzung, die besprochene Art gehörte zu den Anthozoen, irrig ist.

Die zu dieser Species gehörigen Spongien besitzen ellipsoide oder halbellipsoide. Form mit flacher oder abgeplatteter Basis. Beim grössten Exemplar, das A. Stuckenberg in Händen ge-
habt hat, mass die grosse Axe 130 mm ., während seine Höhe 80 mm . erreichte. Ein grosses Exemplar, das L. Lutugin in den Kohlenkalken am FI. Nem gefunden lat, misst in der grossen Axe 125 mm ., in der kleinen Axe und in der Höhe 60 mm ..

Die cylindrischen Fasern gehen ron einem Centrum aus, das in der Mitte der abgeplatteten Basis liegt. In der Rich-

Fig. 4. Kazania elegantissima stuch. Ein Theil der äusseren Oberfläche in natürlicher Grösse. Fl. Ufa, gegenüber dem Dorf Tschigwinzewa.
tung nach der Peripherie hin verzweigen sich die Radialfasern dichotomisch und gehen schliesslich in einen mehr oder weniger zugespitzten Kegel aus. Ihr Durchmesser beträgt bis 3 mm ., der Abstand zwischen ihnen schwankit zwischen 2 bis 5 mm . Ihre Verbindung miteinander wird in ihrer ganzen Lange durch ebenfalls cylindrische Querfasern bewirkt, die quirlformig gestellt sind und nach allen Richtungen verlaufen. Diese haben im Durchmesser nicht über 1 mm ., verästeln sich häufig, stossen
mit anderen zusammen und bringen im Allgemeinen ein maschiges Netz zu Wege.

Dieser der Beschreibung A. Stuckenbergs entnommenen Charakteristik ist noch hinzuzufügen, dass die Faserdurchschnitte auf allen von mir hergestellten Praeparaten das Vorhandensein von Lithistidenspicula erkennen lassen. An den von A. Stuckenberg gelieferten Exemplaren von der Ufa ist ein beträchtlicher Theil der Nadeln entweder gänzlich zersetzt und

Fig. 5. Kazania elegantissima Stuck. Durchschnitt einer Faser. Der grösste Theil der Skeletelemente ist zerstört und durch Chalcedon ersetzt. Die einzelnen Spicula sind durch Eisenoxyd braun gefärbt. 24 Mal vergr. Fl. Ufa, gegenüber dem Dorfe Tschigwinzewa.

Fig. 6. Kazania elegantissima Stuck. Ein Theil einer Skeletfaser mit stark angefressenen Spicula. 75 Mal vergr. Fl. Ufa gegenüber dem Dorfe Tschigwinzewa.
in Chalcedonsubstanz umgewandelt oder in stark zerfressener Gestalt erhalten. Stellenweise indessen finden sich Spicula in solchem Erhaltungszustande, dass sich von ihnen mikrophotographische Aufnahmen anfertigen liessen (Textabbildungen Fig. 5 u 6).

An den Praeparaten des Exemplars vom Fl. Nem befinden sich die Skeletelemente in vollkommnerem Erhaltungszustande und nicht selten kann man ganz dichte zusammenhängende Anhäu-
fungen von Nadeln erblicken, die die Fasern bilden (Fig. 7 im Text). Bei manchen von ihnen zeigt sich deutlich ein Längscanal.

Wie es sich aus den beigefuigten Abbildungen (Taf. II, Fig. 11-12, Textabb. Fig. 8 u. 9) ergiebt, ist der Gesammthabitus der Spicula recht ungleich: die einen von ilnen sind langgestreckt mit schwacher Entwicklung der Seitenauswüchse und Höckerchen, zeigen aber an den Enden nicht selten eine gabelförmige Verzweigung, die anderen sind relativ dicker, haben mehr Auswüchse und erinnern an den Charakter der Spicula von Pemmat. artiensis. Die Länge der von mir gemessenen Lithistidennadeln schwankt zwischen $0,48 \mathrm{~mm}$. und $0,64 \mathrm{~mm}$. Neben diesen Skeletelementen lassen sich in den Fasern der nämlichen Exemplare der besprochenen Species vom Ural

Fig. 7. Kazanáa elegantissima Stuck. Verticalschnitt durch einen Theil des Skelets. der die Anhäufung der Spicula in den Fasern erkennen lässt. :3 Mal vergr. Fl. Nemj. und von der Nem auclı noch spindelförmige Spicula mit zugespitzten Enden beobachten, die sich in der Axialpartie der Fasern ihrer Langsrichtung entsprechend reihenweise gruppiren. Die Länge dieser spindelförmigen Nadeln übertrifft die der Lithistidenspicula um ein Beträchtliches, demn sie schwankt
zwischen $0,8 \mathrm{~mm}$. und $1,12 \mathrm{~mm}$., während ihre Dicke nicht über $0,06-0,07 \mathrm{~mm}$. beträgt.

Ihrem äusseren Aussehn nach erinnert K. eiegantissima lebhaft an L'emmatites artiensis, lässt sich indess von diesem leicht durch die grössere Dicko ihrer radialen Skeletfasern und dureh die complicirtere Verästelung der querlaufenden Verbindungsfasern unterscheiden.

Fig. 8. Kazania plegantissima Stuck. Längsschnitt durch eine Faser. In der Centralpartic spindelförmige und Lithistidennadeln. im peripheren Theil ausschliesslich Lithistidennadeln. 24 Mal vergrössert. Fl. Nem.

Fig. 9. Kazania elegantissima Stuck. Längsschnitt durch eine Faser, die fast ausschliesslich aus Lithistidemnadeln besteht. 24 Mal vergrössert. Fl. Nem.

Kazania elegantissima ist von A. Stuckenberg im oberen Kohlenkalk am rechten Ufer der Ufa gegenüber dem Dorfe Tschigwinzewa unterhalb der Stadt Krasnoufimsk gefunden worden. Darnach zu urtheilen, dass nach Behandlung des Schwammes mit Salzsäure in den Hohlraumen zwischen den Fasern blos mit Hilfe einer Loupe eine Masse von Monactinellidemnadeln sichtbar sind, muss man annehmen, der Kohlenkalk an der Ufa müsse gleichfalls eine Fülle von solchen einschliessen. Eben solch cine Menge von Monactinellidennadeln findet sich auch im Kohlenkalk an der Nem zwischen ihren Zuflussen Yn und Siss-ju, woher die vorzüglich erhaltene K. clegan-
tissima stammt, die von L. Lutugin erbeutet worden ist und im Muscum des Gcologischen Comités aufbewahrt wird.

Kazania uralica n. sp.
Taf. II, Fig. 14. 15, 22; Taf. IIl, Fig 1; Taf. IV, Fig. 5.
Diese Species zeichnet sich durch ein überaus complicirtes Skelet aus, das mir gelungen ist durch Behandlung mit Salzsiiure aus dem ungebenden Gestein herauszupraepariren. Seinem Gesammttypus nach ist ilh Skeletbau der nämliche, wie bei K. elegantissima. Von einem Centrum aus breiten sich strahlenförmig die radialen cylindrischen Skeletfasern aus, die sich nicht selten verzweigen und sich nach dem Ende hin zu einem abgestumpften Kegel oder zitzenförmig verjüngen. Von den Radialfasern laufen quirlförmig zahlreiche sehr zarte Querfasern aus, deren Stärke zwischen $0,2 \mathrm{~mm}$. und $0,3 \mathrm{~mm}$. schwankt. Diese verzweigen sich mannigfaltig in den verschiedensten Richtungen, vercinigen sich mit einander und so kommt ein dem feinsten Spitzengewebe gleichendes Netz zu Stande. Da sich auch in verticaler Richtung Sprossen entwickeln, werden dadurch dünne Fasern erzeugt, die den radialen Hauptfasern parallel laufen und das Netz im Vergleiche mit dem von K. elegantissima complicirter erscheinen lassen.

Die Structur der Fasern tritt an den mit Salzsäure behandelten Skeleten gut hervor und unter dem Mikroskop kann man darạn bei reflectirtem Licht Reihen parallel angeordneter Lithistidenspicula beobachten (Textabbildung Fig. 10). Doch noch besser gelingt es, die Gestalt der Spicula an Praeparaten zur Anschauung zu bringen, die die Fasern im Längsschnitte zeigen. An den mitgetheilten Abbildungen kann man die nämliche Veränderlichkeit in der Gestalt der Nadeln constatiren, wie bei K. elegantissima, denn man kann sowohl langgestreckte Spicula mit
wenigen Auswüchsen und einer Gabelung an Ende erblicken, als auch complicirtere Formen mit zahlreichen Ausläufern und Höckern. In den axialen Partien der Nadeln entwickeln sich, wie die nach einer Photographie hergestellte Textabbildung Fig. 11 zeigt, Bündel ron spindelförmigen Nadeln rom nämlichen Typus, wie bei K. elegantissima. Die Maximallànge der Lithistidennadeln beträgt etwa $0,6 \mathrm{~mm}$., während die der spindelförmigen bei einer Dicke von $0,048 \mathrm{~mm} .0,8 \mathrm{~mm}$. erreicht.

Fig. 10. Kazania uralica Tschern. Eine der Radialfasern mit den davon ausgehenden Querfasern. Bei reflectirtem Licht abgebildet. ? Mal vergrössert. Fl. Ascha.

Fig. 11. Kazania uralica Tschern. Langsschnitt einer Skeletfaser. In der Centralpartie Bündel von spindelförmigen Nadeln, umgeben von Lithistidennadeln. Vergr. 24 mal. Fl. Ascha.

Der beschriehene Schwamm ist von mir im kieselhaltigen Artinsk-Mergel am Flusse Ascha gefunden worden.

Haplistion Young and Young, emend. Hinde.
1877. Haplistion Young and Young. Amu. and Mag. of Nat. Hist. Ser. IV, vol. XX, pag. 428.
1887. Haplistion Hinde. British palaeozoic Sponges, pag. 146-148, pl. V, fig. $1,2$.

Oben ist von der grossen Aehnlichkeit in der ausseren Form des Skelets der von A. Stuckenberg unter der Benennung

Kazania Gruenewaldti beschriebenen Spongie mit'Haplistion vermiculatum Carter die Rede gewesen und dabei wurde gesagt, es sei sehr wahrscheinlich, dass unsere uralische Art der Gattung. Haplistion angehöre. Noch mehr bestärkt mich in dieser Ueberzeugung eine ähnliche Uebereinstimmung einer anderen Form, die ich als Haplistion orientale beschreibe, mit H. Armstrongi Young and Young, einer Form, die als Typus der Gattung Haplistion dient. Als die Herren Young diese Species beschrieben, liessen sie die Frage ihrer Zugehörigkeit zu den Kieselschwämmen offen. Bei der Emendation ihrer Diagnose beschrieb Hinde unter Beifügung von Abbildungen zwei Arten (H. Armstrongi Young and Young und H. veriniculatum Carter), wobei er die Einschränkung hinzusetzte, den inneren Bau der Skeletfasern zu boobachten sei ihm nicht gelungen und man könne auf den Charakter der Nadeln der Gattung Haplistion nur aus den verwitterten Oberffächenfasern einen Schluss ziehen, die mit unregelmässig gruppirten Monactinellidenspicula bedeckt seien. Bei keiner einzigen dem besprochenen Genus angehörigen Species Englands haben sich in den Faserdurchschnitten Spuren von Nadeln nachweisen lassen: augenscheinlich haben sie sich zersetzt und das Material für die weisse Kieselsubstan\% hergegeben, die die Fasern ausfült.

Dieser Charakter in der Anordnung der Monactinellidennadeln an der Oberfläche der Fasern erinnert ungemein an das, was wir bei unseren Vertretern der Gattungen Pemmatites, Kazania und Haplistion beobachtet haben, deren Skelet dessen ungcachtet zweifellos aus Lithistidennadeln besteht. Hätten diese sich nicht erhalten, so hätten wir offenbar cbenso viel Grund, wie Hinde, unsere Spongien den Monactinelliden zuzuweisen. Angesichts dieser Umstände halte ich es für vollkommen wahrscheinlich, dass die Vertreter des Genus Haplistion aus England den Lithistidenspongien angehören und, bevor diese Frage
auf Grund directer Beolachtungen hinsichtlich ihres Faserbaues zum endgiltigen Austrag gekommen ist, glaube ich nicht, für die unten beschriebenen Formen aus Russland eine neue Genusbe\%eichnung schaffen zu müssen und reihe sie in bedingter Weise der Gattung Haplistion Young and Young an.

Die Diagnose des Genus Haplistion, die unten beschriebenen Formen vom Ural mit inbegriffen, ist folgende:

Schwämme eiförmig, fladenförmig oder in Gestalt unregelmässig sich verzweigender Scheiben, ohne irgend eine Spur von Anheftung an fremde Körper. Das Skelet ist aus fest miteinander rerflochtenen Fasern zusammengesetzt, von denen die einen nach der Peripherie gerichtet sind und in kleine stumpf kegel- oder zitzenförmig gestaltete Höcker auslaufen, während die anderen sic in der Querrichtung mit einander zu einem soliden Skelet verknüpfen. Die Dicke dieser transrersalen Skeletbestandtheile kommt entweder der der Hauptfasern gleich oder sie ist um die Hälfte geringer. Die Längsschnitte der Fasern von H. Gruenewaldti, sowie auch der neuen von mir als H. orientale bescluriebenen Art offenbaren den Charakter von Lithistidennadeln, die der Richtung der Fasern entsprechend parallel gelagert sind. In ihrem Gesammttypus gleichen sie den Skeletelementen von Pemmatites, doch unterscheiden sie sich häufig von diesen durch Gliederung in Auswüchse und IIöcker. Beispiele solcher stark gegliederter Nadeln sind auf Taf. II, Fig. 17-20; Taf. III, Fig. 2 abgebildet.

In den unteren Carbonablagerungen Englands sind Vertreter des Genus Haplistion nur aus Ayrshire bekannt. Die unten beschriebenen Formen vom Ural und vom Timan stammen aus oberen Carbon- und Artinsk-Ablagerungen.

Haplistion (?) orientale n. sp.
Taf. II, Fig. 23; Taf. III. Fig. 2; Taf. IV, Fig. 6-7.
Spongie von kleinen Dimensionen und umegelmássig oraler oder fladenförmiger Gestalt. Das Skelet besteht aus mit einander verflochtenen Ruthen, die sich beständig krümmen und ihre Richtung wechseln, wobei sie unter einander durch zahlreiche Querfasern verbunden sind, deren Dicke der der Hauptfasern nahezu gleichkommt. Die Anzahl solcher Quersprossen oder Verbindungsfasern, die an ein und demselben Schnittpunkte von einer Hauptfaser ausgehen, beträgt zwei bis drei. Die Fascrı sind sehr dicht gedrangt, denn der Alstand zwischen ihnen misst nicht über $1,3 \mathrm{~mm}$. Nicht selten treten im Uebrigen die Fasern in directe Berührung mit einander und in diesem Falle gewährt nur die Zahl der zitzenförmigen Vorsjrünge, in die sie an der Oberflache auslaufen, einen Anhaltspunkt zur Bestimmung ihrer Menge. Bei der Behandlung der Oberflache mit Salzsäure kommen stumpf zugespitzte zitzenförmige Höckerchen zum Vorschein, die ihr ein chagrinarliges Ausschen verleiben (Taf. IV, Fig. 7); ist aber alles Gestein entfernt, das die Zwischenraume zwischen den Fasern ausfült, so tritt uns das Skelet in all seinen Details vor Augen und lässt ein complicirtes Flechtwerk erkennen, ähnlich, wie es Taf. IV, Fig. 6 abgebildet zeigt. Die Dicke der einzelnen Langs- und Querfasern betrigg 0,5 bis $0,6 \mathrm{~mm}$.. Im Durchschnitt der Fasern und Verbindungstheile erblicken wir mit einander verflochten zahlreiche Lithistidennadeln, während die dunkle Substanz, die die Zwischenräume ausfüllt, aus Gesteinsmasse mit darin eingebetteten Monactinellidennadeln besteht (Taf. II, Fig. 23). Vom Charakter der Skeletelemente geben unsere Abbildungen (Taf. II, Fig. 23; Taf. III, Fig. 2) eine deutliche Vorstellung. Sie
bestehen aus einem axialen Schafte, der mit zahlreichen Warzchen besetzt ist und mohr oder weniger complicirte Auswüchse aussendet. Die Länge der Spicula übersteigt nicht $0,5 \mathrm{~mm}$.

In seinem ausseren Ansehen und in der Anordnung der Skeletfasern offenbart das auf Taf. IV, Fig. 6 dargestellte Exemplar von Haplistion orientale eine frappante Aehnlichkeit mit I. Armstrongi Young and Young, das von Hinde ${ }^{1}$) in seiner Arbeit über die britischen fossilen Spongien vorzüglich wiedergegeben ist. Als cinziges ausserliches Unterscheidungsmerkmal ist die grössere Dicke der Skeletfasern bei den uraiischen Exemplaren zu betrachten, die den Faserdurchmesser von H. Armstrongi uin das Doppelte übertrifft. Was aber den inneren Bau der Fasern betrifft, stossen wir auf wesentliche Abweichungen. Nach Hinde gehört H. Armstrongi zur Ordnung der Monactinelliden, der von uns beschriebene Schwamm dagegen zweifellos zu den Lithistiden. Doch ist dies in sofern einzuschranken, als die Spicula von H. Armstrongi nach Hindes Beschreibung blos an der verwitterten Oberflache der Fasern entdeckt worden sind, während sie in Durchschnitten eine homogene weisse Kieselmasse ohne irgend welche Spuren ron Nadeln bilden. Wie schon oben erwähnt, liegt grosse Wahrscheinlichkeit vor, dass die Monactinellidenspicula an der Oberffache als Fremdkörper aufzufassen sind, die das aus Lithistidennadeln zusammengesetzte Skelet äusserlich überkleiden, ähnlich, wie es sich an den von uns beschriebenen Carbon- und ArtinskSpongien beobachten laisst.

In Allgemeinen stimmt die Anordnung der Fasern und der Charakter der Spicula von H.(?) orientale vielfach mit H.(?) Gruenewaldti Stuck. überein, doch lässt sich jene Species leicht nach ibren dünneren Skeletfasern, sowie nach dem Fehlen einer

[^7]Differenz in der Dicke der Hauptfasern und der von ihnen ausgehenden Verbindungsfasern unterscheiden: bei H. (?) Gruenewaldti sind letztere zweimal dünner als die Hauptfasern.
H. (?) orientale ist von mir auf dem südlichen Ural, in Artinsk-Mergel-Brüchen am Flusse Ascha gefunden worden.

Haplistion(?) Gruenewaldti Stuckenberg.
Taf. II, Fig. 17---21; Taf. V, Fig. 1.
1895. Kazania Gruenewaldti Stuckenberg. Die Korallen und die Bryozoen der Steinkohlenablagerungen des Ural und des Timan, pag. 184, Taf. IV, Fig. 3.

Die äusseren Merkmale dieser Species sind von A. Stuckenberg in ziemlicher Vollständigkeit beschrieben worden und stellen sich folgendermassen dar:

Schwämme von unbeträchtlicher Grösse und wechselnder Form, unregelmässig rundlich, flach oder nierenförmig. Die kurzen, cylindrischen Skeletfasern sind dabei gedrängt, gekrümmt und verlaufen von mehreren Centralpunkten nach der Peripherie. Der Durchmesser der Fasern beträgt etwa 1 mm .. Von diesen Fasern gehen in ihrer ganzen Länge quirlförmig Quersfasern aus und verknüpfen sie zu einem festen Skelet. Ihr Durchmesser beträgt etwa $0,5 \mathrm{~mm}$. oder etwas mehr. Der Abstand zwischen den Hauptfasern misst 1,5 bis $2,3 \mathrm{~mm}$., doch stellenweise nähern sie sich noch mehr und verschmelzen mit einander. Dann kann man nur nach den zwei zitzenförmigen oder stumpfkonischen Enden, in die die Hauptfasern im Allgemeinen auslaufen, auf ihre Anzahl einen Schluss ziehen. Die Zwischenräume zwischen den Fasern sind mit Kalkstein ausgefüllt, worin zahlreiche Monactinellidennadeln eingebettet sind, die nach Behandlung der Exemplare mit Salzsäure unter der Loupe gut erkennbar sind. Stellenweise umkleiden sie die Fasern in unregelmässiger Anordnung.

Die Faserın selbst stellen gegenwärtig Kieselabgüsse dar, innerhalb deren nur hier und da deutlich Spicula erhalten sind. Im Gegensatze zu der schönen Erhaltung der Nadeln in den Fasern der Artinsk-Spongien ist bei H.(?) Gruenewaldti aus den Carbonablagerungen die Oberflache der Spicula zerfressen, ihre Enden verschwimmen nicht selten in der Chalcedonsubstanz, aus der die Fasern bestehen. In Folge dieser Umstände haben die Details der Nadelumrisse der uralischen Vertreter nicht reproducirt werden können. Unvergleichlich besser haben sich dagegen die Spicula des Exemplars vom Flusse Nem im Timan erhalten und diese habe ich auf Taf. II abgebildet.

Der Gesammttypus der Skeletelemente, die mit zahlreichen Auswüchsen und Höckern ausgestattet sind, ist dem der Spicula von H. (?) orientale ahnlich. Aus den ron mir mitgetheilten Abbildungen (Taf. II, Fig. 17-21) ist es ersichtlich, dass ihre Gestalt an den verschiedenen Skeletpartien ein und desselben Exemplars ziemlich mannigfaltig ist und dass auch ihre Dimensionen ebenso in ziemlich weiten Grenzen schwanken, ohne indess die Länge von $0,48 \mathrm{~mm}$. zu übersteigen.

Oben ist darauf hingewiesen worden, dass H.(?) Gruenewaldti stark an H. vermiculatum Carter ${ }^{1}$) aus den unteren Carbonablagerungen von Ayrshire erinnert und hinsichtlich des Unterschiedes in ihrem inneren Bau lässt sich das wiederholen, was schon früher in Beziehung auf H.(?) orientale und H. (?) Armstrongi gesagt worden ist, und nur nochmals die grosse Wahrscheinlichkeit hervorheben, dass H. vermiculatum zu den Lithistiden gehört, und nicht, wie Hinde annahm, zu den

[^8]Monactinelliden. Die Originale A. Stuckenbergs sind im oberen Kohlenkalk am Flusse Ufa, gegenüber dem Dorfe Tschigwinzewa unterhalb der Stadt Krasnoufimsk gefunden worden. Nach den Angaben des nämlichen Gelehrten trifft man H. (?) Gruenewaldti in den Kalken desselben Alters in der Limgegend von Sterlitamak an (Berg Tratau). Auf dem südlichen Ausläufer des Timan, am Flusse Nem ist H.(?) Grueneraldti ron L. Lutugin zwischen den Flüsschen Yn und Sis-ju im nämlichen Kalksteine, wie auch Kazania elegantissima gefunden worden.

Tetracladina.

Stuckenbergia n. gen.
1895. Kazania Stuckenberg (part.). Die Korallen und die Bryozoen der Steinkohlenablagerungen des Tral und des Timan, pag. 183.

Oben habe ich auseindergesetzt, dass von den drei von A. Stuckenberg unter dem Gattungsnamen Kazania beschriebenen Formen zwei dem Subgenus der Rhizomorina angehören, während die dritte (K. ufensis) Spicula besitzt, die nach dem Typus der Tetracladinen gestaltet sind. Im Uebrigen weicht diese Form auch in ihren ausseren Merkmalen so weit von den Vertretern des Genus Kazamia ab, dass sie dieser unter keinen Umständen hätte zugezählt werden dürfen. Als einziges gemeinsames Merkmal, ron dem sich A. Stuckenberg hat leiten lassen, ist die quirlförmige Anordnung der Querfasern bei allen Formen zu betrachten, die unter dem Gattungsnamen Kazania beschrieben worden sind. Allein wie wir im weiteren Verlaufe sehen werden, ist der Entwicklungsmodus dieser Verbindungsstücke oder Quersprossen bei \boldsymbol{K}. (Stuckenbergia) ufensis ganz verschieden ron dem, den wir bei \boldsymbol{K}. (Haplistion) Gruenewaldti
und K. elegantissima beobachtet haben. Im Hinblick darauf scheide ich K. ufensis als eigenes Genus aus, dem ich den Namen Stuckenbergia zu geben proponire. Zur Gattung Stuckenbergia aber gehört ohne Zweifel eine Spongie, die ich im Artinsk-Mergel am Fl. Ui-Teljak (Nebenfluss des Sim) gefunden habe und deren vorzüglich erhaltenes Skelet die Möglichkeit gewährt, den Bau der Fasern mit grösserer Deutlichkeit zu erkennen, als bei Stuckenbergia iffensis.

Das Skelet des Schwammes ist, wenn es mit Salzsäure behandelt worden ist, aus sehr feinen Längsfasern zusamengesctzt, die sehr dicht aneinander gedrängt sind und eine kurze Strecke parallel laufen, im Allgemeinen aber facherförmig divergiren und nach ciner Biegung in normaler Richtung der Peripherie zustreben. Von diesen Längsruthen gehen 4-6 dünnere Querstäbchen aus und wenden sich den benachbarten Längsruthen zu.

Auf den Längsschnitten erblickt man relativ breite Canäle, die mit Quarz incrustirt sind und den Aporrhysen oder Ausführungscanälen entsprechen.

Betrachten wir die Schliffe, die in der Querrichtung und parallel den Längsfasern angefertigt sind, und untersuchen wir vorsichtig mit der Nadel losgelöste Theile des Skelets unter den Mikroskop, so tritt es klar zu Tage, dass wir es mit Formen der Spongiengruppe zu thun haben, für die Rauff ${ }^{1}$) die Bezeichnung Orchocladinae in Vorschlag gebracht hat.

Die Spicula dieser Spongien, die an beiden Enden Auswüchse oder Clonen tragen, bestehen aus einem Rhabdom und gruppiren sich der Art im Skelet, dass die Rhabdome sich in nahezu paralleler Lage und gleichzeitig perpendiculär zur Richtung der Längsfasern und Canäle befinden. Somit enspricht jede Quẹrfaser im Skelet einem Rhabdom des Dendroclones. Was hingegen die Längsfasern

[^9]betrifft so erfolgt ihre Entwicklung durch Zusammentreffen und Verschmelzung der erwalnten Clonen, wie das von Rauff bei seiner Beschreibung der zur Gruppe der Orchocladinen gehörigen Familie der Aulocopiden vortrefflich auseinander gesetzt worden ist. Man braucht blos die Abbildungen der Längs- und Querschnitte durch das Skelet unserer Schwämone mit den Darstellungen zu vergleichen, die Rauff von den Repraesentanten der Familie der Aulocopiden gegeben hat, um sich von der vollen Analogie im Bau der Skelete beider zu überzeugen. Die Gestalt der einzelnen Spicula unserer Spongien kommt den Dendroclonen ziemlich nahe, wie sie Rauff auf Taf. XXIII seiner oben citirten Monographie abgebildet hat.

Noch anschaulicher offenbart sich diese Analogie, wenn wir die Pracparate von Stuckenbergia mit dem Skelet ron Aulocopium vergleichen, das ich aus mir rom Akademiker Fr. Schmidt gelieferten Exemplaren herauspraeparint habe. Aus dieser Vergleichung geht es mit roller Klarheit hervor, dass die Spicula von Aulocopium relativ kïrzer und dicker sind, als bei der von uns beschriebenen Gattung Stuckenbergia, und dass die Verzweigung der Arme bei jener complicirter ist, als bei dieser.

Das Ergebnis all unserer Auseinandersetzangen ist, dass nach dem Bau des Skelets und der Spicula das Genus Stuckenbergia am meisten an die Vertreter von Aulocopium erinnert, von denen es sich indess durch das Fehlen des Paragasters und durch das abweichende Canalsystem leicht unterscheiden lässt. Gleicher Massen stehen die ron mir beschriebenen Vertreter der Gattung Stuckenbergia der Climacospongia radiata Hinde nahe, soweit sich nach der von Ulrich ${ }^{1}$) gelieferten Beschreibung und Abbildung urtheilen lässt.
${ }^{1}$) Palaeontology of Illinois, Vol. VIII. Part. II. E. O. Ulrich, American palaeozoic Sponges, pag. 223--224.

Stuckenbergia ufensis Stuckenberg.

1895. Kazania ufimiana Stuckenberg. Die Korallen und die Bryozoen der Steinkohlenablagerungen des . Ural und des Timan, pag. 184. Taf XVIII, Fig. 4.

Im Allgemeinen liat der Schwamm die Gestalt einer unregelmässigen starken Scheibe, an einer Seite stark verdickt und abgerundet. Nach oben zu erhalt dieser verdickte Rand einen

Fig. 12. Stuckenbergia ufensis Stuck. Gesammtansicht des Schwammes in natürlicher Grösse. Die rechte Seite ist verdickt und abgerundet. Fl. Ufa gegeniiber dem Dorfe Tschigwinzewa.
rundlichen Querschnitt und der ganze Schwamm verjüngt sich augenscheinlich. Das Paragaster fehlt.

Die nicht mit Säure behandelte Oberfläche zeigt sich mit
oiner glatten leicht gerunzelten Membran bedeckt, die stellenweise undicht mit kleinen warzenartigen Erhöhungen besetzt ist. In dieser Deckschicht, die aus Quarz- und Calcitkörnern besteht, habe ich keinerlei Körperchen entdecken können, die an Spicula erinnern würden. Entfernt man diesen Ueberzug, so tritt sofort der Bau des Skelets klar hervor.

Fig. 13. Stuckenlergia ufensis Stuck. Längsschnitt des Skelets, das aus Reihen von Ruthen mit Querfasern besteht. Die Aporrhysen mit Quarz incrustirt. Vergr. 3 mal. Fl. Ufa gegenüber dem Dorfe Tschigwinzewa.

Auf den Längsschnitten offenbaren sich Ausführungscanäle oder Aporrhysen, deren Richtung der der Skeletfasern entspricht und die von ungleicher Dicke sind. Da der untere Theil der Spongie sich nicht erhalten hat, bleibt die Lage des Skeletradianten ungewiss.

Das aus Längsfasern und Verbindungsstücken bestehende Skelet ist aus Dendroclonen-Spicula nach dem Typus zusammengesetzt, wie er oben bei der Beschreibung des Genus Stuckenbergia geschildert worden ist. Die Längsruthen stehen dicht gedrängt und, wie schon Stuckenberg bemerkt hat, übersteigt ihr Abstand $0,25 \mathrm{~mm}$. nicht. Der Länge nach krümmen sich die Fasern allmählich und nehmen nach der Peripherie hin in Folge des Auftauchens neuer Spiculenreihen zwischen den ursprüng-

Fig. 14. Stuckenbergia ufensis Stuck. Seitenansicht der Skeletfasern, die aus Clonen bestehen und den Rhabdomen entsprechende Querfasern tragen. Vergr. 24 mal. Fl. Ufa gegenüber dem Dorfe Tschigwinzewa.

Fig. 15. Stuckenbergia ufensis Stuck. Ansicht der Skeletfasern und der von ihnen ausgehenden Quersfasern im Plan. Vergr. 24 mal. FI. Ufa. gegenüber dem Dorfe Tschigwinzewa.
lichen an Zahl zu. In der Nähe der Canäle sind die Krümmungen der sie umziehenden Fasern schärfer ausgeprägt. Die Querbrüche des Skelets ergeben eine sehr zierliche Zeichnung, ein feines, aus Sternchen bestehendes Netz. Der Durchmesser der Centralpartie eines Sternchens, der dem Diameter der Längsfasern des Skelets entspricht, beträgt etwa $0,27 \mathrm{~mm}$., die Dicke der davon ausgehenden Strahlen, der Rhábdome der Skeletnadeln, etwa 0,06 , ihre Länge $0,35 \mathrm{~mm}$..

- 41 -

In Querschliffen ist das ganze Skelet aus Aufblähungen von hell gelbbrauner Farbe zusammengesetzt, die durch dünne Bälkchen von der nämlichen Farbe unter einander verbunden sind und augenscheinlich aus secundär infiltrirter Kieselerde bestehen (Textfigur 16). Hier haben wir das Resultat des successiven Zerzetzungsprocesses der ursprünglichen Kieselsubstanz des Skelets vor uns, seiner Ersetzung durch Calcit und einer neuen Infiltration mit hellbraun gefärbter Kieselsubstanz, ganz analog dem Bilde von der Umwandlung des Spongienskelets, das Rauff in seiner Monographie in allen Einzelnheiten entwirft und mit vielen Abbildungen illustrirt.

Stuckenbergia ufensis ist in Gesellschaft von Kazania elegantissima und Haplistion (?) Gruenewaldti im oberen Kohlenkalk am Flusse Ufa, unterhalb Krasnoufimsk gegenüber dem Dorfe Tschigwinzewa gefunden worden.

Stuckenbergia artiensis n. sp.
Taf. V, Fig. 4-6.
Mir liegt nur ein Exemplar dieser Form vor. Ein Theil davon ragte aus der verwitterten Oberflache des kieseligen Mergels hervor, das Uebrige gelang mir durch Behandlung mit Salzsäure herauszupraepariren. Die Gesammtgestalt erinnert an einen Wurzelstock, der in der einen Richtung zusammenge-
drück1 ist und sich unten in mehrere kurze Ausläufer theilt. Die Längsschnitte zeigen das Vorhandensein von Aporrlyseen odel Ausführungscanälen, die entweder unmittelbar an der Peripherie münden oder in unregelmässige breite Vertiefungen an der Oberseite des Schwammes ausgehen. An den nämlichen Schnitten,

Fig. 17. Stuchenbergia artiensis Tschern. Längsschnitt einer Skeletpartie. die in Reihen von Ruthen und Querfasern zerfällt. Die Fasern kriimmen sich. indem sie die Aporrhysen umgehen. Vergr. 2 mal. Ui-Teljak, Nebentluss des Sim.
aber auch an der mit Säure behandelten Oberfläche ist es sichtbar, dass das Skelet aus einer ganzen Reihe von Ruthen zusammengesetzt ist, die durch Querfasern mit einander verknüpft sind, bei der Untersuchung unter der Loupe aber sind deutlich Dendroclonen-Spicula erkennbar, deren Rhabdome dir Querfasern bilden, wälrend die verzweigten Clonen zusammenstossen und sich zu den Längsfasern des Skelets gruppiren. In dieser Hinsicht erinnert das Skelet von Stuckenbergiu artiensis sehr an das von St. ufensis, von dem es sich durch
die relativ dünneren und längeren Spicula unterscheidet. Abgesehen davon zeichnet sich die Vertheilung der Längsruthen bei St. ufensis durch grössere Regelmässigkeit aus, als bei St. artiensis, deren Fasersystem der complicirteren äusseren Gestalt entsprechend in mehrere Bündel zerfällt, die gleichsam von mehreren Centralpunkten ausgehen, wobei man innerhalb jedes Bündels häufig neue Spiculenreihen zwischen den ursprünglichen auftauchen sieht. Die Lange der einzelnen Spicula beträgt $0,7 \mathrm{~mm}$., die Dicke des Rhabdoms $0,05 \mathrm{~mm}$., die Dicke der durch das Zusammenstossen der Clonen gebildeten Längsruthen 0,29--

Fig. 18. Stuckenberg. artiensis Tschern. Ein von dem mit Salzsäure behandelten Skelet abgelöster Theil. Auf der Zeichnung sind die einzelnen Theile der Rhabdome und ihre Verzweigung in Clonen gut sichtbar. Vergr. 20 mal. lii-Teljak, Nebenfluss des Sim. $0,32 \mathrm{~mm}$.

Das beschriebene Exemplar von Stuckenbergia artiensis ist im kieseligen Artinsk-Mergel am Ui-Teljak (Nebenfluss des Sim), etwa 10 Werst ron seiner Mündung, in Gesellschaft von Pemmatites artiensis gefunden worden.

Die von mir oben angedeutete Aehnlichkeit einiger uralischer Schwämme mit denen von Spitzbergen giebt mir Veranlassung, cinige Worte über die Beziehungen zwischen den oberen palaeozoischen Ablagerungen Russlands und Spitzbergens zu äussern, denn diese Frage kann bisher noch bei Weitem nicht als gelöst angesehen werden. Da ich die Absicht habe, diese Wechselbeziehungen in einer speciellen Arbeit zu untersuchen, in der die
oberen palaeozoischen Ablagerungen Russlands mit den homotaxalen Sedimenten anderer Länder verglichen werden sollen, will ich hier nur in Kürze die Daten mittheilen, deren man sich gegenwärtig als Richtschnur bedienen kann.

Die ersten Angaben über das Vorkommen von Permablagerungen auf Spitzbergen rühren von de Koninck ${ }^{\text {1 }}$) her,' dem das von der Robertschen Expedition am Bellsund gesammelte Material vorlag. Pr. Lindström ${ }^{2}$) kam bei der Bearbeitung des von Nordenskiölds ${ }^{3}$) Expedition zusammengebrachten Materials zu dem Schluss, dass die von de Koninck angeführten permischen Formen in Gesellschaft solcher auftreten, die in anderen Gebieten den echte: Kohlenkalk charakterisiren, und auf Grund dessen sind nach Lindströms Ansicht die Spitzbergischen Ablagerungen mit einer Mischfauna mit grösserem Recht als Permo-Carbon zu bezeichnen. Nachdem Professor Toula die von der Expedition von Payer ${ }^{4}$) und Weyprecht, Wilczek und Hoefer ${ }^{5}$), sowie des Dr. Drasche ${ }^{6}$) studirt hatte, sprach er die Meinung aus, die obere Carbonfauna gehe ohne Unterbrechung in die Permfauna über, doch ist er zugleich der Ansicht, dass de Koninck nicht ohne Grund auf Spitzbergen dic Existenz unzweifelhafter Permablagerungen annimmt.

[^10]Viel werthvolle Aufklärung über die Stellung des oberen Palaeozoicums von Spitzbergen ergab die Expedition von Prof. Nathorst und dem Freiherrn de Geer, die ein immenses, gegenwärtig im Stockholmer Museum niedergelegtes Material erbeutet haben. Auf Grund der von Nathorst ${ }^{1}$) publicirten allgemeinen Resultate stellt sich die Horizontfolge der oberen palaeozoischen Ablagerungen Spitzbergens in folgender Gestalt dar:

Ueber Sandsteinschichten, die Steinkohle und vegetabilische Reste führen und von Nathorst ${ }^{2}$) dem europaeischen Kulm parallel gestellt werden, lagert eine Gesteinssuite, die aus Kalksteinen mit diesen subordinirten kleinen Kiesellagern und mächtigen linsenförmigen Gypseinschlüssen besteht und die allgeneine Bezeichnung Cyathophyllumkalk trägt.

Hierüber ruhen Gypsschichten ohne Versteinerungen, Schiefergesteine mit Resten von Bellerophon und Fenestella und sogenannter Spiriferenkalk, worin ungeachtet seiner geringen Machtigkeit (etwa 10-12 Meter) die reichste Fauna erbeutet worden ist.

Oberhalb des Spiriferenkalks liegen productusführende Kieselgesteine (Kieselkalke und Kieselschiefer), gleichfalls reich an Fossilien. In den tieferen Partien ist die Mehrzahl der von Dunikowski und Hinde beschriebnen Spongien gefunden worden.

Alle diese Ablagerungen, die bisher unter der gemeinsamen Benennung Permo-Carbon zusammengefasst worden sind, werden durch eine mächtige Schiefersuite ($140-150$ Meter) von den
${ }^{1}$) A. Nathorst. Redogörelse för den tillsammans med G. de Geer år 1882 företagna geologiska expeditionen till Spetsbergen. Bih. till K. Sv. Vet.Ak. Handl., Bd. 9, Ni 2 (1884). Siehe auch die von ihm, Dunikowski und Hinde mitgetheilten Angaben: K. Sv. Vet.-Ak. Handl. Bd. 21, Ne 1, pag. 3-4; Geol. Mag. New Series, Decade III, Vol. V, pag. 241--243.
${ }^{2}$) A. Nathorst. Zur fossilen Flora der Polarländer. K. Sv. Vet.Ak. Handl., Bd. 26, .ie 4, pag. 74-76 (1894).

Schiefern, Sandsteinen und Kalksteinen geschieden, die Lundgren ${ }^{1}$) als den zweifellos permischen Ablagerungen Europas analog geschildert hat. Ohne auf die detaillirte Vergleichung dieser letzten Sedimente einzugehen, habe ich nur einige Bemerkungen in Betreff. des Permo-Carbons ron Spitzbergen vorzubringen, wohei ich mich von den Thatsachen leiten lasse, die mir auf Grund eigener Anschauung der daher stammenden Collectionen zu Gebote stehen. Diese schöne Sammlung, die im Stockholmer Museum aufbewahrt wird, ist mir durch die Liebenswürdigkeit und Zuvorkommenheit des Professors G. Lindström für meine Zwecke zuganglich gemacht worden und manche derdort erlangteu Resultate sind so augenfällig, dass sie schon vor der vollen Bearbeitung aller ihrer Theile mitgetheilt werden können. Der Hinweis hierauf erscheint um so weniger entbehrlich, als Dr. Hinde ${ }^{2}$) bei der Untersuchung der Spongienreste führenden Gesteine Spitzhergens die Gleichaltrigkeit der Productusgesteine dieser Insel mit den Yoredale beds behauptet, die den oberen Schichten der unteren Carbonabtheilung in Russland entsprechen ${ }^{3}$). Allein bereits die Cyathophyllumkalke, worin Productus Cora d'Orb., Pr. Konincki Vern. Keys., Pr. lineatus Waag., Chonetes variolata d'Orb., Athyris Royssii L'Eveill. etc. in Fülle vorkommen, müssen juingeren Ablagerungen zugewiesen werden und ihrer Fauna nach können sie am besten mit dem Corahorizont der oberen Carbonabtheilung am Ural und Timan in eine Linie gestellt werden.

Der darüberlagernde Spiriferenkalk enthalt cine überaus reiche Brachiopodenfauna (Dielasma plica Kut., D. Moelleri

[^11]Waag., Spiriferina Saranae Vern., Spirifer Keilhavi Buch, Sp. cameratus Morton, Camarophoria plicata Kut., Rhynchopora Nikitini Tschern., Derbya regularis Waag., Chonetcs granulifera Owen, Ch. variolata d'Orb., Marginifera(?) Aagardi Toula, Productus timanicus Stuck., Pr. pseudoaculeatus Krot., Pr. porrectus Kut., Pr. boliviensis d'Orl., Pr. uralicus Tschern., Pr. multistriatus Meek., Pr. orientalis Tschern. etc.), die viel Uebereinstimmung mit der der Schwagerinenkalke des Ural und des Timan offenbart.

Endlich kann man die oberen Horizonte des Permo-Carbons von Spitzbergen--die Productus führenden Kiesel gesteineals ein Analogon der Artinsk-Ablagerungen in Russland auffassen, was dadurch bestätigt wird, dass darin, abgesehen von solchen Formen, die ihnen mit dem Schwagerinenhorizonte gemeinsam sind, auch Productus cancriniformis Tschern., Pr. postcarbonarius Tschern., Derbya senilis Phill., Spirifer alatus Schloth., Sp. fasciger Keys. und einige andere gefunden worden sind, die in der Artinsk-Stufe am Ural vorkommen.

Eine weitere Bestätigung unserer Aufstellung dürfen wir auch darin erblicken, dass in den unteren Horizonten der Productusgesteine von Spitzbergen, wie schon oben bemerkt worden ist, ähnlich, wie auch im Artinsk-Horizonte, eine Fülle ron Spongien aus dem Genus Peminatites und darunter auch solche anzutreffen sind, die dem Ural und Spitzbergen gemeinsam sindPemmatites macroporus Dun. und P. arcticus Dun..

Aus meinen Auseinandersetzungen geht es hervor, dass die Spongienreste in den oberen palaeozoischen Ablagerungen des Ural und des Timan ziemlich weit rerbreitet sind. Bisher ist von ihnen in der Litteratur lediglich deswegen nicht die Rede gewesen, weil man ihnen nicht die genügende Aufmerksamkeit zugewandt hat. Abgeselien von ganzen Skeleten sind ohne Frage in den bezeichneten Ablagerungen Russlands in manchen Schichteri

Anhäufungen von einzelnen Spongiennadeln vorhanden, inshesondere in verschiednen Kieselgesteinen, die nicht selten einc Umwandlung von Spongienschlamm ${ }^{1}$) bilden.

Um die Richtigkeit dieser Schlussfolgerung zu prüfen, habe ich eine gange Reihe von mir am Süd- und Central-Ural in verschiedenen Horizonten des oberen Palaeozoicums gesammelter Kieselgesteinsproben untersucht und habe die Existenz von Monactinellidennadeln (vom nämlichen Typus, wie die oben aus dem kieselhaltigen Mergel an der Ascha beschriebenen) an folgenden Punkten constatiren können:

In ober-devonischen Ablagerungen:

1) Am Bache Sorin-Kljutsch, der sich in die Ascha ergiesst. Hütten-Bezirk Simsk. Horizont mit Manticoceras intumescens.

In den oberen Carbon-Ablagerungen:

2) Fl. Juresan, $2^{1 / 2}$ Werst unterhalb Syroi Kalmasch. Omphalotrochus-Horizont.
3) Fl. Ufa, gegenüber Ajas. Cora-Horizont.
4) Auf der 11. Werst der Strasse nach Tastuba. CoraHorizont.
5) Auf der 14. Werst der Strasse von Aprelowa nach Kaïrowa. Cora-Horizont.
6) Fl. Ufa, unterhalb der Schafejew-Fähre. Cora-Horizont.

[^12]7) Fl. Ai, 2 Werst unterhalb der Schlucht Karagaily-Kul. Schwagerinenhorizont.
8) Fl. Ascha, $2^{1 / 2}$ Werst oberhalb Kus-Sykkan-jelga. Schwagerinenhorizont.
9) Issim-jelga (linker Zufl. d. Ufa) am Wege nach Konewo, etwa 50 Sashen vom Flussufer. Schwagerinenhorizont.
10) FI. Ufa, $1 / 2$ Werst oberhalb der Einmündung des Bugalysch. Schwagerinenhorizont.

Im Permo-Carbon:

11) Wassy-jelga (Zufluss des Gr. Ik, der in den Ai fällt) etwas oberhalb der Einmündung des Schakrali. Artinsk-Horizont.
12) Issim-jelga (linker Zufl. d. Ufa), etwa 3 Werst unterhalb der Strasse nach Konewo. Artinsk-Horizont.
13) Grosse Landstrasse von Ailina nach Tastuba, $4^{1 / 2}$ Werst von Mossegutowa. Artinsk-Horizont.
14) Neue Ansiedlung Markelowsk am Fl. Bijas, einem Nebenflusse des Saldybasch, der sich in die Ufa ergiesst. Artinsk-Horizont.
15) Sarwa (rechter Zufl. d. Saldybasch), 1 Werst unterhalb Ussakly. Artinsk-Horizont.
16) Östlich vom Dorfe Omelkowa, am Fl. Karsja, der sich in die Oka (einen Zufl. des in den Ai fallenden Ik) ergiesst. Kalk-Dolomit-Horizont.

Eine so weite Verbreitung der Spongiennadeln in verschicdenen Kieselgesteinen des Ural kann als Bestätigung für dic Berechtigung des von Hinde in seiner lebhaften Polemik mit Hull, Hardmann und Renard iiber den Ursprung der Hornsteinknollen im Mountain limestone von England und Irland eingenommenen Standpunktes dienen. Im Widerspruch gegen

Hull ${ }^{\mathbf{4}}$), Hardman ${ }^{2}$) und Renard ${ }^{3}$), die die Entstehung der Kieselgesteine auf eine Umwandlung des ursprünglichen Kalkschlammes unter der Einwirkung kieselerdereichen Wasser's zurückführten, hat Hinde ${ }^{4}$) ganz klar nachgewiesen, dass das Vorhandensein von Hornsteinen, mindestens in vielen Fälen auf Spongiennadeln beruht, die in der nämlichen Weise das Material zur Verkieselung von Gesteinen hergeben, wie die Radiolarienpanzer bei der Entstehung von Kieselschiefern und Jaspis mitgewirkt haben ${ }^{5}$).

[^13]
Erklärung der Tafeln.

Tafel I.

Fig. 1-36. Spongiennadeln, vermittelst Salzsäure aus kieseligem Mergel vom Flusse Ascha herauspraeparirt. Alle Zeichnungen sind mit Hille der Camera lucida hergestellt. Die Vergrösserung ist bei jeder einzelnen Abbildung angegeben. In Betreff der Form der Spicula s. d. Text pag. 3-6.

Tafel II.

Alle Zeichnungen sind mit Hilfe der Camera lucida hergestellt. Fig. 1-3, 5. Hexactinellidenspicula, der Oberfläche eines Skelets von Pemmatites artiensis nach Behandlung mit Salzsäure entnommen. Vergr. 110 mal . Fl. Ascha.
Fig. 4, 6. Monactinellidenspicula, der Oberfläche eines Skelets von Haplistion (?) orientale nach Behandlung mit Salzsäure entnommen. Vergr. 110 mal . Fl. Ascha.
Fig, 7-10. Spicula von Pemmatites macroporus Dun. Fig. 7 und 10 sind nach der Oberfläche eines Faserbruchs gezeichnet, Fig. 8 und 9 nach einem Praeparat. Vergr. 65 mal. Fl. Ascha.
Fig. 11-12. Spicula von Kazania elegantissima Stuck., Fig. 11 - Lithistidennadel in ihrer natürlichen Lage, Fig. 12spindelförmige Skeletnadel aus der Centralpartie einer Faser. Vergr. 55 mal. Fl. Nem.
Fig. 13, 16. Spicula von Pemmatites artiensis Tschern. Fig. 13 - nach dem mikroskopischen Praeparat einer Faser (Vergr. 40 mal.), Fig, 16-von der Oberfläche des Längsbruchs einer Faser (Vergr. 55 mal). Fl. Ui-Teljak.

Fig. 14, 15. Skeletnadeln von Kazania uralica Tschern. Vergr. 55 mal Fl. Ascha.
Fig, 17-21, Verschiedene Spiculaformen von Haplistion (?) Grueneavaldti Stuck., nach einem und demselben Praeparate. Fig 19 -ein Theil der Faser (mit Spicula) und des Canals (schattirt). Vergr. 55 mal. Fl. Nem.
Fig. 22. Zwei Skeletnadeln von Kazania uralica. Tschern. in ihrer natürlichen Lage. Vergr. 55 mal . Fl. Ascha.
Fig, 23. Theil einer Skeletfaser und cines Canals von Haplistion (?) orientale Tschern. Innerhalb der Faser Lithistidennadeln, in der den Canal ausfüllenden dunkeln Masse Monactinellidenuadeln. Vergr. 55 mal. Fl. Ascha.

Tafel III.

Fig. 1-18 sind mit Hilfe der Camera lucida hergestell.
Fig. l. Skeletnadel von Kazania uralica Tschern. Vergr. 65 mal. Fl. Ascha.
Fig. 2. Spicula von Haplistion (?) orientale 'Tschern. Vergr. 65 mal . Fl. Ascha.
Fig. 3. Skeletpartie von Pemmatites macroporus Dun. Vergr. 24 mal. Die Zeichnung ist nach der Oberfläche eines Faserbruchs bei reflectirtem Lichte gemacht. Fl. Ascha.
Fig. 4-5. Skeletpartie von Stuckenbergia artiensis Tschern. Fig. 4 - Seitenansicht der Skeletruthen, Fig. 5-- Ansicht eines Theiles des Skelets im Plan. Vergr. 32 mal. UiTeljak.
Fig. 6-7. Skelettheile von Stuckenbergia ufensis Stuck. Auf leiden Figuren sind die Rhabdome, die Querfasern des Skelets sichtbar, deren sich verzweigende Enden (Clonen) heim Zusammenstossen die Langsfasern bilden. Vergr. 32 mal. Fl. Ufa.

Fig. 8-11. Spicula ron Pemmatites articus Dun. nach einem Praeparat von einem Exemplar ron Axels-Ö, Spitzbergen. Vergr. 65 mal .
Fig. 12-18. Spicula von Pemmatites arcticus Dun. nach einem Praeparat ron einem von Herrn Bessonoff unter der Etiquette «Kamennyi-Log, bei Krasnoufimsk» gelieferten Exemplar. Vergr. 65 mal .
Fig. 19. Pemmatites in. sp. cf. latitubo Dun. Fig. a-von oben, b-Verticalschnitt. Nat. Grösse. FI. Ascha.
Fig. 20-21. Pemmatites arcticus Dun. Fig. 20-von oben, Fig. 21 -Verticalschnitt. Kamennyi-Log bei Krasnoufimsk. Nat. Grösse.
Fig. 22. Pemmatites macroporus Dun. Skelet mit Salzsäure praeparirt. Nat. Grösse. Fl. Ascha.

Tafel IV.

Fig, 1, 2, Pemmatites artiensis Tschern. Fig. 1-von oben, Fig. 2-das nämliche Exemplar von der entgegengesetzten Seite. Fl. Ui-Teljak. Nat. Grösse.
Fig. 3, 4. Pemmatites macroporus Dun. Fig. 3-Verticalschnitt eines kleinen Exemplars, Fig. 4--das mit Salzsäure praeparirte Skelet von oben. Fl. Ascha. Nat. Grösse.
Fig. 5. Kazania uralica Tscherı. Ein mit Salzsäure praeparirtes Skelet, das das zarte spitzenartige Geflecht der Querfasern erkennen lässt. Auf flem nämlichen Gesteinsstück ein Polypenstock von Cladochomus. Fl. Ascha. Nat. Grösse.
Fig, 6-7. Haplistion (?) orientale Tschern. Zwei mit Salzsäure praeparirte Exemplare. Fl. Ascha. Nat. Grösse.

Tafel V.
Fig. 1. Haplistion (?) Gruenewaldti Stuck. Mit Sälzsäure behandelte Oberfläche des Schwammes. Original von A. Stucken-
berg. Fl. Ufa, gegenüber d. Dorfe Tschigwinzewa. Nat. Grösse.
Fig. 2, 3. Kazania elegantissima Stuck. Fig. 2-von oben, Fig. 3-von der Unterseite. Fl. Ufa gegenüber Tschigwinzewa. Halbe nat. Grösse.
Fig. 4-6. Stuckenbergia artiensis Tschern. Fig. 4-medianer Verticalschnitt. Stellenweise Oeffnungen, die dem Querschnitt von Aporrhysen entsprechen. Fig. 5 - das mit Salzsäure behandelte Skelet von aussen. Fig. 6 - von oben. Die Ostien der Ausführungscanäle münden zum Theil in unregelmässige Vertiefungen an der Oberseite des Schwammes. Ui-Teljak. Nat. Grösse.

Отд. оттиспи, ият, Запис. Императ. Спй. Минер. Общ.. ч. XXXVI, вып. І. 1898. Типо-Литографіл К. Гиркенфедьда (Bac. остр.. 8 -я лип., No 1).
32. $\times 110$

28.

$\begin{array}{r} \\ \times 55 \\ \hline\end{array}$

6.

3

7.

[^0]: ${ }^{1}$) H. Trautschold. Palaeontologischer Nachtrag z. d. Abh. des Fürsten P. Krapotkin über d. geogn. Verhältn. d. Kreises Mjeschtschowski, Gouv. Kaluga. Bull. Soc. Imp. des Nat. de Moscou. Vol. 42, 1869, p. 230-233.
 ${ }^{2}$) P. Krotow. Geologische Forschungen am westlichen Ural-Abhange in den Gebieten von Tscherdyn und Ssolikamsk. Mém. du Com. Géol., T. Vl, pag. 550-551, Taf. II, Fig. 16-21.

[^1]: ${ }^{2}$ H. J. Carter. Fossil Sponges from the carboniferous System of the South-West of Scotland. Ann. and Mag. of Nat. Hist., 5 Ser., Vol. I, pag. 129132, tig. 3-6, 1898.
 ${ }^{2}$) G. J. Hinde, A Monogr. of the Brit. Sponges, p. 158-159, pl. YI, fig. 2.
 ${ }^{3}$) (. J. Hinde. Spitzbergen Chert-Deposits, I. c., pl. VIII, fig. 14--15.

[^2]: ${ }^{1}$) E. v. Dunikowski. Ueber Permo-Carbon-Schwämme von Spitzbergen. K. Sv. Vetensk.-Akad. Handlingar, Bd. 21, № 1, pag. 7-8.
 ${ }^{2}$) E. v. Dunikowski. Ueber Permo-Carbon-Schwämme von Spitzbergen; l. c.
 ${ }^{3}$) G. J. Hinde. Spitzbergen Chert-Deposits, l. c.

[^3]: ${ }^{1}$) A. Stuckenberg. Korallen und Bryozoen der Steinkohlenablagerungen des Ural und des Timan. Mém. du Com. Géol., T. X, No 3, pag. 183-184, 1895.
 ${ }^{2}$) G. J. Hinde. British fossil Sponges, p. 146-149, pl. V, fig. 1, 1a, 1b, 2, 2a.
 ${ }^{3}$) In vorliegender Arbeit setze ich an Stelle des etymologisch fehlerhaft. gebildeten «ufimiana» die Bezeichnung ufensis.

[^4]: ${ }^{1}$) Meine Anwesenheit in Stockholm im Frühling des Jahres 1898 gewährte mir die Möglichkeit, meine Exemplare unmittelbar mit den im palaeontologischen Museum der Schwedischen Akademie der Wissenschaften aufbewahrten Originalen von Spitzbergen zu vergleichen. Professor Lindström war so zuvorkommend, mir alle Schliffe Dr. Hindes zur Durchsicht anzuvertrauen.

[^5]: ${ }^{1}$) Zur anschaulicheren Vergleichung der uralischen und der spitzbergischen Formen von P. arcticus theile ich die Zeichnung ron Spicula mit, die nach dem Praeparat von einem Exemplar aus Axels-0̈ hergestellt sind (Taf. III, Fig. 8-11).

[^6]: ${ }^{1}$) Eine ähnliche Combination verzweigter spicula und spindelförmiger Nadeln ist auch bei anderen Angehörigen der Ordnung der Lithistiden bekannt, z. B. bei der Gattung Seytalia Zittel (Studien iiber fossile Spongien II, I. c., pag. 128, Taf. V, Fig. 3-4).

[^7]: ${ }^{1}$) G. J. Hinde. British fossil Sponges, pag. 147-148, pl. V, fig. 1, 1a, 1b.

[^8]: ${ }^{1}$) Diese Form ist von Carter unter der Benennung Rhaphidistia be. schrieben worden (Ann. and Mag. Nat. Hist., Ser. V, vol. I, pag. 140, pl. IX. fig. 15-19). Hinde hat Carters Diagnose emendirt und diesen Schwamm der Gattung Haplistion zugewiesen (British fossil Sponges, pag. 148, pl. V. fig. 2, 2a).

[^9]: ${ }^{1}$) H. Rauff. Palaeospongiologie, Palaeontographica. Bd. XLI, pag. 242.

[^10]: ${ }^{1}$) L. de Koninck. Notice sur quelques fossiles du Spitzberg. Bull. de l'Ac. Royale de Belgique, T. XIII, I. partie, pag. 592 (1846). Nouvelle notice sur les fossiles du Spitzberg. Ibid. T. XVI, II. partie, pag. 682 (1849).
 ${ }^{2}$) G. Lindström. Geol. Fören. i Stockholm Förhandl., Bd. 2, pag. 302.
 ${ }^{3}$) A. Nordenskiold. Sketch of the Geology of Spitzbergen, pag. 17-24. (1867).
 ${ }^{4}$) Fr. Toula. Kohlenkalk-Fossilien von der Südspitze von Spitzbergen. Sitzungsber. d. K. Ak. d. Wiss., Wien, Bd. LXVIII, I Abth. (1873).
 ${ }^{5}$) Fr. Toula. Kohlenkalk- und Zechstein-Fossilien aus dem Hornsund an der Süd-Westküste von Spitzbergen. Sitzungsber. d. K. Ak. d. Wiss., Wien, Bd. LXX, I Abth. (1874).
 ${ }^{6}$) Fr. Toula. Permo-Carbon-Fossilien von der Westküste von Spitzbergen. Neues Jahrbuch, 1875, pag. 225.

[^11]: 1, B. Lundgren. Anmärkningar om Permfossil från Spetsbergen. Bih. till K. Sv. Vet.-Ak. Handl., Bd. 13. Afd. IV, dio 1.
 ${ }^{2}$) G. J. Hinde. Spitzbergen Chert-Deposits, I. c., p. 250.
 ${ }^{3}$) cf. Th. Tschernyschew. Notes sur le rapport des Dépôts Carbonifères Russes avec ceux de l'Europe occidentale. Annales de la Soc. Géol. du Nord, T. XVII, pag. 208-209.

[^12]: ${ }^{1}$) In Betreff der Ablagerungen cretacischen Alters hat schon G. Radkiewicz einen Hinweis in diesem Sinne gemacht. der bei der Untersuchung der Kieselgesteine des Gouvernements Podolien darin Spicula von Monactinelliden-. Tetractinelliden-, Lithistiden- und Hexactinelliden-Schwämmen gefunden hat (G. Radkiewicz. Ueber die cretacischen Ablagerungen des Gouvernements Podolien. Sapiski der Naturforscher-Gesellschaft in Kiew, Bd. XI).

[^13]: ${ }^{1}$) E. Hull. On the nature and origin of the beds of Chert in the upper carboniferous limestone of Ireland. Scient. Transact. of the R. Dublin Soc., 2. Ser., Vol. I, pag. 71-84; Note on Dr. G. J. Hinde's Paper On Beds of Sponge-remains in the Lower and Upper-Greensand of the South of England. Philos. Transact., 1885, p. II, pag. 403-453. Proceedings of the R. Soc. Lond. Vol. 42, pag. 304-308, (188?).
 ${ }^{2}$) E. T. Hardman. The chemical composition of Chert and the chemistry of the process, by which it is formed. Transact. of the R. Dublin Soc., 2. Ser. Vol. I, pag. $85-9 \pm$; Note on Prof. Hull's Paper. Proc. of the R. Soc. Lond. Vol. 42, pag. 308-310 (1887).
 ${ }^{3}$) A. Renard. Recherches lithologiques sur les phtanites du calcaire carbonifère de Belgique. Bull. de l'Ac. R. de Belgique. 2. Sér., T. 46, pag. 471-499 (1878).
 ${ }^{4}$) G. J. Hinde. On the organic of the Chert in the carboniferous Limestone Series of Ireland and its similarity to that in the corresponding strata in North-Wales and Yorkshire. Geol. Mag., Dec. III, Vol. IV, No 10, pag. 435-446 (1887).
 ${ }^{5}$) Gümbel. Geognostische Beschreibung des Fichtelgebirges, pag. 263. (1879). Rotpletz. Radiolarien, Diatomaceen und Sphärosomatiten im silurischen Kieselschiefer von Langenstriegis in Sachsen. Z. d. D. G. G. Bd. XXXII (1880), pag. 447-467. Tschernyschew. Allg. Geol. Karte v. Russland. Bl. 139. Mém Com. Géol., T. III, No 4, pag. 335. Rüst. Beiträge zur Kenntniss der fossilen Radiolarien aus Gesteinen der Trias und der palaeozoischen Schichten. Palaeontographica. Bd. XXXVIII (1892), pag. 107-124. Fox Howard and J. J. H. Teall. On a Radiolarian Chert from Mullion Island. Q. J., Vol. XLIX (1893), pag. 211--215. G. J. Hinde. Note on the Radiolaria in the Mullion Island Chert, ibid. pag. 215-218. G. J. Hinde. Note on a Radiolaria Chert from Fanny Bay, Port Darwin, Australia. ibid., pag. 221-226. A. Wichmann. Zur Geologie von Nowaja Semlja. Z. d. D. G. G. Bd. XXXVIII (1886), p. 524-525.

