MASSENHAUSHALT 2008/2009 DER GLETSCHER DER GOLDBERGGRUPPE

Bernhard Hynek, Stefan Reisenhofer, Rainer Unger, Gernot Weyss Zentralanstalt für Meteorologie und Geodynamik, Hohe Warte 38, 1190 Wien

1. Einleitung

Im Rahmen der Projekte MOMBASA und WURTEN wird von der Zentralanstalt für Meteorologie der Massenhaushalt der drei Gletscher Goldbergkees (früher Vogelmaier-Ochsenkarkees), Kleinfleißkees und Wurtenkees in der Goldberggruppe der Hohen Tauern mittels der direkten glaziologischen Methode (z.B. KASER et al, 2003) ermittelt. Der vorliegende Bericht ist eine Zusammenfassung der Messungen und Ergebnisse aus dem hydrologischen Jahr 2008/2009.

Das Kleinfleißkees und das Wurtenkees liegen südlich des Alpenhauptkammes, sind 0.8 bzw.0.9 km² (2003) groß und nach West bis Südwest exponiert. Das nördlich des Alpenhauptkammes gelegene ca. 1.4 km² (2003) große Goldbergkees schließt an der Kleinfleißscharte direkt an das Kleinfleißkees an, ist im oberen Bereich nach Südost exponiert und im Zungenbereich nach Nordost. Das Kleinfleißkees und das Wurtenkees entwässern über den Kleinfleißbach bzw. den Fragantbach in die Möll und das Goldbergkees Richtung Norden über die Rauriser Ache in die Salzach.

2. Witterungsverlauf

Um einen Überblick über die Witterung des vergangenen Messjahres zu erhalten, werden nachstehend die Monatsmittel bzw. Monatssummen von Temperatur, Niederschlag und Schneehöhe graphisch dargestellt. Diese werden dabei jeweils mit der Normalperiode von 1961-1990 bzw. 1971-2000 verglichen, um so gewisse Anomalien beziehungsweise Singularitäten im Messjahr 2008/09 zu identifizieren und besser interpretieren zu können.

In Abbildung 1 finden sich die Monatsmittel der Temperatur von der Klimastation Rudolfshütte (2304 m), Sonnblick (3106 m) und Enzingerboden (1480 m). Betrachtete man die einzelnen Stationen im Vergleich zur Normalperiode 1971-2000, so zeigen sich vor allem im Winterhalbjahr großteils positive Abweichungen, wobei im Jänner und Februar die größten Abweichungen vorzufinden sind. Nach einem kühlen Frühlingsbeginn im April und Mai werden im Juni wieder im Mittel liegende Temperaturen erreicht, bevor sich ab Juli wieder deutlich kältere Monate einstellen, als nach dem langjährigen Durchschnitt zu erwarten wäre.

Abbildung 1: Monatsmittel der Temperatur und Abweichungen vom Mittel 1971-00.

Die höchsten Niederschlagssummen im Messjahr 2008/09 fielen in den Monaten Dezember, Februar und März sowie im Juni, wobei die Niederschläge am Gipfel des Hohen Sonnblicks im Dezember und Februar die höchsten Summen aufweisen. Der Hohe Sonnblick zählt mit einem jährlichen mittleren Niederschlag von 2630 mm zu den niederschlagreichsten Gebieten der Alpen. Dies ist zum einen durch die orographische Niederschlagszunahme und zum anderen durch die Lage an der Wetterscheide des Alpenhauptkamms begründet.

Bei Betrachtung der prozentuellen Abweichung des Niederschlages 2008/09 zur Normalperiode 1961-90 zeigen sich im Vergleich ein sehr feuchtes Winterhalbjahr und ein größtenteils unter dem Durchschnitt liegendes Sommerhalbjahr. Die höchsten Abweichungen zum langjährigen Mittel finden sich im Dezember mit 186 % und im Februar mit 262 % am Hohen Sonnblick sowie beim Totalisator Fleißkees unten, der auf der Südseite des Hohen Sonnblicks liegt, und mit 236 % über dem Mittel liegt.

In Abbildung 4 ist der Verlauf der Entwicklung der Schneehöhe im vergangen Messjahr 2008/09 dargestellt. Es zeigt sich, wie die Niederschlagssummen schon vermuten lassen, dass die Schneehöhe im vergangen Winterhalbjahr über dem langjährigen Mittel liegt. Die maximale Schneehöhe wird am Goldbergkees Ende März bzw. am Fleißkees Ende April mit 420 cm erreicht, bevor dann mit langsam ansteigenden Temperaturen die Schneeschmelze einsetzt. Während der Sommermonate kommt es zur Ausaperung aller vier Schneepegel.

Abbildung 2: Monatswerte der Totalisatoren im Bereich Goldbergkees und Abweichungen vom Mittel (1961-90)

Abbildung 3: Monatswerte d. Totalisatoren im Bereich Kleinfleißkees und Abweichungen vom Mittel (1961-90)

Abbildung 4: Verlauf der Schneehöhe an ausgewählten Schneepegeln im Vergleich zum langjährigen Mittel 1961-90

Abbildung 5 zeigt die Entwicklung der Schneedecke an der Kleinfleißscharte (2780 m) im Vergleich zu den Stationen Rudolfshütte (2304 m) und Enzigerboden (1480 m) sowie den täglichen Neuschneemengen an der Kleinfleißscharte am Hohen Sonnblick. Der Schneepegel an der Kleinfleißscharte weist deutliche Unterschiede in der Schneehöhe zu den Messungen bei der Station Rudolfshütte und Enzigerboden auf. Die starken Schneefälle Anfang Dezember lassen die Schneehöhe an der Kleinfleißscharte sprunghaft ansteigen. Eine im langjährigen Vergleich trockene zweite Dezemberhälfte und erste Jännerhälfte lassen die Schneehöhe in dieser Zeit auf dem selben Niveau bevor Mitte Jänner neuerliche Schneefälle den Verlauf der Schneehöhe wieder sprunhaft ansteigen lassen. Mit zunehmenden Temperaturen setzt im Frühjahr je nach Höhenlage die Schneeschmelze zu einem früheren bzw. späteren Zeitpunkt ein. So beginnt die Schmelze am Enzigerboden Ende März, bei der Station Rudolfshütte Ende April und an der Kleinfleißscharte Ende Juni.

Abbildung 5: Zeitreihe der Gesamtschneehöhe im Haushaltsjahr 2008/09 und der täglichen Neuschneemengen am Sonnblick.

3. Messungen

3.1 Winterbilanzmessungen 2008/2009

Die Feldmessungen für die Winterbilanz 08/09 wurden von 1. bis 3. Mai am Goldbergkees und Kleinfleißkees und von 6. bis 7. Mai am Wurtenkees in Zusammenarbeit mit dem Institut für Meteorologie der BOKU im Rahmen der Lehrveranstaltung Gletscherpraktikum durchgeführt.

Zur Bestimmung der winterlichen Schneeakkumulation wurden in Summe auf allen drei Gletschern insgesamt 22 Schneeprofile gegraben. Dabei wurden die Schneedichte und Schneetemperatur in den einzelnen Schichten sowie der Schneedeckenaufbau (Stratigraphie) ermittelt. Die Messwerte aus den Schneeprofilen sind in Tabelle 1 enthalten. Im Winter 08/09 wurden auf den Gletschern der Goldberggruppe außerordentlich hohe Schneehöhen erreicht wurden. Die Schneehöhe an den Profilen war häufig über 5 Meter und nicht selten mehr als 6 Meter, weshalb der Vorjahreshorizont nicht immer erreicht werden konnte.

Aufgrund der großen Schneehöhen sind auch die mittleren Schneedichten höher als im Durchschnitt. Die vertikalen Verläufe der Schneedichte in den einzelnen Schneeprofilen sind in Abbildung 7 dargestellt. Sie zeigen einen Dichtesprung bei ca. 60-80 cm (entspricht der Grenze zwischen relativ lockerem Neuschnee und wesentlich früher abgelagerten Schneeschichten), und einen geringen vertikalen Dichtegradienten in den tieferen Schichten. Als rechte untere Grafik in Abbildung 7 ist die gemittelte Schneedichte pro Schneeprofil nach der Höhenlage des Schneeprofiles und nach Gletschern getrennt dargestellt. Grundsätzlich ist eine Abnahme der mittleren Dichte mit der Höhenlage erkennbar, auffällig sind jedoch etwas höhere Schneedichten am unteren Wurtenkees, zwei Profile mit deutlich geringeren Schneedichten. Tabelle 1:Wichtigste Messwerte an den 22 Schneeprofilen auf den Gletschern Goldbergkees
(GOK), Kleinfleisskees (FLK) und Wurtenkees (WUK). Die genaue Lage der einzelnen
Schneeprofile lässt sich aus der Karte in Abbildung 6 erkennen.

Profil		Gletscher	Datum	Koordinaten Itum (österr. BMN) X Y		Seehöhe [m]	Schnee- tiefe [cm]	mittlere Dichte [kg/m³]	Wasser- äquivalent [mm]	Vorjahres- horizont
1	Lieslstang	GOK	3.5.09	421728	212675	3028	589	392	2306	Eis
2	Oben Mitte	GOK	3.5.09	421457	212449	2946	408	412	1681	Eis
3	Steilhang	GOK	3.5.09	421374	212168	2879	432	415	1794	Eis
4	Bockpalfen	GOK	1.5.09	421763	211740	2682	440	411	1807	Eis
5	SP	GOK	1.5.09	422105	211995	2647	> 520	450	> 2341	Lawine/Eis
6	Mitte	GOK	1.5.09	422102	211496	2693	580	433	2511	Eis
7	Bruch	GOK	1.5.09	422605	211433	2624	345	373	1288	Eis
8	Zunge oben	GOK	3.5.09	422904	211676	2436	505	449	2265	Eis
9	Zunge unter	GOK	3.5.09	423021	211800	2410	> 460	459	> 2109	nicht gem.
10	SP Oben	FLK	2.5.09	421095	212562	2936	425	391	1663	Eis
11	FLK Mitte	FLK	2.5.09	420591	212711	2830	515	411	2115	Eis
12	FLK Zunge	FLK	2.5.09	420226	212823	2775	324	371	1202	Eis
13	Chemie	WUK	7.5.09	426195	211281	3089	450	385	1731	Eis
14	GIHA	WUK	7.5.09	425940	211320	3002	545	399	2173	nicht gem.
15	Scharte	WUK	7.5.09	426235	210784	2974	380	408	1551	Fels
16	neben Piste	WUK	7.5.09	426056	210924	2952	650	447	2908	nicht gem.
17	Weiflakopf	WUK	7.5.09	426056	210331	2844	485	439	2131	Eis
18	PE13	WUK	6.5.09	425443	210914	2677	435	438	1904	Eis
19	LAWI	WUK	6.5.09	425390	211041	2669	> 560	465	> 2605	nicht gem.
20	PE 7	WUK	6.5.09	425156	211223	2645	575	463	2661	Eis
21	PE 5	WUK	6.5.09	425093	210982	2616	525	440	2310	Eis
22	PE 1	WUK	6.5.09	424911	210995	2577	522	454	2369	Eis

Abbildung 6: Lage der Schneeprofile und GPR-Radarprofile bei den Messungen der Wintermassenbilanz auf den Gletschern Kleinfleisskees, Goldbergkees und Wurtenkees (von West nach Ost).

Abbildung 7: Vertikale Profile der Schneedichte gemessen in den Schneeprofilen auf GOK, FLK und WUK, als vierte Grafik (rechts unten) die mittlere Schneedichte pro Schneeprofil, dargestellt in Abhängigkeit von der Höhenlage.

In den Schneeprofilen wurde auch der vertikale Verlauf der Schneetemperatur gemessen. Die Temperaturprofile sind nach Gletschern (bzw. Gletscherbereichen beim Goldbergkees) getrennt dargestellt. Wichtig für die Berechnung der Wintermassenbilanz ist der Umstand, dass zum Zeitpunkt der Messungen kein einziges Schneeprofil vollständig auf Null Grad Celsius erwärmt war und somit auch nicht vollständig durchfeuchtet war, was bedeutet, dass noch keine Schneemasse durch Schmelze verloren gegangen ist. Interessant sind die großen Unterschiede in der Schneetemperatur in räumlich nahe nebeneinander gelegenen Schneeprofilen wie zum Beispiel im Gipfelbereich des Goldbergkeeses. Zu beachten ist, dass die unterste gemessene Schneetemperatur nicht immer die Grenze zum Vorjahreshorizont darstellt, der wegen der großen Schneehöhen nicht immer erreicht werden konnte (siehe Tabelle 1). Eine Abnahme der Schneetemperatur mit der Höhenlage des Profiles ist aus Abbildung 7 ebenso zu entnehmen wie generell wärmere Schneetemperaturen am Wurtenkees, ob seiner südlichen Ausrichtung als auch des späteren Messtermines im Frühjahr 2009.

Um eine genauere Information über die räumliche Verteilung der Schneedecke zu erhalten, wurde die Schneehöhe mittels Georadar (500 MHz) gemessen (Lage der Messpunkte und Radarprofile siehe Abbildung 6). Exemplarisch sind 6 Radargramme samt beigefügter Lageskizze der Profillinien in Abbildung 9 dargestellt, die drei oberen vom Kleinfleisskees und Goldbergkees und die drei unteren vom Wurtenkees. In den Radargrammen ist die Schnee-Eis-Grenze zumeist eindeutig zu erkennen und die Radarmessungen, mit denen man die Schneedecke quasikontinuierlich abrastern kann, erlauben es einerseits, die räumliche Verteilung der Akkumulation am Gletscher besser zu bestimmen, andererseits erlauben sie auch einen "Einblick" in die obersten Schichten des Gletschers. Aus den oberen drei Radargrammen aus Abbildung 9 ist deutlich ersichtlich, dass sich bei im Profil 1 und 2 kein Firnkörper mehr unter der Winterschneedecke befindet, während bei Profil 3 vor allem im linken Bereich mehrere Firnschichten erkennbar sind. Auf dem Radargramm 2 am Wurtenkees ist neben der Schneehöhe auch der Horizont des Felsuntergrundes zu erkennen, der zwischen zwei Eisflächen liegt. In dieser Abbildung ist auch ersichtlich, dass auf Fels die Schneehöhe wesentlich geringer ist als am direkt angrenzenden Gletschereis. Die Auswertung der Radardaten und der Schneeprofile führt letztlich zur Berechnung der Wintermassenbilanz für die drei Gletscher. Obwohl diese Auswertungen zum Zeitpunkt der Erstellung dieses Zwischenberichtes noch nicht abgeschlossen sind, ist ersichtlich, dass die Winterakkumulation der Gletscher der Goldberggruppe die höchste ist seit Messbeginn.

Abbildung 8: Verläufe der Temperatur in der Schneedecke gemessen in den einzelnen Schneeprofilen am Goldbergkees (GOK), Kleinfleisskees (FLK) und Wurtenkees (WUK). Zur Lage der Schneeprofile siehe Tabelle 1 und Abbildung 6.

Abbildung 9: Drei Radargramme der GPR-Schneetiefenmessung von Goldberg- und Kleinfleisskees (oben) und drei Radargramme vom Wurtenkees (unten) mit skizzierter Lage der Radarprofile.

3.2 Messungen für die Jahresbilanz 2008/2009

Zur Berechnung der Jahresmassenbilanz der Gletscher der Goldberggruppe wurden auf allen drei Gletschern Ablationspegel abgelesen und neu gebohrt. Bedingt durch die späte Ausaperung der Gletscher war in der Ablationsperiode 2009 nur eine Ablesung der Pegel möglich. Diese wurde am Goldbergkees und am Kleinfleisskees am 17./18.9. und am Wurtenkees von 4.-6.10. durchgeführt. Im Zuge dieser Feldarbeiten wurden auch Messungen der Akkumulation, Kartierung bzw. fotographische Dokumentation der Ausaperung durchgeführt.

Am Goldberg- und Kleinfleisskees wurden die Ablationspegel zusätzlich mittels RTK-GPS eingemessen, um die horizontale und vertikale Eisbewegung im Vergleich zum Vorjahr zu bestimmen. Die Ergebnisse dieser wiederholt durchgeführten GPS-Messung sind in Abbildung 10 dargestellt. Durch die immer geringer werdende Gletscherfläche und Gletscher Eismächtigkeit nimmt auch die Aktivität der ab. Eine iährliche Fließgeschwindigkeit von knappen 6 Metern stellt das absolute Maximum dar, die durchschnittliche Eisbewegung liegt zwischen ein und zwei Metern. An der Zunge des Goldbergkeeses ist zudem ein globales Absinken der Eisfläche zu beobachten, verursacht durch basale Schmelzprozesse.

Abbildung 10: Eisbewegung am Kleinfleisskees und Goldbergkees innerhalb eines Jahres (Sep.08 -Sep.09), gemessen an den Ablationspegeln. Aufwärtsbewegung (Emergenz) des Eises ist in rot, Abwärtsbewegung (Submergenz) in blau dargestellt. Trotz der späten Ausaperung der Gletscher erreichte die Schmelze im Sommer hohe Werte, sodass am Ende des Haushaltsjahres ein Großteil der Gletscherflächen schneefrei war, siehe Abbildung 11, 12 und 13. Die Massenbilanz 08/09 war dementsprechend auch für alle drei Gletscher negativ (siehe Tab. 5).

Abbildung 11: Ausaperung des Oberen Goldbergkeesboden Ende September 09 (Foto: Gernot Weyss)

Abbildung 12: Ausaperung des unteren Wurtenkeeses Ende September 2009 (Foto: Gernot Weyss)

Abbildung 13: Ausaperung des Oberen Wurtenkeeses Ende September 2009 (Foto: Gernot Weyss)

4. Auswertung und Ergebnisse

Die Werte aus den Punktmessungen der Schneeprofile, Sondierungspunkte und Ablationspegel wurden mit der Software ArcGis auf der Gletscherfläche zu einem Raster interpoliert (spline interpolation) und aufsummiert. Die dabei verwendete Gletscherfläche wurde auf der Grundlage des Orthofotos vom September 2003 erstellt. Die räumliche Verteilung der Massenbilanz ist den Massenbilanzkarten im Maßstab 1:12500 im Anhang zu entnehmen.

Massenbilanz 2008/2009	[]	GOK	WUK	FLK	GOK Oberer Teil	GOK Unterer Teil	WUK Oberer Teil	WUK Unterer Teil
S (Fläche 2003)	km²	1.43	0.82	0.87	0.39	1.04	0.44	0.38
Sc (Akkumulationsfläche)	km ²	0.30	0.27	0.23	0.10	0.21	0.18	0.09
Sa (Ablationsfläche)	km²	1.12	0.56	0.64	0.29	0.83	0.27	0.29
Sc/S (AAR)		0.21	0.33	0.26	0.25	0.20	0.40	0.24
Sc/Sa		0.27	0.48	0.36	0.34	0.25	0.66	0.32
ELA (Gleichgewichtslinie)	m	2975	2950	2875				
b (spez. Massenbilanz)	mm	-542	-584	-403	-373	-605	-300	-916
bw (spez. Winterbilanz)	mm	1933	2087	1887	1642	2042	1844	2370
bs (spez. Sommerbilanz)	mm	-2475	-2671	-2290	-2015	-2647	-2143	-3286
bc (spez. Nettoakkumulation)	mm	53	67	83	59	50	75	59
ba (spez. Nettoablation)	mm	-595	-651	-486	-432	-655	-374	-975
bw + lbsl (spez. Totalmassenumsatz)	mm	4409	4758	4178	3656	4689	3987	5656
bc + lbal (spez. Nettomassenumsatz)	mm	647	719	570	491	705	449	1033
B (Bilanzvolumen)	10 ⁶ kg	-773	-482	-351	-144	-629	-133	-349
Bw (Winterbilanzvolumen)	10^{6} kg	2758	1720	1645	635	2122	818	902
Bs (Sommerbilanzvolumen)	10^6 kg	-3530	-2202	-1996	-779	-2751	-951	-1251
Bc (Nettoakkumulation)	10 ⁶ kg	75	55	73	23	52	33	22
Ba (Nettoablation)	10 ⁶ kg	-848	-537	-424	-167	-681	-166	-371
Bw + Bs (Totalmassenumsatz)	10 ⁶ kg	6288	3922	3641	1415	4873	1769	2153
Bc + Bal (Nettomassenumsatz)	10 ⁶ kg	923	592	497	190	733	199	393

Tabelle 5: Ergebnisse der Massenbilanz 08/09, ausgewertet auf den Gletscherflächen von 2003

Tabelle 6:

	Höhenstufe	Fläche	spezifische l	Massenbilan	z 08/09	Massenbilanzvolumen 08/09			
	DEM 98	2003	Jahr b	Winter bw	Sommer bs	Jahr B	Winter Bw	Sommer Bs	
	m	m²	mm	mm	mm	10 ⁶ kg	10 ⁶ kg	10 ⁶ kg	
GOK	2350 - 2400	12213	-1979	1830	-3809	-24,175	22,347	-46,522	
	2400 - 2450	111265	-1112	2279	-3390	-123,687	253,542	-377,229	
	2450 - 2500	65911	-213	2444	-2657	-14,018	161,111	-175,129	
	2500 - 2550	21075	-149	2020	-2169	-3,142	42,578	-45,720	
	2550 - 2600	25336	-635	1384	-2019	-16,088	35,063	-51,151	
	2600 - 2650	170685	-950	1708	-2658	-162,073	291,546	-453,619	
	2650 - 2700	468975	-684	1893	-2577	-320,743	887,775	-1208,518	
	2700 - 2750	145788	197	2611	-2414	28,719	380,580	-351,861	
	2750 - 2800	26457	159	2381	-2222	4,217	62,999	-58,783	
	2800 - 2850	37349	-504	1694	-2198	-18,814	63,275	-82,089	
	2850 - 2900	71519	-930	1503	-2433	-66,510	107,522	-174,032	
	2900 - 2950	111528	-515	1644	-2159	-57,396	183,347	-240,743	
	2950 - 3000	93182	-18	1688	-1705	-1.643	157,263	-158,906	
	3000 - 3050	52736	30	1744	-1714	1,577	91,973	-90,396	
	3050 - 3100	10919	71	1520	-1449	0,771	16,595	-15,824	
	2350 - 3100	1424938	-542	1935	-2478	-773,006	2757,515	-3530,522	
WUK	2500 - 2550	5530	-2791	2233	-5024	-15,437	12,348	-27,785	
	2550 - 2600	56132	-2338	1930	-4267	-131,231	108,307	-239,538	
	2600 - 2650	123210	-1374	2133	-3508	-169,352	262,815	-432,167	
	2650 - 2700	157017	-242	2632	-2874	-38,021	413,284	-451,305	
	2700 - 2750	45197	145	2582	-2437	6,538	116,682	-110,144	
	2750 - 2800	8304	271	2046	-1774	2,254	16,987	-14,732	
	2800 - 2850	79437	-2	1852	-1854	-0,176	147,129	-147,305	
	2850 - 2900	81055	-307	1902	-2209	-24,864	154,179	-179,043	
	2900 - 2950	64548	-324	1924	-2248	-20,896	124,186	-145,082	
	2950 - 3000	95856	-515	1781	-2296	-49,397	170,695	-220,092	
	3000 - 3050	73273	-362	1813	-2175	-26,545	132,842	-159,387	
	3050 - 3100	32011	-439	1764	-2203	-14,066	56,455	-70,520	
	3100 - 3150	2859	-201	1535	-1735	-0,574	4,387	-4,962	
	2500 - 3150	824429	-584	2087	-2671	-481,765	1720,296	-2202,061	
FLK	2700 - 2750	7577	-1426	957	-2383	-10,807	7,252	-18,059	
	2750 - 2800	110382	-1464	1280	-2745	-161,624	141,325	-302,949	
	2800 - 2850	240120	-590	1820	-2410	-141,647	437,001	-578,648	
	2580 - 2900	243051	176	2175	-1999	42,721	528,526	-485,805	
	2900 - 2950	129691	-371	1823	-2193	-48,080	236,379	-284,459	
	2950 - 3000	102110	-354	2055	-2409	-36,176	209,787	-245,963	
	3000 - 3050	37623	104	2198	-2093	3,920	82,677	-78,756	
	3050 - 3100	966	351	1846	-1496	0,339	1,784	-1,445	
	2700 - 3100	871520	-403	1887	-2290	-351,355	1644,730	-1996,085	

Tabelle 7:Spezifische Massenbilanz und Massenbilanzvolumen 08/09 nach Höhenstufen von
Goldbergkees und Wurtenkees getrennt für den oberen und unteren Gletscherteil

			Oberer Gletscherteil				Unterer Gletscherteil				
	Höhenstufe DEM 98	Fläche 2003	bw	b	Bw	В	Fläche 2003	bw	b	Bw	В
	m	m²	mm	mm	10 ⁶ kg	10 ⁶ kg	m²	mm	mm	10 ⁶ kg	10^6 kg
GOK	2350 - 2400						12213	1830	-1979	22,35	-24,18
	2400 - 2450						111265	2279	-1112	253,54	-123,69
	2450 - 2500						65911	2444	-213	161,11	-14,02
	2500 - 2550						21075	2020	-149	42,58	-3,14
	2550 - 2600						25336	1384	-635	35,06	-16,09
	2600 - 2650						170685	1708	-950	291,55	-162,07
	2650 - 2700						468975	1893	-684	887,78	-320,74
	2700 - 2750						145788	2611	197	380,58	28,72
	2750 - 2800	11730	1729	-168	20,28	-1,97	14727	2901	420	42,72	6,19
	2800 - 2850	35559	1686	-535	59,94	-19,04	1790	1865	124	3,34	0,22
	2850 - 2900	70577	1499	-943	105,80	-66,57	942	1832	66	1,73	0,06
	2900 - 2950	111528	1644	-515	183,35	-57,40					
	2950 - 3000	93182	1688	-18	157,26	-1,64					
	3000 - 3050	52736	1744	30	91,97	1,58					
	3050 - 3100	10919	1520	71	16,60	0,77					
	2350 - 3100	386231	1645	-374	635,19	-144,27	1038707	2043	-605	2122,33	-628,73
WUK	2500 - 2550						5530	2233	-2791	12,35	-15,44
	2550 - 2600						56132	1930	-2338	108,31	-131,23
	2600 - 2650						123210	2133	-1374	262,82	-169,35
	2650 - 2700						157017	2632	-242	413,28	-38,02
	2700 - 2750	7190	1921	239	13,81	1,72	38007	2707	127	102,87	4,82
	2750 - 2800	7545	1911	230	14,42	1,74	759	3386	680	2,57	0,52
	2800 - 2850	79437	1852	-2	147,13	-0,18					
	2850 - 2900	81055	1902	-307	154,18	-24,86					
	2900 - 2950	64548	1924	-324	124,19	-20,90					
	2950 - 3000	95856	1781	-515	170,70	-49,40					
	3000 - 3050	73273	1813	-362	132,84	-26,54					
	3050 - 3100	32011	1764	-439	56,45	-14,07					
	3100 - 3150	2859	1535	-201	4,39	-0,57					
	2500 - 3150	443774	1844	-300	818,10	-133,06	380655	2370	-916	902,20	-348,70

Abbildung 14: Aufteilung in oberen und unteren Gletscherteil am Goldbergkees und Wurtenkees

Abbildung 15: Höhenabhängigkeit der spezifischen Massenbilanzen 08/09 (dargestellt ist b, bw und bs aus Tabelle
6) und im Mittel 91-00 bzw. 99-03. Die höchstgelegene Nullstelle der spezifischen Nettomassenbilanz b ist die Gleichgewichtslinie (ELA) in Tabelle 5.

Abbildung 16: Bilanzvolumina 07/08 auf den unterschiedlichen Höhenstufen. Dargestellt ist B (Jahr), Bw (Winter) und Bs (Sommer) aus Tabelle 6.

5. Danksagung

Die Messung und Auswertung der Massenbilanz von Goldbergkees, Kleinfleißkees und Wurtenkees erfolgte im Rahmen der Projekte MOMBASA (PL Dr. Schöner) und WURTEN (PL Dr. Böhm). Folgenden Institutionen danken wir für die Finanzierung der Projekte: Dem Bundesministerium für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft, der Kärntner Elektrizitätswirtschafts-AG (Kelag) und der Zentralanstalt für Meteorologie und Geodynamik (ZAMG). Dem Land Kärnten danken wir für die Bereitstellung des Orthofotos 2003.

Die Feldmessungen wurden in Zusammenarbeit zwischen der Zentralanstalt für Meteorologie und Geodynamik (ZAMG), dem Institut für Meteorologie und dem Institut für Wasserwirtschaft, Hydrologie und konstruktiven Wasserbau der Universität für Bodenkultur Wien, dem Institut für Geodäsie und Geophysik der TU Wien und der Kärntner Elektrizitätswirtschafts-AG durchgeführt.

Folgende Mitarbeiter und Studenten, Lehrer und Schüler waren daran beteiligt:

Ingeborg Auer, Daniel Binder, Reinhard Böhm, Berthold Fliedl, Bernhard Hynek, Roman Just, Christine Kroisleitner, David Leidinger, Stefan Reisenhofer, Wolfgang Schöner, Rainer Unger, Gernot Weyss, Michael Skoric, Wolfgang Scholz, Wolfgang Schitter, Melanie Hager, Markus Haidn, Daniela Klinka, Beate Hauser, Markus Hirscher, Stephan Kunz, Thomas Rothberger, Paul Dickinger, Monika Dragosics, Birgit Gradinger, Sandra Braumann, Sophie Greistorfer, Elisabeth Baumgartner, Martin Unterweger, Dieter Draxler, Anton Neureiter, Andreas Huber.

6. Literatur

- AUER, I., R. BÖHM, N. HAMMER, W. SCHÖNER, T. WIESINGER und W. WINIWARTER (1995): Glaziologische Untersuchungen im Sonnblickgebiet: Forschungsprogramm Wurtenkees. Österreichische Beiträge zu Meteorologie und Geophysik, Heft 12, Zentralanstalt f. Meteorologie und Geodynamik, Wien, 143pp.
- AUER, I., R. BÖHM, M. LEYMÜLLER und W.SCHÖNER (2002): Das Klima des Sonnblicks – Klimaatlas und Klimatographie der GAW Station Sonnblick einschließlich der umgebenden Gebirgsregion. Österreichische Beiträge zu Meteorologie und Geophysik, Heft 29, Zentralanstalt f. Meteorologie und Geodynamik, Wien.
- KASER, G., A. FOUNTAIN und P. JANSSON (2003): A manual for monitoring the mass balance of mountain glaciers. International Hydrological Programme, IHP-VI, Technical Documents in Hydrology No. 59, UNESCO, Paris

