MASSENHAUSHALT 2005/2006 DER GLETSCHER IN DER GOLDBERGGRUPPE

Bernhard Hynek, Christine Kroisleitner, Wien

1. Einleitung

Im Rahmen der Projekte MOMBASA und WURTEN wird von der Zentralanstalt für Meteorologie der Massenhaushalt der drei Gletscher Goldbergkees (früher Vogelmaier-Ochsenkarkees), Kleinfleißkees und Wurtenkees in der Goldberggruppe der Hohen Tauern mittels der direkten glaziologischen Methode (z.B. KASER et al. 2003) ermittelt. Der vorliegende Bericht ist eine Zusammenfassung der Messungen und Ergebnisse aus dem hydrologischen Jahr 2005/2006.

Das Kleinfleißkees und das Wurtenkees liegen südlich des Alpenhauptkammes, sind 0.8 bzw.0.9 km² (2003) groß und nach West bis Südwest exponiert. Das nördlich des Alpenhauptkammes gelegene ca. 1.4 km² (2003) große Goldbergkees schließt an der Kleinfleißscharte direkt an das Kleinfleißkees an, ist im oberen Bereich nach Südost exponiert und im Zungenbereich nach Nordost. Das Kleinfleißkees und das Wurtenkees entwässern über den Kleinfleißbach bzw. den Fragantbach in die Möll und das Goldbergkees Richtung Norden über die Rauriser Ache in die Salzach.

Abbildung 1: Die Gletscherzunge des Goldbergkeeses am 6.9.2006. Die starke Eisschmelze der vergangenen Jahre hat die Abflußkanäle im und unterhalb des Eises so weit ausgehöhlt, dass die Eisoberfläche an zwei Stellen an der Gletscherzunge nun großräumig eingesunken ist. Das große Loch im Zentrum wird in den kommenden Jahren zum neuen Gletschertor werden. Die oberflächliche Eisabschmelzung im untersten Bereich des Goldbergkeeses betrug im Sommer 2006 bis zu 3.5m. (Foto: Bernhard Hynek)

2. Witterungsverlauf

Um einen Überblick über die Witterung im Haushaltsjahr 05/06 zu bekommen, sind nachfolgend die Monatsmittel bzw. -summen von Temperatur, Niederschlag und Schneehöhe im Vergleich zum dreißigjährigen Klimamittel 1961-90 dargestellt. Wie in Abbildung 2 zu sehen ist, war der Juli über 4°C wärmer als im langjährigen Klimamittel, auch im September lag die Temperatur rund 3°C über dem Mittel. Zwischen diesen überdurchschnittlich warmen Monaten befand sich ein 3°C unter dem Mittel liegender August. Auch im Dezember war die Temperatur unterdurchschnittlich tief. Die Frühjahrsmonate lagen, wie im Vorjahr, um ein bis zwei Grad über dem langjährigen Mittel.

Abbildung 2: Monatsmittel der Temperatur (links) und Abweichungen vom Mittel 1961-90 (rechts)

Der Jahresmittelwert des Niederschlages im Untersuchungsgebiet lag 11% über dem langjährigen Mittel, wobei der Niederschlag in Gipfel- und Südlagen ausschlaggebend war. Besonders die Monate Dezember und August waren überdurchschnittlich niederschlagsreich (siehe Abbildung 3). Die Totalisatoren Radhaus und Kolm Saigurn, - in den tieferen Lagen nördlich des Alpenhauptkammes - wiesen eine unterdurchschnittliche Jahresniederschlagsmenge auf.

Abbildung 3: Monatswerte der Totalisatoren im Bereich Goldbergkees (oben) und Kleinfleißkees (unten) im Haushaltsjahr 2005/2006 (links) und die Abweichungen vom 30-jährigen Mittel 1961-90 (rechts).

Abbildung 4: Verlauf der Schneehöhen an den Schneepegeln Fleißkees Zunge (2820m), Fleißkees Unten (2860m), Goldbergkees Oberer Boden (2670m) und Goldbergkees Obere Brettscharte (2960m) im Vergleich zum langjährigen Mittel 1961-90

Die Schneehöhe aller Pegel sowohl am Goldberg- als auch am Kleinflleißkees lag in den ersten zwei Monaten des Haushaltsjahres unterhalb des langjährigen Mittels. Weiters wiesen alle Pegel im Vergleich zum Mittel ein schnelleres Abschmelzen der Schneedecke in Juni und Juli auf. Das Goldbergkees zeigte an den Pegeln Brettscharte oben und unten eine zum Teil beträchtliche Zunahme der Schneehöhe von März bis Juli um bis zu einen Meter. Sowohl am Goldbergkees als auch am Fleißkees ist das Ausapern aller Schneepegel im September eine Folge des überdurchschnittlich warmen Herbstes. Im langjährigen Mittel liegt im September zwischen einem halben und zwei Meter Schnee auf den Gletschern.

Die Entwicklung der Schneedecke an der Kleinfleißscharte (2980m) und an den Stationen Rudolfshütte (2304m) und Mooserboden (2036m) in täglicher Auflösung ist in Abbildung 5 dargestellt. Durch starken Schneefall Anfang Juni erreichte die Schneedecke am Sonnblick ihre maximale Höhe von über viereinhalb Metern relativ spät. Ab der zweiten Junihälfte kam es jedoch zu einem rapiden Abschmelzen, das während des kühlen Augustes vorübergehend unterbrochen wurde. Der überdurchschnittlich warme September setzte den Schmelzprozess fort.

Abbildung 5: Zeitreihe der Gesamtschneehöhe im Haushaltsjahr 04/05 an den Stationen Sonnblick (Kleinfleißscharte, 2980m), Rudolfshütte (2304m) und Mooserboden (2036m) und der täglichen Neuschneemengen am Sonnblick

3. Messungen

3.1 Winterbilanzmessungen vom 24.4. bis 3.5.2006

Die Feldmessungen für die Winterbilanz 05/06 wurden vom 24. bis 27. April am Goldbergkees und Kleinfleißkees und von 2. bis 3. Mai am Wurtenkees in Zusammenarbeit mit dem Institut für Meteorologie der BOKU im Rahmen der Lehrveranstaltung Gletscherpraktikum durchgeführt.

Zur Bestimmung der winterlichen Schneeakkumulation wurden in Summe auf allen drei Gletschern insgesamt 23 Schneeprofile gegraben. Dabei wurden die Schneedichte und Schneetemperatur in den einzelnen Schichten sowie der Schneedeckenaufbau ermittelt. Die Messwerte aus den Schneeprofilen sind in Tabelle 1, die Schneetemperaturen in Tabelle 2 dargestellt. Um eine genauere Information über die räumliche Verteilung der Schneedecke zu erhalten, wurde auf allen drei Gletschern im Abstand von ca. 100 m die Schneehöhe sondiert. Die Schneetiefe an den Sondierungspunkten ist in Tabelle 3 enthalten. Die räumliche Lage der Sondierungspunkte und Schneeprofile wurde mit GPS bestimmt und kann aus Abbildung 7 und den Massenbilanzkarten im Anhang entnommen werden.

Die Schneedecke war im Zungenbereich von Goldberg- und Wurtenkees bereits temperiert und durchfeuchtet. In den höhergelegenen Bereichen lagen die Schneetemperaturen durchwegs unter 0°C. Aus Abbildung 6 ist eine Abnahme der mittleren Schneedichte mit der Seehöhe nur am Wurtenkees erkennbar, am Goldbergkees und am Kleinfleißkees ist keine Höhenabhängigkeit der Schneedichte erkennbar.

Pro	ពា	Gletscher	Datum	Koord (österr. x	linaten . BMN) y	Seehöhe [m]	Schnee- tiefe [cm]	mittlere Dichte [kg/m³]	Wasser- äquivalent [mm]	Vorjahres- horizont
1	Lieslstang	GOK	27.4.06	421730	212670	3024	358	396	1416	Fim
2	Oben Mitte	GOK	26.4.06	421400	212500	2960	420	465	1954	Firn
3	Steilhang	GOK	27.4.06	421358	212159	2880	325	438	1424	Eis
4	Bockpalfen	GOK	25.4.06	421766	211783	2672	370	422	1562	Eis
5	OB SP	GOK	25.4.06	422117	211963	2648	314	439	1379	Eis
6	Mitte	GOK	25.4.06	422148	211641	2687	420	425	1786	Eis
7	Bruch	GOK	25.4.06	422625	211419	2621	370	411	1520	Eis
8	Zunge oben	GOK	27.4.06	422905	211636	2439	400	511*	2043*	Eis
9	SP oben	FLK	26.4.06	421090	212565	2936	263	388	1020	Eis
10	SP unten	FLK	26.4.06	420869	212486	2874	360	410	1476	Firn
11	Pilatus	FLK	26.4.06	421010	212985	2925	425	423	1798	Firn
12	FlK Mitte	FLK	26.4.06	420600	212712	2832	310	438	1357	Eis
13	FLK Zunge	FLK	26.4.06	420255	212864	2781	270	413	1115	Eis
14	Chemie	WUK	3.5.06	426165	211285	3073	300	390	1170	Fim
15	Scharte	WUK	3.5.06	426280	210834	2997	350	420	1472	Eis
16	Piste Mitte	WUK	3.5.06	426072	211009	2976	330	396	1308	Eis
17	Weiflakopf	WUK	3.5.06	426094	210301	2851	400	425	1700	Fim
18	Lawi	WUK	2.5.06	425388	211213	2680	440	463	2039	Eis
19	Pe 11	WUK	2.5.06	425363	211051	2666	320	434	1388	Eis
20	Pe 7	WUK	2.5.06	425070	211170	2626	300	442	1326	Eis
21	Pe 5	WUK	2.5.06	425115	210955	2616	329	456	1501	Eis
22	Pe 1	WUK	2.5.06	424846	210962	2551	305	473	1444	Eis
23	Minimum	WUK	2.5.06	424862	211055	2563	260	446	1159	Eis

Tabelle 1:Schneeprofile im Frühjahr 2006 (*Messwerte unrealistisch hoch, gemessen bei
strömenden Regen, wurden nicht zur Berechnung der Massenbilanz herangezogen)

Tabelle 2:Messwerte der Schneetemperatur (in °C) in den einzelnen Schneeprofilen und in
unterschiedlichen Schneetiefen. (* Mittelwert der Messwerte aus 50, 100, 150, 200
und 250 cm)

Pro	fil											s	chne	etiefe	in cr	n											Mittel-
		10	20	30	40	50	60	70	80	90	100	120	140	160	180	200	220	240	260	280	300	320	340	360	380	400 43	0 wert
1	Lieslstang	0.0	0.0	0.0	-0.1	-0.6	-1.3	-1.9	-2.4	-2.7	-3.2	-3.9	-4.2	-4.5	-4.5	-4.0	-4.3	-4.3	-4.3	-4.1	-3.8	-3.6	-3.8	-3.4			-3.3
3	Steilhang	-0.2	0.0	0.0	0.0	0.0	0.0	0.0	-0.1	-0.1	-0.2	-0.4	-0.7	-1.0	-1.2	-1.5	-1.5	-1.5	-1.3	-0.9	-0.5						-0.8
4	Bockpalfen	-0.2	-0.6	-1.6	-2.1	-2.8	-3.3	-3.9	-4.2	-4.7	-4.9	-5.0	-5.2	-5.2	-4.7	-4.9	-4.9	-4.7	-4.5	-4.3	-4.0	-3.7	-3.4				-4.5
5	OB SP	-0.2	-0.2	-0.2	-0.4	-0.8	-1.7	-2.4	-3.0	-3.4	-3.7	-4.1	-4.2	-4.2	-4.1	-3.5	-3.6	-3.5	-3.1	-2.9	-2.8						-3.1
6	Mitte	0.0	0.0	-0.7	-1.6	-2.7	-2.9	-3.6	-4.0	-4.4	-4.6	-4.9	-4.7	-5.1	-5.1	-5.1	-5.0	-4.6	-4.4	-4.3	-4.0	-3.9	-3.6	-3.4	-3.3	-3.0 -2	.9 -4.4
7	Bruch	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-0.6	-1.6	-2.7	-3.0	-4.5	-4.8	-4.8	-4.4	-4.4	-4.3	-4.2	-4.2	-3.9	-3.6	-3.5	-3.0			-3.2
8	Zunge oben	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-0.5	-0.7	-0.2	-1.2	-1.3	-1.4	-0.6	-0.3	0.0	0.0	-0.1
9	SP oben	-1.7	-0.8	-0.6	-0.9	-1.1	-1.5	-1.9	-2.1	-2.5	-2.9	-3.3	-3.6	-3.7	-3.7	-3.8	-3.7	-3.6	-3.5								-3.0
10	SP unten	-2.7	-2.7	-2.5	-2.9	-3.5	-4.2	-4.7	-5.4	-5.8	-6.0	-6.4	-6.6	-6.7	-6.6	-6.4	-6.3	-6.2	-6.0	-5.7	-5.5	-5.2	-4.9	-4.6			-5.7
11	Pilatus	0.0	0.0	0.0	0.0	0.0	0.0	-0.7	-1.1	-1.5	-2.2	-3.2	-4.2	-4.7	-5.0	-5.1	-4.9	-4.9	-4.7	-4.5	-4.4	-4.2	-3.8	-3.6	-3.5	-3.2 -3	.1 -3.3
12	FLK Mitte	0.0	0.0	-0.2	-0.5	-1.1	-1.8	-2.3	-2.8	-3.4	-3.4	-4.0	-4.2	-4.3	-4.2	-4.2	-4.2	-4.0	-3.6	-3.4	-3.0						-3.4
13	FLK Zunge	0.0	0.0	0.0	0.0	-0.3	-1.2	-1.7	-2.4	-2.9	-3.2	-3.6	-3.8	-3.8	-3.8	-3.7	-3.4										-1.6
14	Chemie	-2.4	-1.4	-0.8	-0.2	0.0	-0.2	-0.4	-0.7	-1.0	-1.1	-1.4	-1.9	-2.2	-2.5	-2.8	-2.8	-2.9	-2.9	-2.8	-2.8	-2.8	-2.9				-1.8
15	Scharte	-2.7	-1.1	-0.2	0.0	-0.1	-0.1	-0.1	-0.3	-0.6	-0.8	-1.2	-1.7	-1.9	-2.3	-2.7	-3.1	-3.3	-3.4	-3.6	-3.6	-3.3	-3.1				-1.8
16	Piste Mitte	-2.2	-1.8	-1.0	-0.4	-0.2	-0.2	-0.2	-0.3	-0.4	-0.6	-0.8	-1.2	-1.5	-2.0	-2.3	-2.5	-2.6	-2.7	-2.5	-2.6						-1.4
17	Weiflakopf	-0.7	-0.6	-0.2	-0.1	-0.1	-0.1	0.0	-0.1	-0.4	-0.8	-1.3	-2.0	-2.7	-3.1	-3.7	-3.9	-4.0	-4.1	-4.1	-4.1	-3.9	-3.8	-3.6	-3.3		-2.2
19	Pell	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-0.2	-1.6	-2.1	-2.9					-3.3		-3.2	-3.1					-1.5
20	Pe7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-0.1	-0.2	-0.5	-0.8	-1.0	-1.3	-1.4	-1.6	-1.8						-0.5
21	Pe5	0.0	0,0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-0.6	-1.2	-1.6	-1.9	-2.1	-2.2	-2.1	-2.0					-0.6
22	Pel	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-0.1	-0.2						0.0
23	Minimum	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-0.1	-0.2	-0.3	-0.5	-0.6	-0.9	_								-0.3

Abbildung 6: Goldbergkees (Gok), Kleinfleißkees (Flk) und Wurtenkees (Wuk), mittlere Schneedichte und Schneetemperatur in Abhängigkeit der Seehöhe

Als Fortsetzung der ALPTRAC/SNOSP Messreihe (WINIWARTER et al, 1998) wurden auch dieses Jahr Schneeproben für eine chemische Analyse genommen und am Institut für Analytische Chemie der Technischen Universität Wien hinsichtlich der wichtigsten Ionen analysiert. Die Probennahme erfolgte wie immer in den Profilen "Lieslstang" am Goldbergkees und "Chemie" am Wurtenkees.

Tabelle 3:Schneetiefensondierung im Frühjahr 2006. (FLK: 26.4., GOK: 26.-28.4., WUK: 2.-3.5.,
Tiefe in m)

	Goldbergkees							Kleinfl	eißkee	es			Wurt	enkees			
Pkt.	Tiefe	Pkt.	Tiefe	Pkt.	Tiefe	Pkt.	Tiefe	Pkt.	Tiefe	Pkt.	Tiefe	Pkt.	Tiefe	Pkt.	Tiefe	Pkt.	Tiefe
1	4.20	29	3.50	57	4.20	85	2.95	1	3.20	29	4.20	1	3.60	29	3.20	57	4.10
2	3.80	30	3.40	58	4.20	86	3.35	2	2.20	30	4.60	2	3.40	30	3.20	58	3.40
3	4.15	31	3.75	59	4.35	87	3.70	3	2.20	31	4.10	3	3.25	31	3.15	59	3.10
4	3.65	32	3.65	60	5.20	88	3.45	4	2.85	32	3.55	4	3.30	32	4.45	60	3.20
5	3.90	33	3.75	61	4.50	89	4.15	5	2.35	33	3.25	5	3.50	33	3.20	61	3.00
6	4.05	34	3.85	62	3.85	90	3.85	6	1.55	34	4.30	6	4.50	34	3.00	62	3.05
7	4.50	35	4.10	63	4.20	91	3.65	7	2.00	35	5.10	7	4.00	35	2.70	63	3.05
8	5.10	36	4.55	64	4.50	92	3.60	8	2.95	36	3.90	8	4.05	36	2.90	64	3.10
9	4.00	37	5.15	65	3.55	93	3.30	9	2.55	37	4.05	9	3.85	37	3.30	65	3.45
10	4.20	38	4.95	66	3.60	94	4.00	10	2.65	38	4.00	10	5.00	38	3.25	66	3.55
11	4.20	39	4.75	67	3.40	95	3.20	11	2.40	39	4.70	11	4.00	39	2.65	67	2.60
12	4.00	40	5.05	68	3.36	96	3.10	12	2.25	40	3.15	12	3.50	40	2.30	68	3.05
13	3.70	41	4.80	69	3.25	97	3.40	13	2.45	41	4.70	13	3.50	41	2.45	69	4.75
14	3.85	42	3.75	70	3.50	98	4.50	14	2.80	42	2.90	14	3.65	42	2.30	70	5.05
15	4.05	43	3.80	71	2.90	99	4.00	15	2.10	43	2.10	15	3.60	43	2.65	71	5.10
16	4.05	44	3.55	72	3.10	100	3.85	16	2.70	44	2.00	16	3.25	44	2.25	72	5.15
17	3.60	45	4.75	73	3.20	101	2.80	17	3.65	45	2.00	17	2.95	45	2.95	73	6.00
18	3.50	46	3.50	74	3.15	102	3.45	18	3.00	46	2.55	18	2.75	46	2.65	74	4.45
19	3.40	47	3.20	75	3.50	103	3.10	19	2.85	47	3.90	19	3.30	47	3.45	75	4.80
20	3.20	48	2.90	76	4.40			20	3.10	48	3.60	20	3.30	48	3.25	76	2.80
21	3.00	49	3.15	77	3.25			21	3.10	49	2.55	21	3.20	49	3.10	77	5.25
22	3.15	50	3.50	78	4.05			22	2.95	50	2.95	22	3.15	50	3.45	78	4.30
23	3.05	51	3.80	79	2.30			23	3.20	51	3.40	23	3.80	51	3.60	79	3.40
24	2.90	52	3.85	80	2.45			24	4.25	52	3.30	24	3.80	52	3.40	80	5.55
25	3.50	53	4.00	81	2.85			25	3.10	53	3.55	25	3.00	53	3.00	81	3.25
26	3.45	54	3.15	82	4.55			26	2.95	54	2.50	26	3.05	54	3.00	82	4.40
27	3.60	55	3.05	83	2.80			27	3.45	55	2.90	27	2.90	55	2.95		
28	3.40	56	4.25	84	1.70			28	4.05			28	2.75	56	3.35		

Abbildung 7: Lage der Schneeprofile und Sondierungspunkte im Frühjahr 2006

3.2 Messungen für die Jahresbilanz 2005/2006

Es sind auf allen drei Gletschern graue Ablationspegel aus Kunststoff mit 150 cm-Segmenten in Verwendung. Diese Pegel wurden am Goldbergkees Ende Juli das erste Mal abgelesen. Anfang September wurden am Goldbergkees und Kleinfleißkees in Summe 14 Pegel neueingebohrt und Anfang Oktober erfolgte die Endablesung für die Berechnung der Massenbilanz 05/06. Am Wurtenkees konnten dieses Jahr wieder nur die Hälfte der Pegel abgelesen werden, nämlich die im unteren Bereich des Gletschers. Die Unsicherheit der berechneten Massenbilanz ist deshalb größer als bei den anderen beiden Gletschern. Die Ablesungen am Wurtenkees erfolgten am 16.7. und am 22.9.06, dort wurden 7 Pegel nachgebohrt. Die genauen Ablesungen und Abschmelzbeträge der Pegel sind aus den Tabellen 4 und 5 zu entnehmen, die Lage der Pegel aus den Massenbilanzkarten im Anhang.

Tabelle 4:Ablesungen der Ablationspegel am Goldberg- und Kleinfleißkees im Haushaltsjahr
05/06. (kursive, graue Werte sind keine Messwerte, sondern interpolierte Werte,
fettgedruckt heißt neu gebohrt).

Pegel T.9 11.10. 21.7. 27.7. 5.9. 3.10. 2005 2006 2006 x y z 2005 2006 2006 2006 2006 [cm Eis] [cm Eis] [cm V G03/1 421385 212166 2870 394 349 221 215 110 -212 -100 G03/2 421385 212166 2870 394 349 228 85 110 -212 -1908 G04/6 421700 211886 2660 350 $$ 388 277 - - 210 - 212 - 2448 G04-4 42181 211722 2655 467 471 400 274 175 -1/9 -272 -2448 G04-4 42181 21172 265 486 360 288 37 - - 272 2448 267 - 272 - <t< th=""><th></th><th></th><th colspan="3">Koordinaten</th><th>Peg</th><th>elablesung</th><th></th><th>Ablation</th><th>Ablation</th><th>Ablation</th></t<>			Koordinaten			Peg	elablesung		Ablation	Ablation	Ablation		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Pegel	x	v	z	7.9. 2005	11.10. 2005	21.7. 2006	27.7. 2006	5.9. 2006	3.10. 2006	2005 [cm Eis]	2006 [cm Eis]	2006 [mm WW]
	002/1	421205	212262	2020					401	200	,		010
	G03/1	421383	212355	2920	204	240			421	389	05	-21	-819
	G03/2	421389	212100	2870	394	349			258	110	-05	-/ //	-1209
	60.06	421700	211000	2000	550	1°			215	275		-212	-1908
	CO5/6	421700	211000	2000	467	1.1-	400		274	175	1.10		-2448
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	C04-4	421724	211077	2033	407	156	400		2/4	288	-/+/	-272	-1512
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	G04-4	421001	211/72	2030	400	520			482	200	-09	-100	-1312
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Stern 02	422104	211075	2677	558	110			402	27	-4/		-927
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	C03/8	422133	211045	2000		11			70	564		1.7.8	+002
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	70.06	422097	211410	2098					606	504			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C02/11	422303	211400	2003	242			246	145	45	190	259	2222
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	71-06	422517	211490	2025	343	2023		240	105	43	-109	-238	-2322
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	72.06	422319	211498	2023					60/	40/			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C02/4	422709	211360	2399	226	107	150		40	520	107	222	2007
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	603/4	422082	211970	2037	220	197	150		40 574	500	-107	-225	-2007
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C04 2	422082	211971	2037	445	cin.	408	265	3/4	105	154	225	2026
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	604-2	422273	211020	2045	443	110	408	303	200	185	-150	-223	-2025
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	75 04	422273	211020	2045					070	615			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	73-00 C04 6	422079	211324	2470	460				207	200	157	200	1001
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	G04-3	422978	211381	2441	430	547	521		307	200	-152	-209	-1001
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	G03/4	423043	211078	2418	2/3	342	197		3/0	207	-221	-275	-2475
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	G03/9	422902	211/28	2414	2/8	235	10/		45	407	-210	-511	-2/99
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C05/2	422903	211/2/	2413	496		408		010	491	7.15	200	2700
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	74.06	422924	211014	2300	460	4.00	408		233	405	-243	-300	-2700
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	74-00 C02/10	422924	211614	2388	241	205	200		004	493	725	262	2277
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	G03/10	423129	211579	2437	341	305	300		14/ 530	425	-235	-255	-2211
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	G00/10	423129	211579	2437					530	433			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	73-00 C06/1	423012	211/90	2387	£ 90	622	474		007	105	244	247	2122
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	005/1	423017	211625	2380	580	332	4/4		297	185	-200	-34/	-3123
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	G05/2	423017	211823	2380	238	494	438		201	150	-205	-344	-3096
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	G03/3	423473	211450	2475	242				191	14.2	-93	-02	-/38
$ \begin{array}{ccccccccccccccccccccccccccccccc$	S11	421118	212807	2951	213	193			132	85	-51	-108	-972
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	66-06	421118	212806	2951					613	558			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	02/10	420567	212983	2842		250			244	171		-79	-711
99/7 420638 212687 2833 207 200 171 92 -108 -972 F04/4 420569 212711 2825 654 618 574 504 -55 -114 -1026 F03/2 420298 212854 2787 383 304 250 180 -194 -124 -1116 64-06 420298 212854 2787 610 535 556 531 450 366 -118 -165 -1485 F04/2 420439 212730 2805 566 531 450 366 -118 -165 -1485 F04/2 420506 21280 2810 564 532 402 331 -122 -201 -1809 F03/1 420493 212422 2809 315 275 148 72 -194 -203 -1827 65-06 420493 212419 2808 - 611 536 - - -171 F04/3 420276 212712 2779 520 <td< td=""><td>F03/3</td><td>420461</td><td>212937</td><td>2822</td><td>508</td><td>471</td><td></td><td></td><td>416</td><td>342</td><td>-113</td><td>-129</td><td>-1161</td></td<>	F03/3	420461	212937	2822	508	471			416	342	-113	-129	-1161
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	99/7	420638	212687	2833	207	200			171	92		-108	-972
F03/2 420298 212854 2787 383 304 250 180 -194 -124 -1116 64-06 420298 212854 2787 383 304 250 180 -194 -124 -1116 64-06 420298 212854 2787 610 535 535 F04/2 420439 212730 2805 566 531 450 366 -118 -165 -1485 F04/1 420506 212580 2810 564 532 402 331 -122 -201 -1809 F03/1 420493 212422 2809 315 275 148 72 -194 -203 -1827 65-06 420493 212419 2808 611 536 536 F04/3 420276 212712 2779 520 465 360 276 -204 -189 -1701	F04/4	420569	212711	2825	654	618			574	504	-55	-114	-1026
64-06 420298 212854 2787 610 535 F04/2 420439 212730 2805 566 531 450 366 -118 -165 -1485 F04/1 420506 212580 2810 564 532 402 331 -122 -201 -1809 F03/1 420493 212422 2809 315 275 148 72 -194 -203 -1827 65-06 420493 212419 2808	F03/2	420298	212854	2787	383	304			250	180	-194	-124	-1116
F04/2 420439 212730 2805 566 531 450 366 -118 -165 -1485 F04/1 420506 212580 2810 564 532 402 331 -122 -201 -1809 F03/1 420493 212422 2809 315 275 148 72 -194 -203 -1827 65-06 420493 212419 2808	64-06	420298	212854	2787					610	535			
F04/1 420506 212580 2810 564 532 402 331 -122 -201 -1809 F03/1 420493 212422 2809 315 275 148 72 -194 -203 -1827 65-06 420493 212419 2808 611 536 F04/3 420276 212712 2779 520 465 360 276 -204 -189 -1701	F04/2	420439	212730	2805	566	531			450	366	-118	-165	-1485
F03/1 420493 212422 2809 315 275 148 72 -194 -203 -1827 65-06 420493 212419 2808 611 536 F04/3 420276 212712 2779 520 465 360 276 -204 -189 -1701	F04/1	420506	212580	2810	564	532			402	331	-122	-201	-1809
65-06 420493 212419 2808 611 536 F04/3 420276 212712 2779 520 465 360 276 -204 -189 -1701	F03/1	420493	212422	2809	315	275			148	72	-194	-203	-1827
F04/3 420276 212712 2779 520 465 360 276 -204 -189 -1701	65-06	420493	212419	2808					611	536			
	F04/3	420276	212712	2779	520	465			360	276	-204	-189	-1701

Tabelle 5:Koordinaten und Ablesungen der Ablationspegel am Wurtenkees im Haushaltsjahr
05/06. (kursive, graue Werte sind keine Messwerte, sondern interpolierte Werte für
die Berechnung der Massenbilanz, fettgedruckt heißt neu gebohrt).

		V	Peg	elablesung	en [cm im	Eis]	Ablation	Ablation	Ablation	
Pegel		Koordinaten		2.9.	24.9.	16.7.	22.9.	2005	2006	2006
	x	у	z	2005	2005	2006	2006	[cm Eis]	[cm Eis]	[mm WW]
U11	5211007	425352	2668	475	455					
V11	5210916	425324	2648			600	395	-80	-215	-1935
V9	5211057	425371	2673			240	240			
U7	5211234	425120	2649	540	500	340	180	-94	-180	-1620
V7	5211234	425120	2649			600	415		-195	-1755
U5	5210957	425113	2606	330	290		70			
V5	5210957	425113	2606			600	400	-180	-220	-1980
U3	5210957	425042	2599	330	280	240				
V 3	5210957	425042	2599			600	370	-200	-295	-2655
U2	5210992	424951	2570	180	120	0				
V2	5210992	424951	2570			600	330	-230	-420	-3780
UI	5210921	424885	2550	240	170					
V1	5210921	424885	2550			600	330	-220	-410	-3690

Zusätzlich zu den Messungen für die Massenbilanz wurden von 4. bis 6. September die Ablationspegel am Goldbergkees und am Kleinfleißkees mit einem RTK-GPS (Leica 1230) eingemessen, und Echtzeitdaten einer Referenzstation über das APOS-Netz des BEV (Bundesamt für Eich- und Vermessungswesen) abgerufen. Mit der Korrektur aus dem APOS-Netz konnten die Koordinaten des Standortes der Ablationspegel mit einer Genauigkeit von wenigen Zentimetern ermittelt werden. Aus der Differenz dieser Koordinaten mit jenen vom Vorjahr wurde die Bewegung der Gletscheroberfläche an den Ablationspegeln ermittelt. Die horizontale und vertikale Eisbewegung an den Ablationspegeln ist in Tabelle 6 aufgelistet und in Abbildung 8 räumlich dargestellt.

Tabelle 6:Eisbewegung an den Ablationspegeln am Kleinfleißkees und Goldbergkees, berechnet
aus der Differenz von RTK-GPS-Messungen am 7.-8.9.2005 und am 4.-6.9.2006.

Gletscher	Pegel	Hang- neigung (DEM 98) [Grad]	Horizontal- versatz [m]	Höhendifferenz aus RTK- Messungen [m]	Vertikalbewegung resultierend aus Horizontalversatz [m]	Höhenänderung der Eisoberfläche [m]	Höhenänderung durch Ablation [m]	Vertikalbewegung der Eisoberfläche [cm]
FLK	S 11	24	0.50	-0.91	-0.22	-0.69	-0.81	0.12
	F03/3	10	2.33	-1.07	-0.42	-0.65	-0.92	0.27
	F03/2	12	2.09	-1.19	-0.43	-0.76	-1.33	0.57
	F04/3	8	3.70	-1.35	-0.50	-0.86	-1.60	0.74
	F04/2	13	5.17	-1.57	-1.22	-0.35	-1.16	0.81
	F04/4	8	4.77	-1.33	-0.64	-0.69	-0.80	0.11
	99/7	5	3.95	-1.41	-0.36	-1.06	-0.86	-0.20
	F04/1	11	5.88	-1.83	-1.18	-0.65	-1.62	0.97
	F03/1	12	3.33	-1.64	-0.71	-0.93	-1.67	0.74
GOK	G03/2	18	2.37	-1.98	-0.77	-1.22	-1.36	0.14
	G05/6	8	0.10	-1.80	-0.01	-1.79	-1.93	0.14
	G03/7	11	0.15	-1.28	-0.03	-1.25	-1.35	0.10
	G04/4	9	1.41	-1.38	-0.23	-1.15	-1.26	0.11
	Stralstat	3	1.34	-1.11	-0.07	-1.04	-0.75	-0.29
	G04/3	5	1.33	-1.08	-0.12	-0.96	-0.76	-0.20
	G03/4	3	0.27	-1.59	-0.01	-1.58	-1.78	0.20
	G04/2	13	1.08	-1.47	-0.25	-1.22	-1.60	0.38
	G03/11	14	1.82	-1.45	-0.44	-1.01	-1.78	0.77
	G04/5	15	1. 71	-2.34	-0.45	-1.89	-1.43	-0.46

Abbildung 8: Darstellung der Eisbewegung an den Ablationspegeln am Kleinfleißkees und Goldbergkees zwischen 7.-8.9.2005 und 4.-6.9.2006 nach Tabelle 6. Die Pfeile zeigen die Richtung der Eisbewegung an, die Länge der Pfeile ist nicht maßstabsgetreu. Die Vertikalbewegung des Gletschereises ist an fast allen Pegeln nach oben gerichtet (Emergenz), nur an den Pegeln, die nahe an der Gleichgewichtslinie liegen ist sie nach unten gerichtet (Submergenz). Der Pegel G04/6 an der Gletscherzunge bewegt sich vertikal nach unten, obwohl er deutlich im Ablationsgebiet liegt. Dieses großräumige Absinken im Bereich der Gletscherzunge ist in Abbildung 1 dargestellt und beschrieben.

Abbildung 9: Links: Christine Kroisleitner misst am 4. September 06 die Koordinaten eines Ablationspegels am Kleinfleißkees mittels RTK-GPS. Rechts: Der Obere Boden des Goldbergkeeses am 13. Oktober 06. Im Vordergrund sind einige Spalten in Form von konzentrischen Kreisen deutlich sichtbar. In diesem Bereich findet ein markantes Absinken der Eisoberfläche statt, wodurch sich die runden Spalten ausbilden. Das Absinken wird ebenso wie an der Gletscherzunge (siehe Abbildung 1) durch eine Aushöhlung des Eises durch Schmelzwasser an der Gletscherbasis verursacht. (Fotos: Gernot Weyss).

4. Auswertung und Ergebnisse

Die Werte aus den Punktmessungen der Schneeprofile, Sondierungspunkte und Ablationspegel wurden mit der Software ArcGis auf der Gletscherfläche zu einem Raster interpoliert (spline interpolation) und aufsummiert. Die dabei verwendete Gletscherfläche wurde auf der Grundlage des Orthofotos vom September 2003 erstellt. Die Ergebnisse der Massenbilanz für das Haushaltsjahr 05/06 sind in Tabelle 7 zusammengefasst.

Der Berechnung der Massenbilanz auf den unterschiedlichen Höhenstufen liegt das digitale Geländemodell (Auer et al, 2002) von 1998 zu Grunde. Die spezifischen Bilanzen und Bilanzvolumina pro Höhenstufe sind in Tabelle 8 für alle drei Gletscher aufgelistet und in Tabelle 9 zusätzlich für die oberen und unteren Gletscherteile von Goldbergkees und Wurtenkees (siehe Abbildung 10) getrennt angegeben.

Anhand der Darstellung der spezifischen Massenbilanzen pro Höhenstufe in Abbildung 11 erkennt man wesentliche Unterschiede der drei Gletscher. Wechselnde Exposition und Steilstufen im Höhenverlauf und die damit bedingte Abschattung und Schneeverfrachtung führen zu unterschiedlicher Höhenabhängigkeit der spezifischen Massenbilanz. Multipliziert man die spezifische Massenbilanz pro Höhenstufe mit der tatsächlichen Gletscheroberfläche in dieser Höhenstufe, so erhält man den absoluten Massenverlust pro Höhenstufe, dargestellt in Abbildung 12. Die in Tabelle 7 angegebene Gleichgewichtslinie (ELA) wurde aus den Diagrammen in Abbildung 11 graphisch ermittelt. Am Goldbergkees und Wurtenkees gibt es auf jedem Gletscherteil eine Gleichgewichtslinie, in Tabelle 7 ist jeweils nur die Höhe der höchstgelegenen Gleichgewichtslinie angegeben, da diese die klimatisch relevante ist. Die Gleichgewichtslinien der unteren Gletscherteile sind eher orographisch bedingt. Die räumliche Verteilung der Massenbilanz ist den Massenbilanzkarten im Maßstab 1:12500 im Anhang zu entnehmen.

Massenbilanz 2005/2006	[]	GOK	WUK	FLK	GOK Oberer Teil	GOK Unterer Teil	WUK Oberer Teil	WUK Unterer Teil
S (Fläche 2003)	k m ²	1.42	0.82	0.87	0.39	1.04	0.44	0.38
Sc (Akkumulationsfläche)	km²	0.09	0.14	0.09	0.06	0.03	0.09	0.04
Sa (Ablationsfläche)	km²	1.33	0.69	0.78	0.32	1.01	0.35	0.34
Sc/S (AAR)		0.07	0.17	0.10	0.17	0.03	0.21	0.11
Sc/Sa		0.07	0.20	0.11	0.20	0.03	0.27	0.13
ELA (Gleichgewichtslinie)	m	3020	3120	3070				
b (spez. Massenbilanz)	mm	-1077	-778	-655	-494	-1294	-264	-1377
bw (spez. Winterbilanz)	mm	1577	1441	1234	1390	1647	1386	1504
bs (spez. Sommerbilanz)	mm	-2655	-2218	-1889	-1885	-2941	-1650	-2881
bc (spez. Nettoakkumulation)	mm	12	32	13	36	2	33	30
ba (spez. Nettoablation)	mm	-1089	-810	-668	-531	-1297	-298	-1407
bw + bs (spez. Totalmassenumsatz)	mm	4232	3659	3124	3275	4588	2845	4608
bc + ba (spez. Nettomassenumsatz)	mm	1100	842	682	567	1299	331	1437
B (Bilanzvolumen)	10^6 kg	-1535	-641	-571	-191	-1345	-117	-524
Bw (Winterbilanzvolumen)	10^6 kg	2247	1188	1076	537	1710	615	573
Bs (Sommerbilanzvolumen)	10 ⁶ kg	-3783	-1829	-1647	-728	-3055	-732	-1097
Bc (Nettoakkumulation)	10 ⁶ kg	16	26	11	14	2	15	11
Ba (Nettoablation)	10^6 kg	-1552	-668	-583	-205	-1347	-132	-536
Bw + Bs (Totalmassenumsatz)	10 ⁶ kg	6030	3016	2722	1265	4765	1262	1754
Bc + Ba (Nettomassenumsatz)	10 ⁶ kg	1568	694	594	219	1349	147	547

Tabelle 7: Ergebnisse der Massenbilanz 05/06, ausgewertet auf den Gletscherflächen von 2003

Tabelle 8:	Spezifische Massenbilanz und Massenbilanzvolumen 05/06 nach Höhenstufen für alle
	3 Gletscher

	Höhenstufe	Fläche	spezifische	Massenbilar	nz 05/06	Massenbilanzvolumen 05/06				
	DEM 98	2003	Jahr b	Winter bw	Sommer bs	Jahr B	Winter Bw	Sommer Bs		
	m	m²	mm	mm	mm	10 ⁶ kg	10 ⁶ kg	10 ⁶ kg		
GOK	2350 - 2400	12213	-3010	1664	-4674	-36.767	20.322	-57.088		
	2400 - 2450	111265	-2174	1566	-3740	-241.877	174.214	-416.091		
	2450 - 2500	65911	-925	1787	-2712	-60.970	117.761	-178.731		
	2500 - 2550	21075	-785	1675	-2460	-16.541	35.297	-51.838		
	2550 - 2600	25336	-1592	1626	-3218	-40.324	41.200	-81.524		
	2600 - 2650	170685	-1575	1671	-3246	-268.787	285,281	-554.068		
	2650 - 2700	468975	-1350	1565	-2915	-633.019	733.867	-1366.886		
	2700 - 2750	145788	-294	1860	-2154	-42.849	271.184	-314.033		
	2750 - 2800	26457	-373	1583	-1956	-9.879	41.877	-51.756		
	2800 - 2850	37349	-900	1286	-2186	-33.621	48.027	-81.649		
	2850 - 2900	71519	-979	1246	-2225	-70.031	89.091	-159.122		
	2900 - 2950	111528	-606	1480	-2086	-67.607	165.035	-232,642		
	2950 - 3000	93182	-238	1564	-1803	-22,186	145.778	-167.964		
	3000 - 3050	52736	61	1276	-1214	3.223	67.265	-64.042		
	3050 - 3100	10919	468	1206	-738	5.110	13.168	-8.058		
	2350 - 3100	1424938	-1078	1579	-2657	-1536.124	2249.366	-3785.490		
WUK	2500 - 2550	5530	-3782	1471	-5252	-20.912	8.133	-29.045		
	2550 - 2600	56132	-3304	1194	-4498	-185.464	66.999	-252.463		
	2600 - 2650	123210	-1958	1372	-3330	-241.191	169.053	-410.244		
	2650 - 2700	157017	-430	1644	-2073	-67.452	258.068	-325.520		
	2700 - 2750	45197	-249	1749	-1998	-11.274	79.052	-90.326		
	2750 - 2800	8304	-326	1273	-1599	-2.709	10.568	-13.277		
	2800 - 2850	79437	-266	1270	-1536	-21.108	100.909	-122.017		
	2850 - 2900	81055	-216	1385	-1602	-17.541	112.289	-129.830		
	2900 - 2950	64548	-388	1423	-1811	-25.060	91.849	-116.908		
	2950 - 3000	95856	-309	1384	-1693	-29.592	132.685	-162.277		
	3000 - 3050	73273	-216	1420	-1637	-15.837	104.083	-119.920		
	3050 - 3100	32011	-97	1557	-1654	-3.096	49.851	-52.946		
	3100 - 3150	2859	19	1441	-1422	0.054	4.119	-4.065		
	2500 - 3150	824429	-778	1441	-2218	-641.181	1187.658	-1828.839		
FLK	2700 - 2750	7577	-2008	-18	-1990	-15.215	-0.133	-15.081		
	2750 - 2800	110382	-1648	779	-2427	-181.906	86.015	-267.921		
	2800 - 2850	240120	-1017	1144	-2161	-244.249	274.768	-519.017		
	2580 - 2900	243051	-103	1467	-1570	-25.048	356.499	-381.547		
	2900 - 2950	129691	-307	1415	-1722	-39.820	183.547	-223.367		
	2950 - 3000	102110	-482	1311	-1793	-49.222	133.859	-183.081		
	3000 - 3050	37623	-416	1066	-1483	-15.662	40.118	-55.780		
	3050 - 3100	966	1	897	-896	0.001	0.867	-0.866		
	2700 - 3100	871520	-655	1234	-1889	-571.121	1075.540	-1646.661		

Tabelle 9:Spezifische Massenbilanz und Massenbilanzvolumen 05/06 nach Höhenstufen von
Goldbergkees und Wurtenkees getrennt für den oberen und unteren Gletscherteil

-		Oberer Gletscherteil						Unter	rer Glets	cherteil	
	Höhenstufe DEM 98	Fläche 2003	bw	b	Bw	В	Fläche 2003	bw	b	Bw	В
	m	m²	mm	mm	10 ⁶ kg	10 ⁶ kg	m²	mm	mm	10 ⁶ kg	10 ⁶ kg
GOK	2350 - 2400						12213	1664	-3010	20.32	-36.77
	2400 - 2450						111265	1566	-2174	174.21	-241.88
	2450 - 2500						65911	1787	-925	117.76	-60.97
	2500 - 2550						21075	1675	-785	35.30	-16.54
	2550 - 2600						25336	1626	-1592	41.20	-40.32
	2600 - 2650						170685	1671	-1575	285.28	-268.79
	2650 - 2700						468975	1565	-1350	733.87	-633.02
	2700 - 2750						145788	1860	-294	271.18	-42.85
	2750 - 2800	11730	1193	-639	13.99	-7.50	14727	1894	-162	27.89	-2.38
	2800 - 2850	35559	1269	-913	45.11	-32.48	1790	1628	-637	2.91	-1.14
	2850 - 2900	70577	1242	-987	87.62	-69.65	942	1558	-405	1.47	-0.38
	2900 - 2950	111528	1480	-606	165.04	-67.61					
	2950 - 3000	93182	1564	-238	145.78	-22.19					
	3000 - 3050	52736	1276	61	67.27	3.22					
	3050 - 3100	10919	1206	468	13.17	5.11					
	2350 - 3100	386231	1393	-495	537.97	-191.09	1038707	1648	-1295	1711.39	-1345.04
WUK	2500 - 2550						5530	1471	-3782	8.13	-20.91
	2550 - 2600						56132	1194	-3304	67.00	-185.46
	2600 - 2650						123210	1372	-1958	169.05	-241.19
	2650 - 2700						157017	1644	-430	258.07	-67.45
	2700 - 2750	7190	1382	-324	9.93	-2.33	38007	1819	-235	69.12	-8.95
	2750 - 2800	7545	1239	-350	9.35	-2.64	759	1605	-91	1.22	-0.07
	2800 - 2850	79437	1270	-266	100.91	-21.11					
	2850 - 2900	81055	1385	-216	112.29	-17.54					
	2900 - 2950	64548	1423	-388	91.85	-25.06					
	2950 - 3000	95856	1384	-309	132.69	-29.59					
	3000 - 3050	73273	1420	-216	104.08	-15.84					
	3050 - 3100	32011	1557	-97	49.85	-3.10					
	3100 - 3150	2859	1441	19	4.12	0.05					
	2500 - 3150	443774	1386	-264	615.07	-117.15	380655	1504	-1377	572.59	-524.03

Abbildung 10: Aufteilung in oberen und unteren Gletscherteil am Goldbergkees und Wurtenkees

Abbildung 11: Höhenabhängigkeit der spezifischen Massenbilanzen 05/06 (dargestellt ist b, bw und bs aus Tabelle 8) und im Mittel 91-00 bzw. 99-03. Die höchstgelegene Nullstelle der spezifischen Nettomassenbilanz b ist die Gleichgewichtslinie (ELA) in Tabelle 7.

Abbildung 12: Bilanzvolumina 05/06 auf den unterschiedlichen Höhenstufen. Dargestellt ist B (Jahr), Bw (Winter) und Bs (Sommer) aus Tabelle 8.

5. Danksagung

Die Messung und Auswertung der Massenbilanz von Goldbergkees, Kleinfleißkees und Wurtenkees erfolgte im Rahmen der Projekte MOMBASA (PL Dr. Schöner) und WURTEN (PL Dr. Böhm). Folgenden Institutionen danken wir für die Finanzierung der Projekte: Dem Bundesministerium für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft, der Kärntner Elektrizitätswirtschafts-AG (Kelag) und der Zentralanstalt für Meteorologie und Geodynamik (ZAMG). Dem Land Kärnten danken wir für die Bereitstellung des Orthofotos 2003.

Die Feldmessungen wurden in Zusammenarbeit zwischen der Zentralanstalt für Meteorologie und Geodynamik (ZAMG), dem Institut für Meteorologie und dem Institut für Wasserwirtschaft, Hydrologie und konstruktiven Wasserbau der Universität für Bodenkultur Wien und der Kärntner Elektrizitätswirtschafts-AG durchgeführt.

Folgende Mitarbeiter und Studenten waren daran beteiligt:

Ingeborg Auer, Daniel Binder, Reinhard Böhm, Klaus Dolschak, Birgit Eibl, Andreas Feiersinger, Thomas Feix, Berthold Fliedl, Martin Glas, Bernhard Hynek, Roman Just, Wolfgang Kainrath, Gernot Koboltschnig, Bernhard Köck, Christine Kroisleitner, Helga Kromp-Kolb, Andreas Lampert, Barbara Mayer, Gernot Michlmayr, Anna Micheuz, Rebecca Mott, Christian Mühlegger, Josef Neubauer, Johanna Nikitsch, Martin Oberhammer, Sonja Schmied, Wolfgang Schöner, Mark Strenger, Barbora Stuhl, Friedl Unterfrauner, Sabine Radanovics, Friedrich Reisenberger, Stefan Reisenhofer, Ursula Weiser, Clemens Weissensteiner, Gernot Weyss.

6. Literatur

- AUER, I., R. BÖHM, N. HAMMER, W. SCHÖNER, T. WIESINGER und W. WINIWARTER (1995): Glaziologische Untersuchungen im Sonnblickgebiet: Forschungsprogramm Wurtenkees. Österreichische Beiträge zu Meteorologie und Geophysik, Heft 12, Zentralanstalt f. Meteorologie und Geodynamik, Wien, 143pp.
- AUER, I., R. BÖHM, M. LEYMÜLLER und W. SCHÖNER (2002): Das Klima des Sonnblicks Klimaatlas und Klimatographie der GAW Station Sonnblick einschließlich der umgebenden Gebirgsregion. Österreichische Beiträge zu Meteorologie und Geophysik, Heft 29, Zentralanstalt f. Meteorologie und Geodynamik, Wien.
- KASER, G., A. FOUNTAIN und P. JANSSON (2003): A manual for monitoring the mass balance of mountain glaciers. International Hydrological Programme, IHP-VI, Technical Documents in Hydrology No. 59, U-NESCO, Paris
- WINIWARTER, W., R. BÖHM, A. KASPER, H. PUXBAUM, W. SCHÖNER, W. VITOVEC und R. WERNER (1998). ALPTRAC: High Alpine Aerosol and snow chemistry. Concentration of ionic compounds in the wintertime deposition: results and trends from the Austrian Alps over 11 years (1983-1993). Atmospheric Environment Volume 32, No.23

