Massenhaushalt Wurtenkees - Jahresbilanz 1988/89 WOLFGANG SCHÖNER, Wien

1. Zusammenfassung

Die folgende Arbeit beschreibt die Meßergebnisse des siebenten untersuchten Massenhaushaltsjahres auf dem Schareckteil des Wurtenkees' im Sonnblickgebiet. Einer etwas über dem Durchschnitt liegenden Winterbilanz von 125,5 g/cm² steht eine negative Sommerbilanz von -139,8 g/cm² gegenüber, die zu einer schwach negativen Jahresbilanz von -14,3 g/cm² führte. Die über eine Gletscherfläche von 1,37 km² ungesetzte Masse war mit 3,59 Mio.t wesentlich geringer als in den letzten Jahren - sie macht 28,7% der Gesamtmasse des Gletschers von 1979 (dem Jahr der letzten photogrammetrischen Auswertung) aus. Der Massenverlust 1988/89 beträgt 0,19 Mio.t, das sind 1,5% der Gesamtmasse des Gletschers von 1979.

2. Einleitung

In diesem Bericht wird die siebente Massenhaushaltsuntersuchung mittels direkter glaziologischer Methode auf dem Wurtenkees beschrieben. Alle Massenhaushaltsmessungen auf dem Wurtenkees sind in der Zeitschrift Wetter und Leben veröffentlicht worden. Die Feldmessungen wurden wieder in Zusammenarbeit der Zentralanstalt für Meteorologie und Geodynamik, Wien, mit dem Institut für Meteorologie und Geophysik der Universität Wien, der KELAG und der Österreichischen Akademie der Wissenschaften durchgeführt, denen an dieser Stelle herzlich für ihre Unterstützung gedankt sei. Folgende Mitarbeiter führten die Feldmessungen auf dem Gletscher durch: I. Auer, R. Böhm, G. Clement, A. Egger, N. Hammer, M. Hartl, H. Kolb, F. Scharm, W. Schöner, I. Schwarzl, J. Stibor, T. Wiesinger, sowie Mitglieder der Vermessungsgruppe der KELAG unter H. Auer.

3. Witterungsverlauf im Haushaltsjahr 1988/89

Für die Beschreibung des Witterungsverlaufes in der Gipfelregion des Wurtenkees' steht das Sonnblick-Observatorium (3106 m) zur Verfügung. Bedingt durch die nach Süden hin offene Lage des Gletschers sind für seine tiefer gelegenen Gebiete vor allem im Hinblick auf die Temperaturverhältnisse noch am ehesten die Beobachtungen der Gipfelstation Villacher Alpe (2139 m) heranzuziehen, obwohl diese ca. 70 km gegen Südosten entfernt und zu tief gelegen ist. Die Tabelle 1 gibt monateweise den Witterungsverlauf und die Abweichung für die beiden erwähnten Stationen wieder.

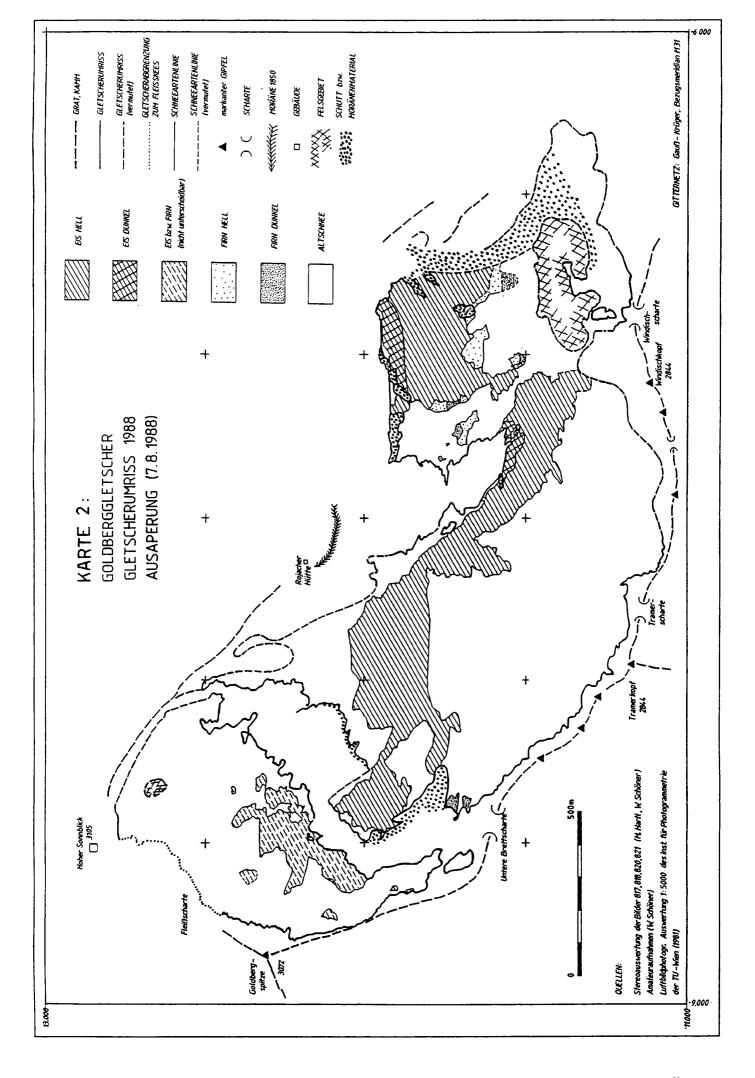


TABELLE 1: Witterungsverlauf im Glazialjahr 1988/89 auf dem Sonnblick (3106 m)

	окт	NOV	DEZ	JAN	FEB	MĀR	APR	WINTER
Lufttemperatur ('C)	-1,9	•	-11,1	-7,0	-8,4	-7,9	-7,3	-7,6
Abweichung vom Normalwert ('C)	1,9	-1,8	0,0	5,9	4,7	3,4	1,2	2,2
Zahl der Frosttage	25	30	31	31	28	31	30	206
Zahl der Eistage	12	30	31	31	28	29	30	191
Sonnenscheindauer (h)	156	166	72	236	138	180	59	1006
Abweichung vom Normalwert (%)	-12	49	-36	112	20	26	-56	11
Globalstrahlung (kWh/m²)	86	64	41	68	79	131	137	87
Niederschlag (mm)	63	95	190	64	84	104	167	767
Abweichung vom Normalwert (%)	-43	-27	53	-48	-21	-19	-4	-14
Niederschlagstage (≥0,1 mm)	13	13	22	3	17	22	25	115
Schneefalltage	7	13	22	3	17	22	25	109
	·-		MAI	JUN	JUL	AUG	SEP	SOMMER
Lufttemperatur (°C)			-4,1	-2,5	1,9	1,5	-0,6	-0,8
Abweichung vom Normalwert (°C)			0,0	-1,9	0,6	0,1	0,0	-0,3
Zahl der Frosttage			31	27	15	13	22	108
Zahl der Eistage			25	18	2	6	11	62
Sonnenscheindauer (h)			153	82	115	150	149	649
Abweichung vom Normalwert (%)			4	-43	-32	-10	-11	-18
Globalstrahlung (kWh/m²)			170	150	162	145	115	742
Niederschlag (mm)			100	167	219	141	138	765
Abweichung vom Normalwert (%)			-34	14	47	-10	26	7
Niederschlagstage (≥0,1 mm)			18	26	23	19	14	100
Schneefalltage			17	20	5	6	11	59

Witterungsverlauf im Glazialjahr 1988/89 auf der Villacher Alpe (2139 m)

	OKT	NOV	DEZ	JAN	FEB	MĀR	APR	WINTER
Lufttemperatur ('C)	3,8	-3,8	-4,6	-1,6	-2,2	-1,5	-1,8	-1,7
Abweichung vom Normalwert ('C)	2,1	-1,0	0,9	5,8	5,1	3,8	0,6	2,4
Zahl der Frosttage	10	25	28	27	25	24	30	169
Zahl der Eistage	1	13	21	10	13	14	14	86
Sonnenscheindauer (h)	147	185	153	260	164	192	56	1158
Abweichung vom Normalwert (%)	-17	65	21	98	19	27	-63	17
Globalstrahlung (kWh/m²)	77	-	44	-	75	120	118	_
Niederschlag (mm)	68	18	49	4	105	90	210	544
Abweichung vom Normalwert (%)	-39	-88	-56	-96	3	-19	46	-35
Niederschlagstage (≥0,1 mm)	13	8	9	1	8	12	26	77
Schneefalltage	2	8	9	1	8	12	20	60
			MAI	JUN	JUL	AUG	SEP	SOMMER
Lufttemperatur (°C)			2,2	4,5	8,8	8,3	5.1	5,8
Abweichung vom Normalwert ('C)			0,1	-1,4	0,8	0,4	-0,4	-0,1
Zahl der Frosttage			10	7	0	4	5	26
Zahl der Eistage			2	0	0	0	0	2
Sonnenscheindauer (h)			177	148	195	231	154	905
Abweichung vom Normalwert (%)			-4	-20	-10	12	-18	-7
Globalstrahlung (kWh/m²)			154	148	163	153	104	144
Niederschlag (mm)			60	156	199	128	66	609
Abweichung vom Normalwert (%)			-46	4	19	-13	-48	-13
Niederschlagstage (≥0,1 mm)			14	22	22	10	10	78

TABELLE 2: Glaziologischer Winter 1988/89; Schneehöhen im Wurtenkeesgebiet (Werte in cm)

Meßstelle	Seehõhe	1.10.	1.11.	1.12.	1.1.	1.2.	1.3.	1.4.	1.5.
	(m) F	irnrest							
Kleindorf	735	_	_	_	_	_	3	_	_
Innerfragant	1195	-	-	1	-	-	32	-	-
Wurtenkees PE 3	2600	0	0	0	0	0	65	100	135
Wurtenkees PE 5	2639	0	0	70	190	180	245	290	350
Wurtenkees PE 9	2586	0	0	70	180	160	220	235	290
Wurtenkees PE 13	2674	0	0	65	110	110	170	195	230
Wurtenkees PE 15	2734	0	0	35	90	85	150	175	215
Wurtenkees PE 17	2836	0	0	60	115	5 5	110	150	225
Wurtenkees PE 19	2847	0	0	70	130	60 ·	120	160	220
Wurtenkees PE 21	2907	0	0	80	165	140	200	230	290
Wurtenkees PE 23	2925	0	0	80	185	175	225	260	305
Wurtenkees PE 25	2954	0	0	70	130	40	90	120	190
Wurtenkees PE 27	3016	0	0	65	135	60	110	150	205
Wurtenkees PE 29	3091	0	0	130	245	210	280	295	350
Unteres Mittel									
(PE 3, 5, 9, 13)		0	0	51	120	113	175	205	251
Oberes Mittel									
(PE 15,17,19,21,23,25,27,29)		0	0	74	149	103	161	193	250

Glaziologischer Sommer 1989; Schneehöhen im Wurtenkeesgebiet (Werte in cm)

Meßstelle	Seehõhe (m)	1. 5	. 1.6.	1.7.	1.8.		1.10. irnr.
Kleindorf	735	_	_	_	_	_	_
Innerfragant	1195	_	_	_	_	_	_
Wurtenkees PE 3	2600	135	145	75	0	0	0
Wurtenkees PE 5	2639	350	370	300	170	15	Õ
Wurtenkees PE 9	2586	290	300	215	100	0	ō
Wurtenkees PE 13	2674	230	245	180	85	10	ō
Wurtenkees PE 15	2734	215	230	170	80	0	0
Wurtenkees PE 17	2836	225	270	220	105	0	0
Wurtenkees PE 19	2847	220	245	210	130	10	0
Wurtenkees PE 21	2907	290	310	265	160	35	0
Wurtenkees PE 23	2925	305	315	280	170	25	0
Wurtenkees PE 25	2954	190	220	185	120	25	0
Wurtenkees PE 27	3016	205	235	210	150	75	40
Wurtenkees PE 29	3091	350	380	340	275	180	165
Unteres Mittel							
(PE 3, 5, 9, 13)		251	265	193	89	6	0
Oberes Mittel							
(PE 15,17,19,21,23,25,27,29)		250	276	235	149	44	26

Glaziologischer Winter 1988/89; Niederschlagsmonatssummen im Wurtenkeesgebiet (mm)

Meßstelle	Seehõhe (m)	x	XI	XII	I	II	III	īv	Summe Winter
Kleindorf	735	67	3	29	3	60	25	176	363
Innerfragant	1195	89	8	53	5	82	36	204	477
Wurtenkees T 1	2420	_	-	-	-	-	65	100	_
Wurtenkees T 3	2511	135	175	405	75	210	140	265	1405
Wurtenkees T 4	2791	100	125	225	90	125	150	190	1005

Glaziologischer Sommer 1989; Niederschlagsmonatssummen im Wurtenkeesgebiet (mm)

Meßstelle	Seehõhe (m)	V	VI	VII	VIII	IX	Summe Sommer	Summe Winter
Kleindorf	735	30	96	112	91	58	387	750
Innerfragant	1195	54	125	158	95	73	505	982
Wurtenkees T 1	2420	30	65	130	105	-	_	-
Wurtenkees T 3	2511	235	290	355	255	265	1400	2805
Wurtenkees T 4	2791	145	215	290	225	180	1055	2060

Winter

Der Oktober war gegenüber dem Normalwert (1951-1980) um 2 °C zu warm und zu niederschlagsarm. Dadurch wurden die Neuschneefälle von Anfang Oktober wieder abgebaut, und die Ablationsperiode konnte sich bis zum 21.10. ausdehnen. Mit dem Kaltlufteinbruch am 21.10. endete die Ablationsperiode 1988. Der November war kühl aber sehr sonnenscheinreich und niederschlagsarm. Bei durchschnittlicher Temperatur und etwas unter dem Durchschnitt liegender Sonnenscheindauer war der Dezember von den ersten ergiebigen Schneefällen geprägt. Darauf folgte ein außergewöhnlicher Winter, in dem die Temperatur im Jänner fast 6 °C über dem Normalwert und im Februar 5 °C über dem Normalwert lag. Die Sonnenscheindauer war im Jänner mehr als doppelt so groß wie der Normalwert, und es gab während dieses Monats am Sonnblick nur drei Tage mit Niederschlag (Normalwert 17,1 Tage mit Niederschlag). Auch der Februar war noch niederschlagsarm, wies aber bereits 17 Tage mit Niederschlag auf. Der März war - ähnlich dem Februar - zu warm und niederschlagsarm. Erst im April gab es wieder ergiebigere Schneefälle.

Auf dem Gletscher wurden vom Hochalpindienst der Kelag drei Totalisatoren und 14 Schneepegel regelmäßig betreut. Zusammen mit den Werten der beiden Stationen des Hydrographischen Dienstes in Kleindorf und Innerfragant sind die Monatswerte in Tabelle 2 enthalten.

Der Schneedeckenaufbau begann ab dem 14. November, das heißt zu einem sehr späten Zeitpunkt. Alle früheren Schneefälle im Oktober und November waren geringfügig und wurden wieder abgebaut. Die Schneehöhen waren von Dezember bis Mai im unteren Gletscherteil bis zu 1 m geringer als im Vorjahr. PE3 dürfte einen Meßfehler aufweisen. Auch die Schneehöhen im oberen Gletscherteil waren für den gleichen Zeitraum (Dezember bis Mai) wesentlich geringer als im Vorjahr. Nur im obersten Gletscherbereich (PE29) war die Schneehöhe durch Windverfrachtung ähnlich hoch wie im Vorjahr. PE17, 19, 25 und 27 wiesen im Jänner einen besonders starken Rückgang der Schneehöhe auf. Dies ist wahrscheinlich nicht nur eine Folge der abnormalen Witterung, sondern auch durch Pistenpräparierungsmaßnahmen bedingt. Auch heuer weisen die hochgelegenen Gletscherteile wieder geringere Niederschlagsmengen auf als die tiefer gelegenen. Der Totalisator T4 in 2791 m registrierte um 29% weniger Niederschlag als der in 2511 m gelegene T3. Der Totalisator T1 war im Zeitraum Oktober bis Februar schadhaft. Die vom Totalisator T3 gemessene Niederschlagsmenge für den glaziologischen Winter 1988/89 ist um 100 mm, beim Totalisator T4 um 15 mm geringer als im Vorjahr.

Sommer

Die glaziale Sommerperiode begann mit einem durchschnittlich warmen aber niederschlagsarmen Mai. Dagegen war der Juni wesentlich kühler als im langjährigen Durchschnitt und niederschlagsreich. Besonders kennzeichnend für den Juni 1989 war die hohe Anzahl der Tage mit Niederschlag bzw. Schneefall, wodurch auch die Sonnenscheindauer wesentlich unter dem Normalwert lag. Dieser Verlauf der Witterung setzte sich auch noch im Juli fort, der zwar durchschnittlich warm, aber sehr

niederschlagsreich und sonnenscheinarm war. Diese gletschergünstige Witterung der Monate Juni und Juli ist für die nur geringfügig negative Massenbilanz des Haushaltsjahres 1988/89 verantwortlich. Auch August und September wiesen bei durchschnittlicher Temperatur noch eine leicht unternormale Sonnenscheindauer auf, wobei im September auch die Niederschlagsmenge über dem Durchschnitt lag. Insgesamt war der Sommer bei durchschnittlicher Temperatur zu sonnenscheinarm, mit durchschnittlicher Niederschlagsmenge, aber einer hohen Anzahl der Tage mit Niederschlag bzw. Schneefall.

Die Schneehöhen weisen mit Ausnahme der durch Pistenpräparierung beeinflußten Pegel ähnliche Werte wie im Vorjahr auf, nur wurde das Maximum der Schneehöhe wieder gegen Ende Mai erreicht. Die Ausaperung begann im Zungenbereich des Wurtenkees' in der zweiten Hälfte des Juli. Bei den Totalisatoren T3 und T4 wurden ähnliche Niederschlagsmengen wie im Vorjahr gemessen.

4. Die Messungen vom 9. bis 10.5.1988 - Winterbilanz

Die Feldmessungen für die Winterbilanz 1988/89 konnten wieder Anfang Mai durchgeführt werden. An 11 Profilen wurde die Dichte bestimmt und die Schneetemperatur für bestimmte Tiefen gemessen (Tab.3 und 4). Anschließend wurden die Profilstandpunkte vom Vermessungstrupp der Kelag geodätisch eingemessen. Die Lage der Profilstandpunkte ist aus der Karte der Winterbilanz zu ersehen.

TABELLE 3: Wurtenkees - Schareckteil; Abhängigkeit der Schneedichte von der Seehöhe. Lineare Regression: Y = AX + B, X = Seehöhe (m), Y = Mittlere Schneedichte der Winterschneedecke (g/cm³)

			Gletsch	nerende	
Winter			unten	oben	Datum der
	A	В	Y(2505m)	Y(3122m)	Messunger
1981/82	-0,000180	0,947	0,50	0,39	Anfang Mai
1982/83	-0,000104	0,707	0,45	0,38	Anfang Mai
1983/84	-0,000104	0,635	0,37	0,31	Anfang Ma:
1984/85	-0,000020	0,519	0,47	0,46	Ende Mai
1985/86	-0,000134	0,798	0,46	0,38	Anfang Mai
1986/87	-0,000096	0,667	0,43	0,37	Ende Mai
1987/88	-0,000019	0,460	0,41	0,40	Anfang Ma:
1988/89	-0,000624	0,556	0,40	0.36	Anfang Ma

TABELLE 4: Wurtenkees - Schareckteil; Winterbilanzmessungen 9/10.5.1989 Schneetemperaturen (°C)

							s	chneeti	efe (ca	n)						Mittel
Profil	Seehõhe	10	20	30	40	50	100	150	200	250	300	350	400	450	500	50-250
1	2542	-0,1	-0,1	0,0	-0,1	-0,1	-0,1	-0,1	-0,5	-0,6	-	-	-	-	-	-0,3
2	2586	-0,1	0,0	-0,2	-0,1	0,0	-0,2	-0,3	0,0	-0,6	-0,6	-	-	-	-	-0,:
3	2600	-0,2	0,0	-0,2	-0,1	-0,1	-2,3	-3,4	-	-	-	-	-	-	-	-
4	2639	-1,0	-3,1	-1,0	-0,3	0,0	-1,1	-1,8	-1,6	-2,0	-1,9	0,0	-	-	-	-1,
5	2655	-2,0	-2,4	-1,4	-0,4	0,0	-2,2	-2,4	-2,0	-1,6	-2,0	-1,8	-	-	-	-1,
6	2717	-5,2	-5,3	-3,2	-2,9	-1,0	-2,4	-2,0	-2,2	-2,4	-2,8	-2,2	0,0	-2,0	-2,4	-2,
7	2734	-5,0	-4,0	-4,4	-3,8	-3,8	-2,8	-2,0	-3,2	-2,2	-	-	-	-	-	-2,
8	2836	-1,8	-3,8	-3,4	-3,0	-2,6	-2,6	-3,2	-3,0	-3,0	-3,2	-	-	-	-	-2,
9	2847	-2,8	-0,0	-0,3	-1,2	-1,6	-3,0	-3,6	-3,0	-3,4	-3,6	-	-	-	-	-2,
10	2954	-1,0	-2,0	-3,0	-2,6	-3,4	-3,6	-3,8	-1,6	-3,1	-3,1	-1,8	-	-	-	-3,
11	3029	-6,0	-6.4	-6,2	_	-5,5	-4,2	-3,4	-3,2	-3,2	-3,0	-2,8	-3,3	-	-	-3,

Zusätzlich zu den Dichtemessungen in den Schneeschächten wurde der Gletscher mit einem dichten Schneetiefensondierungsnetz (102 Punkte) abgedeckt, um die graphische Interpolation der Isolinien der spezifischen Winterbilanz zu verbessern. Die Tiefenwerte und interpolierten Bilanzwerte der Sondierung sind in Tabelle 5 dargestellt.

TABELLE 5: Wurtenkees - Schareckteil; Winterbilanzmessungen 1988/89 Schneesondierungen am 10.5.1989

Punkt	Tiefe	Dichte b	w Punkt	t Tiefe	Dichte	bw
ļ	(cm)	(g/cm ³) (g/cm		(cm)	(g/cm^3)	(g/cm ²)
i					_ ′	
1	250	0,41 102	, 5 52	270	0,38	102,6
2	254	0,41 104		290	0,38	110,2
3	300	0,42 126	•	240	0,38	91,2
4	300	0,42 126		385	0,38	146,3
5	350	0,42 147		210	0,38	79,8
6	336	0,43 144		210	0,38	79,8
7	360	0,41 147		250	0,37	92,5
8	330	0,39 128		290	0,37	107,3
9	230	0,37 85		300	0,37	111,0
10	200	0,36 72		310	0,37	114,7
11 12	180	0,36 64		310	0,37	114,7
13	168	0,35 58 0,35 63		305	0,36	109,8
14	180 180	0,35 63 0,36 64		305 300	0,36 0,36	109,8
15	185	0,36 66		310	0,36	108,0 111,6
16	210	0,37 77		316	0,36	113,8
17	230	0,37 85		310	0,36	111,6
18	270	0,37 99		305	0,36	109,8
19	275	0,38 104		300	0,37	111,0
20	360	0,38 136		295	0,37	109,2
21	385	0,39 150	, 2 72	300	0,37	111,0
22	369	0,39 143	, 9 73	320	0,37	118,4
23	370	0,39 144	, 3 74	325	0,37	120,3
24	450	0,39 175	,5 75	330	0,37	122,1
25	450	0,40 180		330	0,37	122,1
26	365	0,40 146		325	0,37	120,3
27	365	0,40 146		320	0,37	118,4
28	370	0,40 148		310	0,37	114,7
29	365	0,40 146		300	0,38	114,0
30	375	0,40 150		300	0,38	114,0
31 32	400 340	0,40 160, 0,40 136,		325 350	0,38	123,5
33	330	0,40 136, 0,40 132,		325	0,38 0,38	133,0 123,5
34	340	0,40 136		335	0,38	127,3
35	385	0,40 150		255	0,38	96,9
36	415	0,39 161		290	0,38	110,2
37	460	0,39 179		240	0,38	91,2
38	460	0,39 179		295	0,38	112,1
39	530	0,39 206		295	0,38	112,1
40	505	0,39 197	,0 91	300	0,38	114,0
41	>540	0,39 >210		310	0,38	117,8
42	520	0,39 202	, 8 93	335	0,38	127,3
43	520	0,39 202		390	0,38	148,2
44	>540	0,39 >210		390	0,38	148,2
45	>540	0,38 >205		480	0,38	182,4
46	505	0,38 191,		310	0,38	117,8
47	420	0,38 159		350	0,38	133,0
48	370	0,38 140,		400	0,38	152,0
49 50	330 300	0,38 125, 0,38 114,		425	0,38	161,5
50	290	0,38 114, 0,38 110,		410 >540	0,38 0,38	155,8 >205,2
21		0,36 110,	, 2 102		- 0,38	2603,2

In den zwei untersten Profilen (Profil 1 und Profil 2) war bereits ein leichter Einfluß durch Schmelzwasserabfluß festzustellen, was sich auch in einem größeren Bereich mit

nahezu 0 °C in diesen Profilen äußert (Tab.4). Daher ist im untersten Zungenbereich mit einem leichten Fehler bei der gemessenen spezifischen Winterbilanz zu rechnen.

Die Abhängigkeit der Schneetemperatur (gemittelt über den Bereich 50 bis 250 cm) von der Seehöhe wurde mittels einer linearen Regression untersucht. Abbildung 1 zeigt, daß die Regressionsgeraden noch für den gesamten Höhenbereich des Gletschers Gültigkeit besitzen. Ebenso wurde auch für die mittlere Schneedichte der einzelnen Profile eine lineare Regression in Abhängigkeit von der Seehöhe gerechnet. Sie lag wieder im gewohnten Streubereich der letzten Jahre, mit einer leichten Abnahme der mittleren Dichte mit der Seehöhe von 0,40 g/cm³ am unteren auf 0,36 g/cm³ am oberen Ende des Gletschers. In Abbildung 2 ist die lineare Regression des Jahres 1988/89 sowie aller früheren Massenhaushaltsmessungen dargestellt.

Im Rahmen des geplanten ALPTRAC/SNOSP-Projektes wurden auch dieses Jahr wieder Schneeproben für eine chemische Analyse gezogen und an H. Puxbaum vom Institut für analytische Chemie der Technischen Universität Wien übergeben.

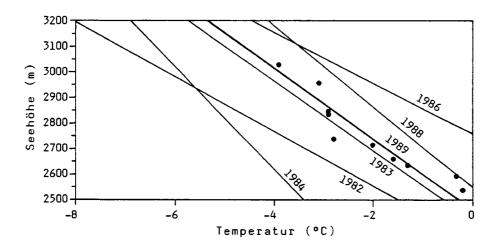


ABBILDUNG 1: Mittlere Schneetemperatur der Meßprofile in Abhängigkeit von der Seehöhe

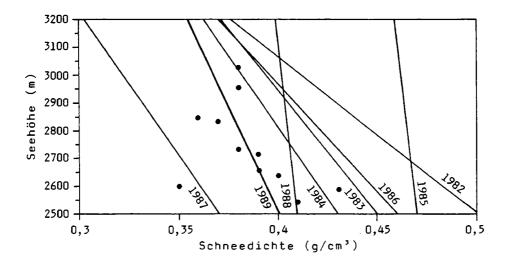
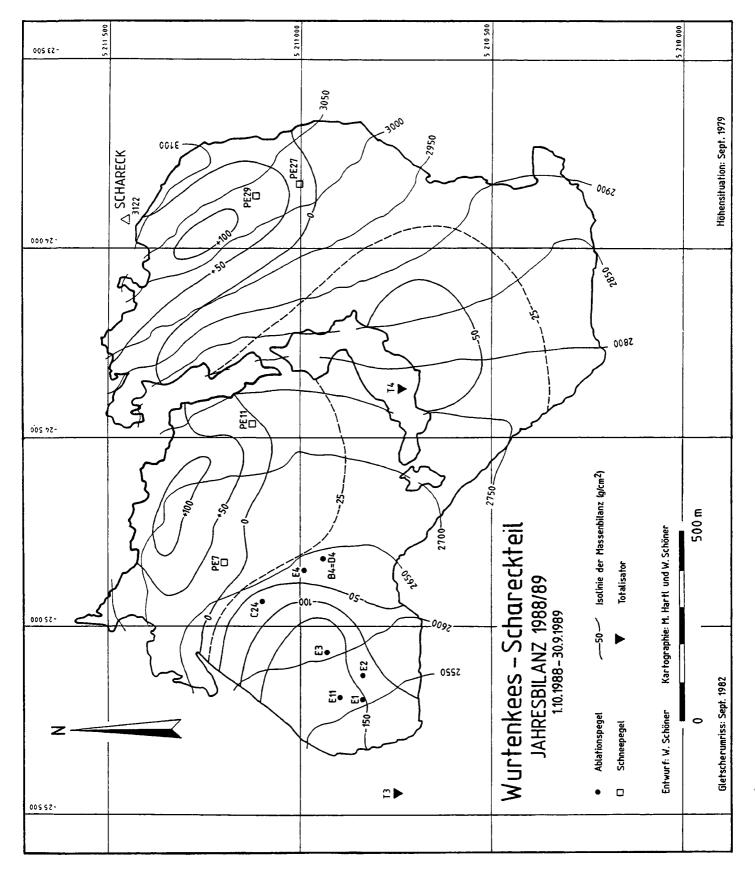
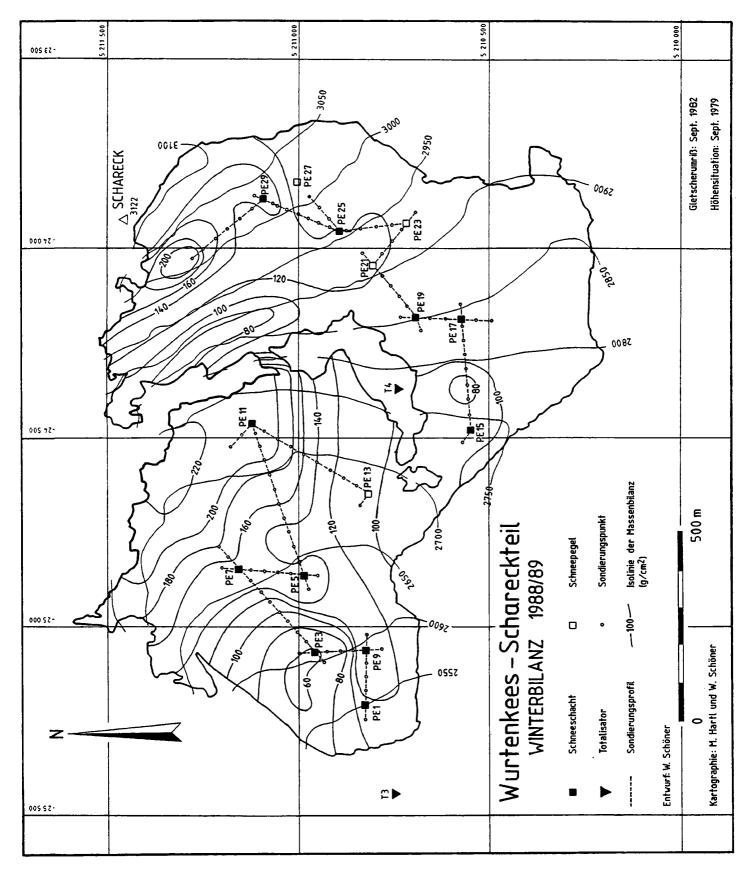




ABBILDUNG 2: Mittlere Schneedichte der Meßprofile in Abhängigkeit von der Seehöhe

5. Die Messungen im Herbst 1989

Ende Juli 1989 wurde das Ablationspegelnetz verdichtet bzw. ausapernde Pegel nachgebohrt und am 23.8.1989 wurde das Pegelnetz vom Vermessungstrupp der Kelag geodätisch vermessen. Dem schiterroristischen (bzw. -touristischen) Freizeitvergnügen auf dem Wurtenkees fielen jedoch alle Ablationspegel auf dem oberen Gletscherteil zum Opfer. Eine sinnvolle Ermittlung der Jahresbilanz war nur einer gletschergünstigen Sommerwitterung zu verdanken, d.h. das Akkumulationsgebiet des Wurtenkees' war im Haushaltsjahr 1988/89 sehr groß und für diesen Bereich lagen auf Grund des Schneepegelnetzes auch Werte der Jahresbilanz vor. Am 18.9.1989 wurden alle vorhandenen Ablationspegel abgelesen und auf den Stichtag 30.9. linear interpoliert. Die Lage der Pegel sowie die Abschmelzbeträge bzw. spezifische Massenbilanz für das Haushaltsjahr 1988/89 sind aus Tabelle 6 zu ersehen. Die Fotoserien von den Standardorten konnten im Gegensatz zum Vorjahr wieder durchgeführt werden, lassen jedoch auf Grund einer geringen Neuschneeauflage die maximale Ausaperung nicht erkennen.

6. Kartographische Darstellung und Auswertung der Bilanzkarten für das Haushaltsjahr 1988/89

Die Karten der Jahresbilanz und der Winterbilanz wurden mit einem Planimeter in 50 m Höhenintervallen ausgemessen und mittels der zutreffenden Umrechnungsfaktoren die Flächen der einzelnen Teilzonen bestimmt. Da leider noch keine aktuellen Luftbilder vom Wurtenkees vorliegen, war es noch nicht möglich eine photogrammetrische Neuauswertung des Gletschers durchzuführen. Daher mußten die Berechnungen wieder auf die photogrammetrische Auswertung von 1979 und auf den Gletscherumriß von 1982 bezogen werden (d.h. relativer Massenumsatz und relativer Massenverlust besitzen durch den Bezug auf die Gletschermasse von 1979 nur noch eingeschränkt Gültigkeit).

Im Gegensatz zu den vorherigen Jahren war die Massenbilanz in diesem Jahr nur geringfügig negativ (-14,3 g/cm²). Seit Beginn der Haushaltsmessungen wurde nur im Haushaltsjahr 1983/84 mit +3,0 g/cm² eine gletschergünstigere Massenbilanz gemessen. Für diese schwach negative Jahresbilanz war aber nicht primär der Verlauf des glaziologischen Winters 1988/89 von Bedeutung, sondern die Witterung des glaziologischen Sommers (sommerliche Neuschneefälle). Wie bereits im vorigen Punkt erwähnt wurde, fielen im oberen Gletscherbereich alle Ablationspegel dem Schibetrieb zum Opfer. Die Abschmelzung wurde daher durch Vergleich mit Ablationsmessungen früherer Haushaltsjahre ermittelt. Der Fehler bewegt sich Dank der vergleichsweise geringen Ausaperung in einem relativ kleinen Bereich.

Die räumliche Verteilung der Massenbilanz kann den Karten entnommen werden, die nach Höhenstufen aufgegliederten Werte der spezifischen Massenbilanz und des Bilanzvolumens differenziert nach Sommer, Winter und Jahr bzw. oberen und unteren Gletscherteil den Tabellen 7, 8 und 9 bzw. Abbildung 3 und 4. Tabelle 10 gibt einen Überblick über die glaziologischen Maßzahlen des Haushaltsjahres 1988/89.

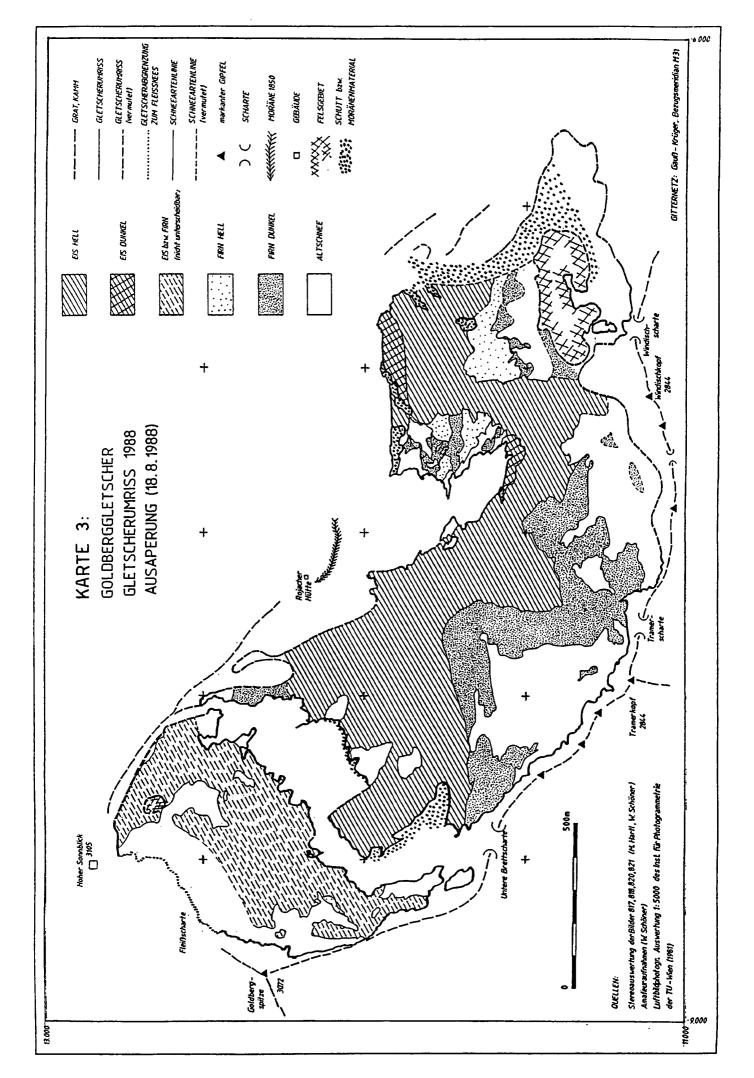


TABELLE 6: Wurtenkees - Schareckteil; Ablationspegel 1989/89

Pege1	Koorc	Koordinaten(M 31) X Y	31) z	Vermessgs datum	Peç 12.9.88	Pegelstand 8 4.10.88	(Segment/cm) 29.11.88	18.9.89	Abschmelzung Pegel Betr	lzung Betrag	spez.Massen- bilanz(g/cm2)	Pegelstand 1.10.88 Pegel Betrag	1.10.88 Betrag
B 4	210940 210941	-24822 -24820	2637 2638	23.8.1989 4.10.1988	1/37	1/40	1/50		æ				
C 24	211096 211098	-24939 -24936	2633 2633	23.8.1989 4.10.1988	2/103	2/110	2/120	2/190	υ	86	77	C24/2	194
D 4	210939 210940	-24824 -24822	2637 2638	23.8.1989 4.10.1988	1/20	1/25	1/30	1/55	۵	32	29	D 4/1	57
в 1	210835 210836	-25196 -25195	2542 2546	23.8.1989 28.7.1988	2/158	2/178		1/135	Ĺ	168	151	E 1/1	142
FE C2	210837 210839	-25130 -25128	2562 2566	23.8.1989 28.7.1988	2/130	2/147	2/165	1/95	Œ	156	140	E 2/1	101
ы	210928 210931	-25069 -25065	2594 2598	23.8.1989 28.7.1988	2/72	2/87	2/100	1/75	ធ	200	180	E 3/1	98
E **	210990 210992	-24856 -24852	2635 2638	23.8.1989 28.7.1988	2/74			2/75 ?	មេ			E 4/	
E 11	210895 210896	-25191 -25188	2551 2555	23.8.1989 28.7.1988	2/151	2/162	2/180	1/141	ы	190	171	E11/1	149
F1	210835	-25195	2542	23.8.1989				3/105	Œ			F 1/	
F 2	210837	-25129	2562	23.8.1989				3/80	ĹĿ			F 2/	
ъ	210929	-25068	2594	23.8.1989				3/70	Ŀ			F 3/	
F 4	210882	-25044	2595	23.8.1989				3/60	Ŀ			F 4/	

* fehlerhaft

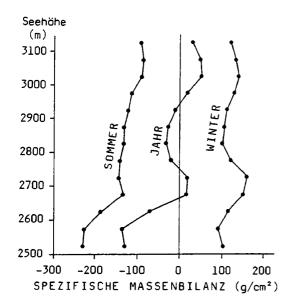


ABBILDUNG 3: Spezifische Massenbilanz in Abhängigkeit von der Seehöhe

ABBILDUNG 4: Bilanzvolumen in Abhängigkeit von der Seehöhe

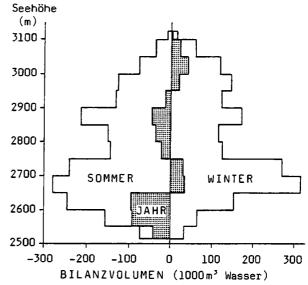


TABELLE 7: Wurtenkees - Schareckteil; Winterbilanzmessungen 9. - 10.5.1989 (Schneeschächte)

Profil	Bezeich	nung		Koor	dinat	en (M	31)	h(cm)	bw(g/cm²)	(g/cm³)	Vor-
Nummer			2	ĸ	:	Y	z				jahres-
										1	norizont
1	PE	1	210	831	-25	207	2542	254	104,1	0,41	EIS
2	PE	3	210	960	-25	067	2600	168	58,8	0,35	EIS
3	PE	5	210	991	-24	855	2639	375	150,0	0,40	EIS
4	PE	7	211	158	-24	847	2655	369	143,9	0,39	EIS
5	PE	9	210	827	-25	057	2586	336	144,5	0,43	EIS
6	PE	11	211	127	-24	463	2717	>496	>193,4	0,39	
7	PE	15	210	551	-24	474	2734	240	91,2	0,38	EIS
8	PE	17	210	574	-24	184	2836	312	115,4	0,37	EIS
9	PE	19	210	696	-24	180	2847	316	113,8	0,36	EIS
10	PE	25	210	887	-23	949	2954	335	127,3	0,38	EIS
11	PE	29	211	120	-23	860	3029	410	155,8	0,38	EIS

TABELLE 8: Wurtenkees - Schareckteil; kartometrische Ergebnisse der Bilanzkarten, Bilanz 1988/89 Bilanzvolumen in 1000 Tonnen, spezifische Bilanz in g/cm²

Höhenzone	Win	ter	Son	mer	Ja	ahr
	Bilanz	spez.B.	Bilanz	spez.B.	Bilanz	spez.B.
>3100	12,1	120,0	-9,3	-92,1	2,8	28,1
3050-3100	57,8	132,2	-37,3		20,5	46,9
3000-3050	116,6	138,8	-75,5	-89,9	41,1	48,9
2950-3000	144,7	130,4	-126,2	-113,7	18,5	16,7
2900-2950	121,0	111,2	-131,1	-120,5	-10,1	-9,3
2850-2900	171,5	104,8	-216,4	-132,2	-44,9	-27,4
2800-2850	114,3	100,4	-150,9	-133,0	-36,6	-32,6
2750-2800	123,1	119,3	-145,1	-140,6	-22,0	-21,3
2700-2750	271,7	160,4	-240,9	-142,2	30,8	18,2
2650-2700	314,6	150,1	-280,5	-133,8	34,1	16,3
2600-2650	153,0	114,7	-247,3	-185,4	-94,3	-70,7
2550-2600	63,9	92,0	-157,2	-226,2	-93,3	-134,2
2500-2550	31,9	101,7	-71,8	-228,7	-39,9	-127,0
Gesamtfläch	ne1696,2	125,5	-1889,5	-139,8	-193,3	-14,3

TABELLE 9: Jahresbilanz nach oberem/unterem Gletscherteil Bilanzvolumen in 1000 Tonnen, spezifische Bilanz in g/cm²

Höhenzone	Bilanzvolumen			spezifische Bilanz		
	gesamt	unten	oben	gesamt	unten	oben
>3100	2,8	0,0	2,8	28,1	0,0	28,1
3050-3100	20,5	0,0	20,5	46,9	0,0	46,9
3000-3050	41,1	0,0	41,1	48,9	0,0	48,9
2950-3000	18,5	0,0	18,5	16,7	0,0	16,7
2900-2950	-10,1	0,0	-10,1	-9,3	0,0	-9,3
2850-2900	-44,9	0,0	-44,9	-27,4	0,0	-27,4
2800-2850	-36,6	0,0	-36,6	-32,6	0,0	-32,6
2750-2800	-22,0	1,9	-24,0	-21,3	5,6	-35,0
2700-2750	30,8	34,3	-3,5	18,2	25,4	-10,0
2650-2700	34,1	34,1	0,0	16,3	16,3	0,0
2600-2650	-94,3	-94,3	0,0	-70,7	-70,7	0,0
2550-2600	-93,3	-93,3	0,0	-134,2	-134,2	0,0
2500-2550	-39,9	-39,9	0,0	-127,0	-127,0	0,0
Gesamtfl.	-193,3	-157,2	-36,2	-14,3	-25,6	-4,9

Winterbilanz nach oberem/unterem Gletscherteil Bilanzvolumen in 1000 Tonnen, spezifische Bilanz in g/cm²

Hōhenzone	Bilanzvolumen			spezifische Bilanz		
	gesamt	unten	oben	gesamt	unten	oben
>3100	12,1	0,0	12,1	120,0	0,0	120,0
3050-3100	57,8	0,0	57,8	132,2	0,0	132,2
3000-3050	116,6	0,0	116,6	138,8	0,0	138,8
2950-3000	144,7	0,0	144,7	130,4	0,0	130,4
2900-2950	121,0	0,0	121,0	111,2	0,0	111,2
2850-2900	171,5	0,0	171,5	104,8	0,0	104,8
2800-2850	114,3	1,1	113,2	100,4	100,0	100,4
2750-2800	123,1	56,8	66,3	119,3	163,3	96,6
2700-2750	271,7	239,5	32,2	160,4	177,9	92.6
2650-2700	314,6	314,6	0,0	150,1	150,1	0,0
2600-2650	153,0	153,0	0,0	114,7	114,7	0.0
2550-2600	63,9	63,9	0,0	92,0	92,0	0.0
2500-2550	31,9	31,9	0,0	101,7	101,7	0,0
Gesamtfl.	1696,2	860,8	835,4	125,5	140,1	113,4
				•	-	•

TABELLE 10: Glaziologische Maßzahlen und Gesamtergebnisse

	gesamt	unten	oben		
S (Fläche)	1 351 100	614 500	736 600	m^2	Bilanzvolumen Winter
Sc (Akk.fläche)	377 900	188 400	189 500	m²	1,6962Mio t Sommer
(-1,8895Mio.t
Sa (Abl.flache)	973 200	426 100	547 100	m^2	Jahr
İ					-0,1933Mio.t
Sc/S	0,230	0,307	0,257		Massenumsatz1987/88
					3,5857Mio.t
Sc/Sa	•	0,442	•		
B (Bilanzvolumen)	-193 340	-157 260	-36 080	Tonnen	spez. Bilanz Winter
1				_	125,5g/cm ²
b (spez.Massenbil.)	-14,3	-25,6	-4,9	g/cm ²	Sommer
				_	-139,8g/cm ²
Bc (Nettoakk.)	182 293	92 593	89 700	Tonnen	Jahr
N = (N	12 5	15 1	10.0		- 14,3g/cm ²
bc (spez.Nettoakk.)	13,5	15,1	12,2	g/cm²	
Ba (Nettoabl.)	375 640	249 860	125 700	Mannan	28,7%
Ba (Neccoabi.)	3/5 640	249 860	125 /80	Tonnen	Rel. Massenverlust (bzgl.1979)
ba (spez.Nettoabl.)	27.8	40.7	17 1	cr/cm²	-1,5%
bw (spez.Winterbil.			-	-	
bs (spez.Sommerbil.		-		_	
bi (spez.Jahresbil.	•	•		5 .	
bw + bs (spez.	, =-,-	22,1	-,-	3, 51	
Totalmassenumsatz)	265,3	305,8	231,7	g/cm ²	}
bc + ba (spez.	•	•	•	-	
Nettomassenumsatz)	41,3	55,8	29,3	g/cm^2	

Literatur:

- BÖHM, R.: Monogaphie der Gletscher der Goldberggruppe in den Hohen Tauern. Teil 1: Das Wurtenkees. Entwicklung des Gletschers seit 1850. Jb.d.SV.1981-1983, 3-59, Wien 1984
- BÖHM, R.: Massenbilanzmessungen auf dem Wurtenkees im Sonnblickgebiet. Tagungsbericht ITAM 86 in Rauris, 61-65, Österr.Ges.f.Met., Wien 1987
- BÖHM, R.: Massenhaushalt Wurtenkees Jahresbilanz 1982/83. Wetter und Leben 35, 208-229, Wien 1983
- BÖHM, R., N.HAMMER und J.STROBL: Massenhaushalt Wurtenkees Jahresbilanz 1983/84. Teil 1 und 2. Wetter und Leben 37, 37-51 und 88-96, Wien 1985
- BÖHM, R., N.HAMMER und J.STROBL: Massenhaushalt Wurtenkees Jahresbilanz 1984/85. Wetter und Leben 38, 201-221, Wien 1986
- BÖHM, R., N.HAMMER und J.STROBL: Massenhaushalt Wurtenkees Jahresbilanz 1985/86. Wetter und Leben 40, 43-56, Wien 1988
- SCHÖNER, W.: Massenhaushalt Wurtenkees Jahresbilanz 1987/88. Wetter und Leben 42, Wien 1990

Anschrift des Verfassers: Mag. Wolfgang Schöner Krummgasse 2/5 1030 Wien