I. Mineralien.

1. Antimon, vorgekommen 1860 in der Segengottes=Grube zu
Pribram, untersucht von A. Efchta.
Spezifisches Gewicht: 6,20.
Antimon 95,15
91.5
Eisen Spur
All Gijen
2. Arfen, vorgekommen 1860 in der Segengottes=Grube gu
Pribram, untersucht von A. Eschfa.
Spez. Gew. 5,77.
Arfen
Antimon 4.20
Eisen Spur
3. Urfenifnickelglanz a) von Schladming (Gersdorffit); b) von
Pratendorf in Ungarn, untersucht 1846 von A. Löwe.
a b
Schwefel 14,13 16,25
Arjenik 49,183 46,10
Barry Mickel
\sim
Eisen 9,55 8 90
Stobalt Spur — Eisen <u>9,55</u> <u>8 90</u> <u>99,65</u> <u>100,00</u> .
4. Arfe niknickelglanz vom August=Lager zu Tergove in der froa=
tifchen Militärgrenze, untersucht 1860 von A. Efchka. Deutliche
Rrhstalle von der Kombination des Oftaeders mit dem Heraeder.
Spez. Gew. 5,94.
Schwefel 19,85 Eisen 4,31
Arfenik 38,59 Mangan Spur
Untimon Spur Rupfer 1,26
Nickel 31,36 Blei 2,12
Robalt 1,08 Quarz 0,60
Nach Ausscheidung des Quarzes, des Bleies als Schwefelblei

Nach Ausscheidung des Quarzes, des Bleies als Schwerelblet und des Rupfers als Rupferkies berechnet sich die Zusammensetzung des reinen Minerals wie folgt:

II. **Buşamme uştelluuş** ter bei dem f. f. General=Probiramte

in neuerer Zeit bis zum Schluß des Jahres 1862 ausgeführten

Analysen von Mineralien

und

Süttenprodukten.

(Mitgetheilt vom k. k. General-Probiramte in Wien.)

Die nachstehende Zusammenstellung umfaßt jene bei dem k. k. General-Probiramte, namentlich in neuerer Zeit, bis zum Schlusse des Jahres 1862 ausgeführten Analhsen, bei denen sich ein mehr allgemeines und bleibendes Interesse voraussetzen läßt.

Bur leichteren Uibersicht wird hiebei folgende Ordnung be= obachtet:

I. Mineralien (bestimmte Mineral=Spezies).

II. Erze und hüttenmännische Zuschläge, und zwar: a) Bleierze, filberhältige, b) Eisenerze, c) Golderze, d) Kobalt — Nickel= erze, e) Kupfererze, f) Schwefel, g) Schwefelkies, h) Zinkerze.

III. Hüttenprodukte: a) Antimom, b) Blei, c) Eisen, d) Kupfer, e) Nickel, f) Wismuth, g) Zinn, h) Zink, i) Hüttenspeise. IV. Legirungen.

V. Anderweitige Fabriksprodukte.

VI. Sups, hydraul. Kalf, Cemente.

VII. Thon und Kaolin.

VIII. Grafit.

IX. Braun= und Steinkohlen.

X. Torf.

XI. Cementwäffer, Quicktrübe.

XII. Reffelftein.

24	1 and 1	
Nickel	$\begin{array}{c} 41_{68} \\ 33_{794} \\ 1_{717} \\ 3_{746} \\ \hline 100_{700} \\ geführt zu ber Formel: \\ s ober 3 R S_2 + 3 R S + 4 R As \end{array}$	7
Gant, analyfirt 184	Oberungarn, b) aus dem Oberinnth	ale bei
Sunt, unutifut 184		
Antimon Arfen Kupfer Onccfilber Eisen	38,00 35.0	
	99 100	
Rohlenfaure Kalferde Duarz Schwefel Untimon mit etwas Urfen Kupfer Zink Gifen Silber Duechjilber	aner montaniftifchen Gesellschaft zu A W. v. Lill: 26,30 Nach Abzug der Berg 6,78 16,58 Schwefel 18,51 Antimon und Arsen 23,58 Kupfer 5,49 Zink 0,54 Eisen 0,12 Silber 100	art: 24,74 28,07 35,64 8,19 0,80 0,18 2,67
an oumefontt bon ztrang=	Sola in Unarn analyfirt non or Q.	öwe.
Schwefel	3759 Eifen 2,, 3710 Rupfer 1, 1722 Zinf 0,.	99 78 35 48

99,33.

 $\mathbf{24}$

8. Keramohalit von Rudain in Ungarn, analyfirt 1847 von 3. Jurasth:
Schwefeljäure 36.75 Baffer 44.00
Schwefeljäure
Eisenorydul 2415 99,011
9. Rupferglanz. Derber Rupferglanz vom Wenzlergange in Pri=
bram, vorgekommen 1853; untersucht 1860 von A. Esch fa.
Spez. Gew. 5,53.
Schwefel 21,71 Silber 0,809
Schwefel 21,71 Silber 0,809 Kupfer
99, ₄₉₉ .
10. Löwert von Ischl, analysirt von Karafiat 1846.
Spez. Gew. 2,376.
Schwefelfäure 52,35 Eisenoryd u. Thonerde O,66
$2.5 \text{ magnetia} \dots 12_{78} 2.5 \text{ after} \dots 14_{45}$
99, ₂₁ .
11. Speißkobalt aus dem Aerarialbergbaue bei Dobschau, ana=
- Infirt 1850 von A. Löwe.
Nach Abzug des eingesprengten Kupferkieses:
Schwefel 0,36 Robalt 6,94 Arfen
\mathfrak{M}_{ifel} 11 \mathfrak{G}_{i100}
100, ₀₀ .
II. Erze und hüttenmännische Buschläge.
a) Bleierze, silberhältige.
1. Erze und Schliche aus Přibram, welche bei den Versuchen im amerikanischen Saigerofen in der dortigen k. k. Schmelzhütte verarbeitet wurden, untersucht 1857 von M. v. Lill, F. Hillehrand und H. Stumm

26 Schwefelfilber Ag S . . 0,55; Silber . 0,48; Schwefel 0,07 Schwefeleisen, Eisenoryd, Eisen. . 1,10 " 0,31 fohlens. Eisenorydul . 2,00 (mit etwas Mangan) 100,00. Gesammtschwefel 13,96. B. Quarz und Rieselthon . 3,15; Schwefelblei (Bleiglanz) Blei . . 77,65; Schwefel 12,06 Schwefelzink (Blende) ZnS 3,28; Bink . . 2,20 1,08 Schwefelantimon (Spieß= Antimon. 1,30 0,48 ,, glanz) Sb S3 . . . 1,78; Schwefelfilber Ag S . . 0,58; Silber . 0,51 0,07 Schwefeleisen, Eisenoryd, Eisen. . 0,90 0,24 " kohlens. Eisenorydul . 1,50 (mit etwas Mangan) 100,00. Gesammtschwefel 13,93. C. Quarz und Riefelthon . 3,10; Blei . . 78,00; Schwefel 12,12 Schwefelblei (Bleiglanz) Pb S 90,12; Schwefelzink (Blende) Zn S 3,00; 3int . . 2,00 1,00 Antimon. 1,23 Schwefelantimon (Spieß= 0,46 " glanz) Sb S3 . . . 1,69; Schwefelfilber Ag S . . 0,59; Silber . 0,52 0,07 Gifen. . 1,10 Schwefeleisen, Gifenornd, 0,24 tohlens. Eifenorydul . 1,50 (mit etwas Mangan) 100,00. Gesammtschwefel 13,89. 2. Erze aus Pribram, untersucht 1859 von 2. Efchta. A. Durchschnittsprobe der gesammten Einlieferung im 3. 1857. B. Durchschnittsprobe der reichen Erze von 1857. C. Durchschnittsprobe der armen Erze von 1857.

·

 Schwefelblei
 (Bleiglanz)
 Blei
 40,75
 Schwefel
 6,32

 Pb S
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .</td

A.

Schwefelfilber Ag S . . 0,31; Silber . 0,268; Schwefel 0,04 Rupfer Spur; Sifent. . 0,98 / 1,12 Eisenbisulphuret (Schwe= felfies) Fe S2 . . . 2,10; 6,11 Rohlenfaures Gifenorydul " . . $5_{,13}$ Gesammtschwefel 12,80. $FeO.CO_{o}$. . . 10_{169} Rieselfäure, Quarz . . 17,05 Thonerde mit etwas Man= gan 3,70 Kohlensaurer Ralt $CaO.CO_{2}...1_{75}$ 98,99 bit independent of a В. Blei . . 75,17; Schwefel 11,59 Schwefelblei (Bleiglanz) PbS 86,76; Schwefelzink (Blende) ZnS 3,24; Bink . . 2,17 1,07 Antimon. 1,66 Schwefelantimon (Spieß= 0,62 glanz) Sb S3 . . . 2,28; Schwefelfilber Ag S . . 0,57; Silber . 0,497 0,07 Rupfer Spur; Sifen. . 0,24) 0,28 Eifenbisulphuret (Schwefelfies) Fe S2 . . . 0,52; 1,58. Rohlensaures Eisenorydul ". . 1,₃₄) FeO , CO_{2} , 2_{777} Gesammtschwefel 13,63. Quarz und Riefelthon . 2,95 Rohlenfaure Kalferde. . 0,75 99,84.

С.

Schwefelblei (Bleiglanz)	Blei	34,58; Schwefel	5,36
PbS			
Schwefelzinf (Blende) Zn S 17,60;	3inf	11,78 "	5,82
	Antimon.		0,28
glanz) Sb S3 1,04;			
Schwefelfilber Ag S 0,25;	Silber .	0,223 "	0,03
Rupfer Spur;			

Eisenbisulphuret (Schwe= Gifen . 1,02 felfies) Fe S2 . . . 2,19; 6,83 Rohlenfaures Eifenorydul " . 5,₈₁ Fe O . CO₂ . . . 12,03 Gefammtichwefel 12,66. Riefelfäure, Quarz . . 19,10 Thonerde (mit etwas Mangan) 4,90 Kohlensaurer Kalk . . 1,75

 $\mathbf{28}$

98,78. 3. Mit Bleiglang imprägnirter Unthragit, untersucht von M. v. Lill 1861. Bon der Gewerkschaft Stofie über= gebene Stufen aus der Gegend bei Laaf in Krain erwiefen fich als Anthrazit, gemengt mit Quarz, Bleiglanz, Schwefelfies nebst Spuren von Malachit und Kupferindig. Ausgesuchte Partien von Anthrazit, in welchen felbst unter der Loupe feine fremden Beimengungen wahrgenommen werden konnten, ent= hielten 37,1 pEt. Schwefelblei (Bleiglanz), 2,20 pEt. durch Schwefeltohlenstoff ausziehbaren freien Schwefel und 0,008 pCt. Silber. (Siehe Zepharovich mineral. Lexifon pag. 19)

Schwefel 1,17

b) Gifenerze.

1. Gifenerze aus bem zum f. f. Gifenwerke Bajba Sunnad in Siebenbürgen gehörigen Bergbau zu Ghalar, untersucht 1841: a) Roth- und Brauneisenstein von der 1. Etage des oberen Tagbruches; b) ebenfolcher von der 2. und 3. Etage; c) Rothund Brauneifenstein, gemengt mit Rieseleisenstein von der 1. Stage; d) Riefeleisenstein, gemengt mit Roth= und Brauneifen= ftein von derfelben Stage.

			a	h	с	3	
Eisenoryd .	• • •	•	83,00	86, ₃₆	77,59	α 47 _{/40}	
Ralferde .	•••	•				0,32	
Magnesia .		٠	0,24	1_{68}	0,53	2,88	
Thonerde .	• •	•	·	0,28	_		
Riefelfäure	•••	٠	10,00	4,04	12,82	41,28	
Antimon .	• •	•			Spur		
Waffer und	Verluft		6, ₇₆	7,64	8,76	8,12	
000 + 444 +	-		100,00		100,00	100,00	
Metallisches	Eisen	•	57,55 %	59,88%	54,01%	32,01 %	

2. Gifenerze aus den Bergbauen des Paul Beng zu Bets= mann im Dbergailthal in Rärnthen, unterjucht 1842 von A. Jaworsty.

- a) Glastopf von Sitmos:
- b) Brauneifenerz vom Bürcker Graben;
- c) Gifenftein von Landftraß;
- d) von Mondorf;
- e) von Stirrwant;
- f) Spatheisenstein von Leifling;
- g) von Monfel;
- h) von Dberbuchach;
- i) vom Nölblinger Graben;
- k) eifenhältiger Ralfftein von Ballentina;
- 1) von Dellach;
- m) von Sauteregg ;
- n) vom Würmlacher Alpenbau;
- o) vom Grater Alpenbau;
- p) von Kromhof.

ella	Metali	((%)	a. b. V Waffer	Rohl	Kohlige	out . Ralferd Magner Thoneri	Eife Ma Ma
и 09 _{/96} 94 _{/26}	ifches	(Glühverluft)	a. d. Berluft Baffer	Stohlen'äure .	Riefelthon .	ont	Eifenoxyd Eifenoxyduf. Wlanganoxyd Manganoxyd
96/00	100,00 99,58	Ĩ	2,03	1	1,22	2/56	. 94 ₁₁₉
	99 _{/58}	16,50	1	1	4,46		ь 9 77,48
32,77	100,00	1	13, ₆₁	1,68	$20_{/20}$	⁵¹⁷ 5 ⁸⁸ /8	с 46, _{se}
14,64	100 00		31,29	I	13,20	31/40 3/20	20, ₉₁
37 _{/58}	0 100,00	Ì	23,71	[16,13	1,02 8,12 2,72	е 48 _{/30}
36,79	,100,00	1	41,24	1	1	0,50 10,97	47,29
32 _{/31}	100,00	1	43,38	۱	4,20		41/53
1õ, ₈₉	100,00 100,00 100,00	I	37,05	0,50	8 .66	3,69 27, ₀₂ 2, ₆₆	h 20, ₄₂
14,36	100,00	1	32,66	1,57	16,14	12,90 13,99 4,98	18,46
12,777	100,00		33,60	1	17,74	29,24 3,01	k
11,73	0 100,00		43,52	ŀ	4,50	25, ₈₂ 10, ₇₈	15, ₀₈
8,41	100,00		30, ₂₄	1,90	23,64	29,01 270 0,50	m 12, ₀₁
7,48	100,00		36, ₉₅	l	7,32	42,29 2,75 Spur	n 10, ₆₉
6,72	100,00		39,30	0,22	12,60	35,80 2,34 Cpur	0 9,60
3/15.	100,00	.00	41		5,02	46,80 2,62 ©pur	р 4,50

3. Eifenerze aus den Bergbauen der Eifenwerks-Gesellichaft zu Wolfsberg in Kärnthen, untersucht im Jahre 1843.

31

I. Bergbau St. Leonhard: a) Branneisenstein; b) Spath= eisenstein; c) ebenderselbe, geröstet und 1 Jahr lang ab= gewittert.

II. Bergbau St. Gertraud: a) Brauneisenstein; b) derselbe, frisch geröftet; c) Spatheisenstein; d) derselbe, geröftet und 3 Jahre lang abgewittert.

											I.	100
UB ST										a	b	с
Eifenozyd			•			•				78,11		86, ₇₈
Eifenorydul											39,34	3,39
Ralferde .			۰.	•							9,97	0,40
Magnesia .	•	•	•							0, ₆₁	4,14	7,04
Unlösliches	•	•			8	•				8,16	2,49	0,25
Kohlenfäure		•									44,06	2,14
Wasser .	•		a .					•		13,12		
Schwefel .	•	· · · ·	•	•		•	•	•	•			Spur
1012 (1985) 1018 - 1019									Calores	100,00	100,00	100,00
Metallisches	Gi	fen				•		. –		54,16 ⁰ /0	30,38 º/0	60,17 %
							-			II		
(Filmours)							a			b	C	d
Eifenoryd	•	•		·			a 61, <u>9</u>	28				61,00
Eisenorydul		•	•	•	•		61,			b 68,18	с 56,02	
Eifenoxydul Manganoxyd		•	•	•	• •		61,g 	00		b 68,18 	56, ₀₂	61, ₀₀ 7, ₈₄
Eifenoxydul Manganoxyd Ralferde .		• • •	•	•••••••••••••••••••••••••••••••••••••••	• • •		61,9 	00		b 68,18 	56, ₀₂ Spur	61,00 7,84 1,96
Eifenoxydul Manganoxyd Ralferde . Magnefia		• • •	• • •	• • •			61,5 6,0 0,7 1,1	00 76 10		b 68,18 8,37 Spm Spm	56, ₀₂ Spur 5, ₁₃	$61_{,00}$ $7_{,84}$ $1_{,96}$ $6_{,10}$
Eifenoxydul Manganoxyd Kalferde . Magnefia Unlösliches)	· · · · ·	•				61,9 	00 76 10		b 68,18 	56,02 Spur 5,13 0,37	$ \begin{array}{c} 61,00\\ 7,84\\\\ 1,96\\ 6,10\\ 18,16\\ \end{array} $
Eifenoxydul Manganoxyd Kalferde . Magnefia Unlösliches Rohlenfäure)	· · · · ·	• • • • •	• • • • •	· · · · · · ·		61,9 6,0 0,7 1,1 18,1	00 76 10 12		b 68,18 	56, ₀₂ Spur 5, ₁₃	$ \begin{array}{c} 61,00\\ 7,84\\\\ 1,96\\ 6,10\\ 18,16\\ \end{array} $
Eifenoxydul Manganoxyd Ralterbe Wagnefia Unlösliches Rohlenfäure Waffer)		• • • • • •	• • • • • • •	• • • • • •		61,5 6,0 0,7 1,1	00 76 10 12		b 68,18 	56,02 Spur 5,13 0,37 38,49	$61_{,00}$ $7_{,84}$ $1_{,96}$ $6_{,10}$
Eifenoxydul Manganoxyd Kalferde . Magnefia Unlösliches Rohlenfäure)	• • • • • • •	• • • • • • •	• • • • • • •	• • • • •		61,5 6,6 0,7 1,1 18,1 13,1	00 76 10 12		b 68,18 – бриг Эриг 18.36 – б,09 Эриг		61,00 7,84 1,96 6,10 18,16 4,94
Eifenoxydul Manganoxyd Ralterbe Wagnefia Unlösliches Rohlenfäure Waffer)		• • • • • • •		· · · · · · · · · · · · · · · · · · ·		61,9 6,0 0,7 1,1 18,1	000 76 10 12 12 88 `		b 68,18 	56,02 Spur 5,13 0,37 38,49	$ \begin{array}{c} 61,00\\ 7,84\\\\ 1,96\\ 6,10\\ 18,16\\ \end{array} $

4. Gifenerze und Ralksteine von der Gegend bei Auffee in Steier= mark, untersucht 1843.

I. Vom Gifensteinlager an der Teltsche; a, b. e Spatheisenstein.

II. Vom Eisensteinlager am Nöthelstein: a, b Brauneisensteine; c) Spatheisenstein.

III. Vom Gifengraben : a, b Ralffteine.

						-	I.	
						a	b	c
Eisenorydul .	•	• •		•	•	49,92	49,00	42,69
Manganoxydul	•					6,60	5,54	12,92
Kalkerde		• •	•	•	• •	0,67		0,50
Magnesia	•	•••	•	•		5,26	4,55	3, ₅₀
Thonerde	•	• •				0,80		2,04
Riefelfäure .	•			•	• •	7,96		
Unlösliches .		• •	•				0,44	1,45
Kohlenfäure .	•	• •			• •	27,95	40,47	34,00
Schwefelfäure		• •	•	•		0,84		
Schwefelblei .	•	• •	•		• •	_		2,90
					Contractor	100,00	100,00	100,00
Metallisches Eis	en			~•		38,84%	38,12%	33,21 %
						/84 /0	/12 /0	/01 /0.
					II.			III.
		a			b	с	a	III. b
Eisenoryd			.0		b		a 3,-0	
Eisenorydul	•	a 84,,7	0				a 3,-0	b
Eifenoxydul Manganoxydul .			0		b	48,39	a 3,70	
Eifenoxydul Manganoxydul . Kalferde	•			7	b 9, ₂₉	48,39 12, ₈₄	a 3,;0	b 3, ₂₃
Eifenoxydul Manganoxydul .	•	84,,, Spu	ır	7	b 9,29 1,00 1,91	$48_{,39}$ 12, ₈₄ 0, ₆₀ 4, ₉₀	a 3,70 	b 3,23 32,10
Eifenoxydul . Manganoxydul . Kalferde Magnefia Thonerde	· · ·	84,,, Spu	ır	7	b 9,29 1,00 1,91	48,39 12,84 0,60 4,90	a 3,70 	b 3, ₂₃
Eifenoxydul. Manganoxydul. Kalferde Magnefia Thonerde Riefelfäure	• • • •	84,,7 — Spu 3,0	ır 0	7	b 9,29 1,00	$48_{,39}$ 12, ₈₄ 0, ₆₀ 4, ₉₀	a 3,70 	b 3,23 32,10
Eifenoxydul. Manganoxydul. Kalferde Magnefia Thonerde Riefelfäure Unlösliches	• • • • •	84,,, Spu	ır 0	7	b 9,29 1,00 1,91	$ \begin{array}{c} 48_{,39} \\ 12_{,84} \\ 0_{,60} \\ 4_{,90} \\ 2_{,20} \\ \hline 0_{,50} \end{array} $	a 3,70 	b
Eifenoxydul . Manganoxydul . Rallerde Magnefia Thonerde Riefelfäure . Unlösliches Rohlenfäure	• • • • •	84,,, Sput 4,,,	1r 10 0	7	b 9,29 1,00 1,91 4,54	$ \begin{array}{c} 48_{,39} \\ 12_{,84} \\ 0_{,60} \\ 4_{,90} \\ 2_{,20} \\ \hline 0_{,50} \end{array} $	$ \begin{array}{c} a \\ 3_{770} \\ - \\ - \\ 38_{757} \\ 11_{775} \\ 1_{708} \\ - \\ 0_{795} \end{array} $	b 3,23 32,10 14,46 9,84
Eifenoxydul. Manganoxydul. Kalferde Magnefia Thonerde Riefelfäure Unlösliches	•	84,77 	ir 0 0		b 9,29 1,00 1,91 4,54 	$ \begin{array}{r} $	a 3,70 	b
Eifenoxydul . Manganoxydul . Rallerde Magnefia Thonerde Riefelfäure . Unlösliches Rohlenfäure	• • • • •	84,,7 — Spu 3,0	ir 0 0		b 9,29 1,00 1,91	$ \begin{array}{c} 48_{,39} \\ 12_{,84} \\ 0_{,60} \\ 4_{,90} \\ 2_{,20} \\ \hline 0_{,50} \end{array} $	$ \begin{array}{c} a \\ 3_{770} \\ - \\ - \\ 38_{757} \\ 11_{775} \\ 1_{708} \\ - \\ 0_{795} \end{array} $	b 3,23 32,10 14,46 9,84

Metallisches Eisen . 59,320/0 55,330/0 37,650/0.

5. Schwarzeisensteine von Thrnova nächft Refchiga im Banat, untersucht 1846 von A. Patera. a b Eifenoryd 37,50 47,50 Manganozyd 26,48 22/10 Kalferde Spur Spur Riefelfäure 27,50 28,00 Waffer 8,50 2,40 99,98 100,00. 6. Bufchlagschiefer beim Hochofenbetrieb zu Dienten im Salz= burgifchen, untersucht 1848 von A. Patera. Cifenoryd . . . 35,50 Manganoryd . . 3,72 Thonerde . . . Spur Unlösliches . . . 50,50 Baffer 9,75 99,47 Metallisches Eisen . 24,60%. 7. Gifenerze: a) von Liwot, b) von Rzetowit in Böhmen, untersucht 1848. а. b Unlösliches 16,05 54,00 Eisenoryd 72,75 41,60 0,,51 Thonerde 3,25 2,00 Rohlensaure Kalferde . . . 0,25 0,25 0,01 Phosphorfäure 0,90 -----Baffer 5,50 $1_{,25}$ 98,90 99,62 Mctallisches Eisen . . . 50,64 29,13. 8. Spatheifenstein von Rirchau in Defterreich, untersucht 1848. Eisenorydul 56,5 ; Gifen 43,62% Manganozydul 5,0 Kalferde Spur Magnesia Spur Rieselfäure 6,6 Schwefel Spur 99,,.

3

x	
94	
54	
Ralferde 10,13 18_{r35} 25_{r75} Magnefia 9,92 9_{r46} 9_{r53} Miejelfäure 0,75 3_{r75} 3_{r65} Kohlenfäure 39_{r96} $24_{\cdot 44}$ 28_{r67} Baffer $ 7_{r50}$ 7_{r57} Metallijches Eifen 30_{r10} 25_{r80} 18_{r50} 11. Eifenerze vom Rugrdichen Giteuwerfe um Ferson 0 0 0	35 12. Gifenfteine von Migun in Galigien, unterfucht im 3ahre 1854 von H. Guruen. a) Brauneifenfteine von Jubacgow; b-f) thoniger Sphärosfiberit: b von Rniagoluta, c von Rrzemionta, d von Hah, e von Putna, f von Fatafom. a b c d e f Gifenogub
11. Eifenerze vom Nuard'schen Eisenwerke zu Sava in Krain, untersucht 1853: a) Spatheisenstein, b) und c) als Manganerz bezeichnet.	Riefelfäure 13,60 2,60 Slühverluft (HO) 10,00 8,00 98,32 98,79
	Metallisches Eisen 45,80 56,40.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	 14. Gifenerze aus den zu dem Gifenwerke in Maków gehörenden, in Galizien und dem Krakauer Gebiete liegenden Berg= bauen. a) Von Bujarkow, b) Krzecow, c) Élezowice, d) Wi= lanowice, e) Klecza, f) Kalwaria, g) Tamófta,
$\frac{98_{73}}{99_{74}} \mathfrak{Vaijer} \ldots \ldots \frac{14_{79}}{99_{74}} \frac{10_{79}}{98_{79}}$	h) Bhezhna, i) Klecza dolna. Untersucht 1858 von M. v. Lill, F. Hillebrand, H. Sturm und E. Vittsánszty. 3*

Sphärosiderite.

							STATES OF THE OWNER	
		a	b	с	d	e	f	g
	Riefelfäure	. 9,50	16,84	19,50	41,50	4,50	11,90	10,3
	Thonerde .	· 5,50	5_{16}	4,50	1,50	2,26	6,70	$11_{,4}$
	Eisenorydul	. 29,63	17,00	32,64	15,82	33,71	30 ₈₄	28,7
	Eisenoryd .	. —	17,93		8,79	1,75		1
	Manganoxydu	í	14,88	7,81	2,00	-/75	0	$1_{,8}$
	Kalferde .	. 14,80	1,68	$2_{,52}^{,81}$	$7_{,52}^{-700}$	13,29	0,80	1,58
	Allo amotio	. 4,26	Spur	$3_{/12}$	3'52	0	10, ₈₀	13,88
		35,50	21,00	28,85	3, ₆₃	9,15	5,45	3,14
	Phosphorfäure	Spur		20,85 Spur	17,00 The second second	35, ₆₀	33, ₀₀	23,90
	Schwefel	0, ₂₀	Spur		Spur	Spur ~	Spur ~	1,43
	Waffer	0/20		Spur	Spur	Spur	Spur	Spur
		00	5,51	-	2,24			3,76
	Metall . Ostan	99, ₃₉	100,00	98,94	100,00	100,26	99,49	100,00
	Metall : Eisen	23,06	25,80	25,4	18,4	27,4	24,0	23,65.
	Brauneisen	stein m	it Kalfíva	rth.				
			h			Ľ	rauneise	
	Riefelfäure		. 0,54	0;	efelfäure			i
	Thonerde		. 0,54				16	84
	Sisenoryd	•••	. 0,36			•••	67	14
	Manganozydul	• •	$.17_{,13}$	少1 のつ	josphorf	aure	1	22
	Ralferde	•••	· 3,40	205	affer un	d organi		
	Magnesia	•••	. 39, ₃₀		Substan	3	. 13	27
		• •	. 1,50				98,	47
	Zinkornd	• •	. 1,40	Me	etallisches	8 Eifen	47	,0 ⁰ /0.
	Blei	•••	. Spur					/0 /0
	Schwefel	•••	. Spur					
	Rohlensäure und	Waffer	r 36, ₃₇					
			100,00	8				1
5	Metallisches Eise	n	12,0%					
	6199 BI		10 /	U				

- 15. Geröftete Spatheifensteine aus dem Gollrad'er Berg= bau nächst Mariazetl in Steiermark, untersucht im Jahre 1859 von M. v. Lill.
- a) Ausgesuchte Bartien, theils mit rohem Kies, theils mit Bitter falz-Effloresenzen; b) Durchschnittsprobe nach der Abwitterung und Auslaugung.

a	b
Eisenozyd 60,33	57, ₈₃
Eisenoxydul	3,21
Managuaruhularuh 3	$2_{,50}$
Ralferde	2,13
Magnefia	8,14
Thouerbe	4,60
Duarz und chemisch gebundene Kieselsäure 7,70	14,25
Schwefelfäure, an Magnesia gebunden 2,40	725
Sifenbisulphuret (Schwefelfies) 440	
Das dem Magnetkies entsprechende Gifen-	
fulphuret (5 Fe S + Fe ₂ S ₃) 0_{750}	
Schwefel	0,20
Phosphor	Spur
	opin
Kupper	
	7,14
Weta (ii 5 that (5:15 ar	100,00
Metallisches Eisen 49,10	43, ₀₀ .
16. Buschlagmaterialien vom Eisenhochofenbetrieb zu M	laria=
zell in Steiermark, untersucht 1859.	
a) Zuschlagschiefer, untersucht von M. v. Lill; b) Rot	
Buschlag; c) Zuschlagstallstein, untersucht von H. St	urm.
a b	с
Quarz und chemisch gebundene Kieselsäure 66,60 14,50	
Thon	0,75
Thonerde 15,66 4,19	<u> </u>
Eisenoryd	0,20
Manganoryd 1,16 2, 👼	
Ralferde	47,97
Magnefia 0,83 1,94	6,20
$roglenjaure \dots 18_{106}$	44,37
\mathfrak{W} affer	
Baffer und Kohlenfäure (aus dem Verluft) 5,63 —	
Schwefel	
100,00 99,40	99, ₄₉
Metallisches Eisen	-749
17. Gifenerze aus der f. f. Sifenwerts-Verwaltung zu Pod	uroj
in Ungarn, untersucht 1860 von B. Mrazek.	

37

a—d) Branneisensteine aus Macskamezö, e) Magneteisenstein eben= baher, f—l) Branneisensteine, und zwar: f) von Rosia, g) von Balya Oraculuj, h) von Kallinie Balya, i) von Kallinie Izvoru, k) von Baratyik, Findling, l) ebendaher, anstehend.

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
b 8,05 4,56 16,09 55,36 55,36 6,09 1,05 0,08 98,61 11,42 98,61	
$\begin{array}{c} & & 31,_{50} \\ & & 5,_{57} \\ & & 5,_{57} \\ & & 29,_{72} \\ & & 29,_{72} \\ & & 29,_{72} \\ & & & 29,_{72} \\ & & & & 29,_{72} \\ & & & & & & \\ & & & & & & \\ & & & & $	
$\begin{array}{c} d\\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ $	
$\begin{array}{c} \begin{array}{c} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & $	
$\begin{array}{c} f \\ 21_{753} \\ 2_{774} \\ 57_{779} \\ 5$	
$\begin{array}{c} g\\ 12_{733}\\ 5_{767}\\ 6_{3_{725}}\\ -\\ 1_{725}\\ -\\ 1_{14_{76}}\\ -\\ 1_{14_{770}}\\ -\\ 4_{4770} \end{array}$	
h 26,43 26,43 26,44	
$\begin{array}{c} & & & & & \\ & & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & &$	
k 7,33 3,86 72,45 72,45 72,45 72,45 72,45 70,72 15,46 15,46	
1 16,66 7,39 62,98 62,98 62,98 12,18 12,18 12,18 100,41 44,11	

in a) 3	vatheifenfteine a Steiermark, nu um Theil verw ittert, vom obe	tersuch: ittert,	t 1860 vom o	von N beren 2	dt: v. Bergb	Qill. au; b)		
	~ (×			S	a	b		
	Quarz und ki				8,85	10,50		
	Eisenbisulphur	et (Sc	hwefelfi	es).	0,66	0,67		
	Eisenoryd .		• •		33,26	61,00		
	Manganoryd		• •	•	3,46			
	Rohlenfaures	Eifenoz	eydul		38,71	5,32		
	Rohlenfaurer &			• .	5,11	5, ₅₀		
	Rohlenfaure 1			• .	5,84	$2_{,24}^{,50}$		
	Waffer (aus t				4,11	$11_{,00}$		
			- 3		-/11	100,00		
	Metallisches C	ifen	• .		42,27	45, ₅₉ .		
19 6515	enerze vom Eise			• • •	+ h o l	in Diaso	nästannald	r.
10. 01	ersucht 1860 v	an m	511 JUL	00110	ıyuı	III DILEDE.	operreiu	91
	on Rappenh				5 . Y			
a) 20	on suppend	(a ,] u	uun y	ceujt		7		
	O' C YC''			0.0	a	b		
	Rieselfäure :	• •	• •		/95	16,75	14	
	Thonerde	• •	•••		/17	5,17		
	Eisenornd	· •	• •		68	59, ₈₃		
	Manganoxyd .	•	• •	. C	6 4	1,05		
	Kalkerde			. 2	/10	2,66		
	Magnesia			. 2	177	5,51		
	Phosphor		• •	1				
	Schwefel			. ()	pur	Spur		
	Waffer			. 9	177	8,00		
					/08	98,97		
	Metallisches E	ifen .			799	41,90.		
20. Ma	ıgneteisensteine					Eifenwer	f8=Giefell	=
	ft in Böhmen,					Ejchfa.	ite o ejen	· · ·
, Iu)u	ife in Sougheig		a		b	c fujiu.		
	Rieselfäure .		10,40					
	Thonerde.	• •			/15	40,80		
	'	• •	4,00		/67	1_{03}		
	Eisenoryd .	· ·	62,04		/61	13,11		
	Eisenorydul .	• •	20,52	9	/33	24,37		
	Manganoxydul	•••		-		$2_{,93}$		

Kalferde 1 2 12	
$\mathfrak{M}_{0011efin}$ $2'_{10}$ $2'_{189}$ $13'_{178}$	
Schmetelfies $0_{,09}$ $4_{,01}$ $1_{,37}$	
Gebunder O	
$\Omega_{12} = 0_{11}$	
Maffan	
SILLE Com	
100 -763	
$\frac{100_{00}}{100_{00}} \frac{763}{100_{00}} \frac{1}{100_{00}}$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
21. Thoneisensteine von St. Stefan in Obersteiermark, untersucht 1861 von N. Efchfa.	
a) Hougend des Politium o	
a) Hangend des Neittinger Lagers, Barbara=Bergbau;	
b) vom Fuße des Reittings in der Kulmau.	
Eisenorthd 18 25	
Managements 10/68 40/84	
Thoughout 2_{10} 2_{164} 4_{197}	
\mathcal{P}_{a} (for the second se	
$\mathfrak{Magnefia} \qquad \qquad$	
\mathcal{O}_{igi}	
18 00	
Cujucier autre 0	
scontentaure und Wasser (aus	
bem Berlust) $\frac{28_{51}}{100_{00}} = \frac{18_{49}}{100_{00}}$	
$\frac{100_{00}}{100_{00}}$	
~ foncifulitil DDh full m have tel ~ ~	
Quarate in the loose bolt with by will.	
Thomas 23,80 Magnesia O.c.	
Girmer 51,60 Kupfer	
Cilculution in Cochunger	
Ralferde O',60 Baffer 16	
\Re alferde O_{760} \Re affer $\frac{16_{746}}{99_{.61}}$	
Metallisches Eifen 12,57.	
and a condition of the thornor in on a	
1862 von M. v. Liss.	

a) Dolomitijcher Kalk vom Karlgraben bei Krampen, Steier= mark; b) Dolomit von Neuberg nächst dem Puddlingswerk.

	a b
Beigemengte Holzkohle und Holzsplitter 0	, ₂₇ 0, ₃₂
Quarz, Rieselthon und Rieselfäure 1	1
Ralferde 45	/84 34,40
Magnejia 6	/65 17 39
Eisenozyd 2	100 0.72
Manganoxyd 0	19 Spur
Rupfer Sp	ur Spur
Kali und Natron 0	13 0,10
Schwefelfäure 0	0
Phosphorfäure 0,	101 0,07
Scohlenjäure 41.	45
Waffer und Abgang 1,	$\frac{17}{0,75}$
100,	$\frac{17}{00}$ $\frac{0.75}{100,00}$.
24. Eifenerze und Zuschläge aus ben Bergbau	en der freiherrlich
von Silberstein'schen Bergdirektion zu Scha	
a-d Rotheisensteine; e-g Sphärosiderite;	h und i Kalf=
iteine unterincht 1869 war m O'rr	~ ~

fteine; untersucht 1862 von M. v. Lill, F. Hillebrand und A. Efchta.

	\mathbf{a}	b	с	d
Rieselfäure	. 9,44	34,69	20,10	11,45
Thonerde	. 5,94	6,05	5,51	7,62
Eisenoryd	. 77,96	39,84	51,83	57,13
Manganoryd .	. 0,20	0,50	0,48	0,12
Ralkerde		5, ₉₈	6,90	$6_{,34}^{,12}$
Magnesia		3,23	4/18	0,34 4
Rupfer			Spur	4,31
Schwefelfäure .		0,05		
Phosphorfäure	. 0	0/05	0,05	0
Kohlenjäure	. 0,11	0		0,09
Waffer	·	8, ₂₃	9,85	5,12
~~~~~	. 6,44	0,43	1,21	6,68
Matallischar (Els.	100,09	99,00	100,11	98, _{s6}
Metallisches Eise	11 04 _{/60}	27,90	36,30	40,01.

					e		$\mathbf{f}$	œ	
Rieselsäure				1	1,15		18,55	g 8, ₈₀	
Thonerde .				2	4,65	<b>,</b>	5 _{/60}	3	
Eisenoryd .				(	) _{/57}	)	0/60	3, ₀₉	
Eifenorydul				4	3, ₅₁		0, ₇₇ 38, ₄₇	0,50	
Manganoxy				-	$l_{,41}^{,51}$	L	1	48,28	
Kalferde .				(	$)_{,82}$		$1_{,47}$	1,28	
Magnesia .	÷.	÷	·	1	//82		$1_{62}$	1,59	
Kohlenfäure	•		•	90	/24		$2_{61}$	2,27	
Schwefelfies	·	•	·	48	), ₄₀		27,45	30,20	
Phosphorjän		·	•	C	),19		0,09	0,09	
Rohle, Alka		•	•	C	),13		0,08	Spur	
			nd					<ul> <li>C</li> </ul>	
Waffer (c	шø	00	m	0					
Abgange)	•	•	·	3	/93		3,29	3,90	
000 - 1 - 1/2 - 1	~			100	/00		100,00	100,00	
Metallisches	Eiſ	en	·	36	/68		30,51	37,95.	
Giafalläuna							h	i	
Riefelfäure .	. •	٠	٠	•	•	٠	1,20	12,66	
Thonerde .	٠	٠		•	٠		0,50	1,39	
Eisenornd .	•	·	·	•	•		) 0/50	$1_{,21}$	
Manganoryd	•		٠		•	•	Spur	0,25	
Kalferde .	٠	·	•		•	•	49,80	45,99	
Magnesia .	•	•		•	•		4,49	1,05	
Rohlenfäure	٠			•			44,10	36,76	
Wasser	•		· .					0,69	
					-		100,09	100,00	
				-			. 705	/00	

- 25. Eifenerze und Zuschläge von ber f. f. Eifenwerks=Verwaltung zu Dienten, untersucht 1862 von M. v. Lill, H. Sturm und A. Eichka.
- a g geröftete Spatheisensteine, und zwar a) Euzianriedler,
  b) Sommerhaltner, c) Rappachalper, d) Stegmoosriedler,
  e) Nagelschnied, f) Kohlmannsegger Spath älterer Er= zeugung, g) Kohlmannsegger Spath, Erzeugung 1861;
  h) roher Thonkopfschiefer, i) roher Wetterkreuzschiefer, k) roher Bürchlochschiefer, 1) roher Zuschlagskalk.

a b c d e f g $\Re \circ h e$ $1_{20}$ $0_{50}$ $  0_{45}$ $0_{55}$ $-$ $\Omega narz mb \Re e^{2}felfäure 1_{20} 3_{20} 1_{20} 28_{20} 15_{35} 10_{20} 7_{20}\Im h \circ h \circ h \circ h 13_{20} 8_{02} 11_{20} 28_{20} 15_{20} 10_{20} 7_{20}\Im h \circ h \circ h \circ h 13_{20} 49_{20} 11_{20} 8_{20} 11_{20} 3_{20} 10_{20} 7_{20}\Im h \circ h \circ h \circ h 12_{20} 49_{20} 45_{20} 48_{20} 42_{20} 47_{20} 34_{20}\Im h \circ h \circ h \circ h 12_{20} 49_{20} 45_{20} 48_{20} 42_{20} 47_{20} 34_{20}\Im h \circ h \circ h \circ h 12_{20} 14_{21} 4_{20} 2_{20} 5_{21} 3_{21} 5_{21} 3_{21} 3_{21}\Re n n n n n n n n h = 1\Im h \circ h \circ h \circ h \circ h\Im h \circ h \circ h \circ h \circ h \circ h\Im h \circ h\Im h \circ h $
$\begin{array}{llllllllllllllllllllllllllllllllllll$
$\begin{array}{llllllllllllllllllllllllllllllllllll$
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $
$\begin{array}{c} \text{ Cifenoryb} \dots 31_{\prime 20} & 49_{\prime 34} & 65_{\prime 78} & 48_{\prime 33} & 42_{\prime 98} & 47_{\prime 54} & 34_{\prime 91} \\ \text{ Cifenorybul} & 12_{\prime 28} & 14_{\prime 11} & 4_{\prime 03} & 2_{\prime 28} & 5_{\prime 14} & 4_{\prime 75} & 4_{\prime 21} \\ \text{Manganoryb} \\ \text{orybul} \dots & 2_{\prime 30} & 2_{\prime 65} & 3_{\prime 28} & 2_{\prime 12} & 3_{\prime 15} & 3_{\prime 23} & 3_{\prime 00} \\ \text{Kalferde} \dots & 3_{\prime 78} & 2_{\prime 65} & 1_{\prime 12} & 1_{\prime 76} & 2_{\prime 50} & 5_{\prime 00} & 5_{\prime 69} \\ \text{Magnefia} \dots & 27_{\prime 39} & 16_{\prime 58} & 8_{\prime 33} & 8_{\prime 58} & 18_{\prime 66} & 16_{\prime 28} & 34_{\prime 50} \\ \text{Supfer} \dots \dots & \text{Spur} & \text{Spur} & - & - & \text{Spur} & - & - \\ \text{Schwefelfäure} & 0_{\prime 08} & 0_{\prime 02} & 0_{\prime 24} & 0_{\prime 10} & 0_{\prime 14} & 0_{\prime 17} & 0_{\prime 20} \\ \text{Phosphorfäure} & 0_{\prime 14} & 0_{\prime 15} & 0_{\prime 18} & 0_{\prime 15} & 0_{\prime 15} & 0_{\prime 13} & 0_{\prime 07} \\ \text{Rohlenfäure} & 1_{\prime 80} & 0_{\prime 60} & 1_{\prime 65} & 2_{\prime 15} & 4_{\prime 30} & 4_{\prime 30} & 5_{\prime 50} \\ \text{Magnefic} & \text{Construct} & 1_{\prime 80} & 0_{\prime 60} & 1_{\prime 65} & 2_{\prime 15} & 4_{\prime 30} & 4_{\prime 30} & 5_{\prime 50} \\ \text{Staffer} & (aus) \\ \text{Staffer} & (aus) \\ \text{Staffer} & (aus) \\ \text{Staffer} & 100_{\prime 00} \\ \end{array}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Manganoyb≥         orybul
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Magnefia 27,39 16,58 8,33 8,58 18,66 16,28 34,50 Rupfer Spur Spur — — Spur — — Schwefelfäure 0,08 0,02 0,24 0,10 0,14 0,17 0,20 Phosphorfäure 0,14 0,15 0,18 0,15 0,15 0,13 0,07 Rohlenfäure . 1,20 0,60 1,65 2,15 4,30 4,30 5,50 Baffer (aus bem Abgange) 3,63 2,05 2,33 1,29 3,53 1,68 0,63 100,00 100,00 100,00 100,00 100,00 100,00 100,00
Rupfer Spur Spur — — Spur — — Spur — — Schwefelfäure 0,08 0,02 0,24 0,10 0,14 0,17 0,20 Phosphorfäure 0,14 0,15 0,18 0,15 0,15 0,13 0,07 Rohlenfäure . 1,80 0,60 1,65 2,15 4,30 4,20 5,50 Waffer (ans sem Abgange) 3,63 2,05 2,33 1,89 3,53 1,68 0,63 (0.63 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,000 100,00 100,00 100,00 100,00 100,000 100,00
Phosphorfäure         0,14         0,15         0,18         0,15         0,15         0,13         0,07           Rohlenfäure         1,80         0,60         1,65         2,15         4,30         4,30         5,50           Waffer         (aus
Phosphorfäure         0,14         0,15         0,18         0,15         0,15         0,13         0,07           Rohlenfäure         1,80         0,60         1,65         2,15         4,30         4,30         5,50           Waffer         (aus
Kohlenfäure . 1 _{/80} 0 _{/60} 1 _{/65} 2 _{/15} 4 _{/30} 4 _{/30} 5 _{/50} Baffer (aus bem Abgange) 3 _{/63} 2 _{/05} 2 _{/33} 1 _{/89} 3 _{/53} 1 _{/68} 0 _{/63} - 100 _{/00}
Waffer (aus dem Abgange) $3_{,63}$ $2_{,05}$ $2_{,33}$ $1_{,59}$ $3_{,53}$ $1_{,68}$ $0_{,63}$ $1_{,69}$ $100_{,00}$ $100_{,00}$ $100_{,00}$ $100_{,00}$ $100_{,00}$ $100_{,00}$ $100_{,00}$
bem Abgange) 3,63 2,05 2,33 1,89 3,53 1,68 0,63 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00
$: 100_{,00} 100_{,00} 100_{,00} 100_{,00} 100_{,00} 100_{,00} 100_{,00}$
Metall. Cifen 31,41 45,45 49,20 35,62 34,10 37,00 27,73.
hikl
Kicselsäure
(Unlösl. Nückft and
Thomerde 12,77 8,81 8,78 0,51
Sifenoryd
Wlanganozyd 4,24 6,05 3,67 —
Ralferde 0,95 0,54 15,61 33,65
Włagnefia 0,26 0,28 1,42 17,82
Schwefelfäure 0,35 0,20 0,30
Phosphorfäure 0,36 0,41 0,25 Spur
Rohlenjäure — — 13,05 46,25
Waffer (aus dem Abgange) 9,34 8,59 5,30 0,12
$100_{00}$ $100_{00}$ $100_{00}$ $100_{00}$
Metallisches Eisen 26,77 24,50 13,39.

Die bei a, b, e und f aufgeführte Kohle dürfte von beige= meingtem Brennmateriale herrühren. Bei der qualitativen Analhse der Posten h, i und k wurden auch geringfügige Mengen von Alkalien nachgewiesen, deren quantitative Bestimmung nicht vor= genommen wurde.

## a) stobalt= Nickelerze.

1. Eisenerze und Schlich von Leogang im Salzburgischen, unter= sucht 1848 auf Kobalt, Nickel, Sisen, Rupfer und Silber.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
2. Kobalt Nickelerze von Kitzbüchl aus dem Schattberger Verg=         2. Kobalt Nickelerze von Kitzbüchl aus dem Schattberger Verg=         baue, untersucht 1850 von A. Löwe.         Schwefel 16 _{/18} Kobalt 5 _{/21} Arfen
3. Kobalt=Nickelerze von Leogang in Salzburg, untersucht 1850. a b
Kobalt       .       11,67       15,76         Nickel       .       6,52       8,12         Eifen       .       33,61       31,25         Kupfer       .       3,82       4,91         Schwefel       .       14,22       16,53         Arfenif       .       9,96       7,88         Silber       .       .       0,007       0,015         Nückftand       .       .       18,86       .       14,74
4. Kobalt-Nickelerz aus Dobschau in Ungarn, untersucht 1846 von A. Patera.
Schwefel 17,3 Kobalt 4,5 Arfenik
<ul> <li>5. Kobalt-Nickelerze von der Gegend bei Libethen, untersucht 1847 von A. Löwe.</li> <li>a) Alter Bau zu Libethen;</li> <li>b) ebendaher;</li> <li>c) auf der Cjerteva Szwadba (Sohler Seite).</li> </ul>

#### 44

26. Eisenerze aus der Gegend bei Pitten in Nieder-Desterreich der Frau Anna Desterlein, untersucht 1862 von A. Eschta. a) Mulmiger Ocker, b) sester Eisenocker, c) dichter Braun=

eifenstein. a h

Unlöslicher Rückfto Hydratwaffer Phosphor Arfen Rupfer Eifengehalt Außerdem ift	• • • • • • • • • • • • •	Frien Thomas	b $2_{,4}$ $0_{,0}$ $12_{,8}$ " $0_{,281}$ " $0_{,770}$ " $0_{,064}$ " $54_{,25}$ " De, fo wie in	10,6 ", 0,226 ", 0,126 ", Spur
Mengen Kalk und	m den Magne	Erzen Thonert esia enthalten.	de, so wie in	fehr geringen

## c) Golderze.

Proben von goldhältigem Schlich aus dem Innern von Afrika, eingesendet im Jahre 1839 von dem damaligen f. f. Bergverwalter herrn Josef v. Rußegger.

fre ompegyet.					
	Silbe	r im	old und Zentner -	Mark	ld in der ïlberhäl=
a) Aus den Thoustraten Das	Qath	Our	h.	tigen (	Boldes.
a) Aus den Thonstraten des Aluviums am Chor Gutscheich	roth	Litch.	Denär	Rarat	Grän
auf der Hochebene Beschorry b) Aus dem Aluvium des	23	2	2;	22	¹ / ₄
Chors Gutichetich auf der Hoch=					
ebene Beschorrh	21	3	9.	01	11/
c) Aus dem Alluvium des		0	2;	21	$4^{1}/_{4}$
Chors Abgulgi im Lande der					
Ramamil=Neger	0				
d) Mus Sun or i	Ø	1	2;	20	$6^{3}/_{4}$
d) Aus dem Aluvium des					/ -*
Chors Adi im Gebirge Fafan=					
goru un Lande Fasaglo.	8	Ø	1;	22	01/
e) Aus dem Aluvium des		U	-,	44	8 ¹ / ₂
Chors el Dahab am Gebirge					
Fadoga	0	0	-		
f) Mute Sam Maria	3	3	2;	22	4
f) Aus dem Aluvium des					
Afantasch am Fadoga	4	<b>2</b>	3;	22	$4^{3}/.$
g) dto. dto. dto	12	<b>2</b>	1;	22	3/
			7		14.

#### a с Schwefel. . 12,25 4,68 13,5 Arfenit . . 30,73 55,50 36,0 $\mathfrak{Blei} \dots \mathfrak{I}_{/20} = 5_{/11} \mathfrak{Spur}$ $\mathfrak{Sifen} \dots \mathfrak{I}_{/20} = 10_{/74} \mathfrak{I}_{/5}$ 5,11 Spur Robalt...24,66 3,10 7,0 Nickel . . . 13,06 7,00 18,0 Rupfer . . 1,53 3,60 ____ Queckfilber 0,66 ____ Nückstand . 4,00 8,05 17,5 98,09 97,78 99,5+

46

#### e) Rupfererze.

1. Cifen= und Rupferfies mit @	Spatheifenstein und Quarz aus
Tergove in der kroatischen	Militärgrenze, untersucht 1857
von ME v. Lill.	
Eisen an Schwefel gebunden 6,77	Thonerde 1,18
Rupfer " " " 6,78	Rohlensaures Gisenornhul 56
Schwefel 9,45	Kohlensaure Maanesia . 6
stiefellaure $12_{59}$	100
2. Erzschlich des Pochganges aus	Totos Nikolai in Unaarn.
C	J . ,

analysirt 1861 von A. Eschfa. Unlöslicher Mückitans 7 Qinf

timettinger otinafin.	110	•	140	Jun	•	•		. Spur
Schwefel	•	•	35,33					
Stupfer	·	ं •	6, ₃₅	Thonerde.	•	•	•	. 0,60
	٠	٠	2,54	Ralkerde .	•	•	•	. 1,01
Suber und Gold	•	•	0,008	Magnesia .	•	·		. 2,89
	٠	٠	30,50					
Ellenozhout	•	•	4,94	Schwefelfäur	e	•	•	. Spur
				•				100,378.
	Schwefel	Schwefel	Schwefel	Schwefel	Schwefel	Schwefel	Schwefel	Schwefel

#### f) Schwefel.

Drei Proben Schwefelerde vom Berge Büdös in Sieben= bürgen, untersucht 1856 von F. Hillebrand.

Durch Destillation wurde an arseniffreiem Schwefel gewonnen aus den 3 Proben: 60,6 pEt., 67,3 pEt. und 48,3 pEt.

In den Destillations-Nückständen fand fich vor außer ver= fohlten organischen Substanzen (Baumblättern u. f. w.), Rieseljäure in vorwaltender Menge, dann Thonerde, etwas Gifenoryd und Ralferde.

#### g) Schwefelfies.

Schwefelfies aus Lockenhaus in Ungarn, untersucht 1860 von A. Efchfa.

Quarz und Rieselthon		Zint .		•	. 3,59	
Schwefel	$.48_{28}$				. 0, ₂₂	
Eisen	· 40,60				99,12	
Arsen wurde nicht	vorgefunden.	•				

#### h) Zinkerze.

1. Zinkblende a) aus Pribram, b) aus Mies in Böhmen, untersucht 1842.

					a	b	
3in£				•	65,12	60, ₅₀	
Ladmi					1,73	3,66	
Sisen	•		•		1,62	4,21	
Schwe	fel	•	•	•	31,53	31,63	
					100,00	100	

2. Zwei Maufter Zinterze von der Struggl'ichen Gewerkichaft zu Raibl in Kärnten, untersucht 1862 von D. v. Lill.

h

a) Galmei=Scheiderze, b) Zinkblendeschlich. a

a	b
Rohlenfaures Zinkozyd. 82,10; Ziuk 42,70% Rohlenfaure Kalkerde . 2,33 Rohlenfaure Magnefia 0,90 Rolenfaures Eifenozydul 2,06; Eifen 1,00 " Eifenozydul 2,06; Eifen 2,00 " Eifenozydul 2,00 " Eif	b Schwefelzinf 51,95; Zinf 34,82 Schwefelblei. 3,04 Blei 2,63 Eifenbiful= phuret 13,52 Eifen 6,31 Eifenoryd . 1,66 Schwefelfan= rer Baryt. 7,27 Schwefelf. Kalf 0,58 Kohlenf. Kalf 0,58 Kohlenf. Kalf 9,57 , Magnefia 7,91 Thomerde . 0,164 Riefelfäure. 0,98 Baffer und Abgang . 2,88
	Waffer und Abgang 2 _{/28} 100,00.

a) Antimon. 1. Drei Sorten Antimonium crudum, untersucht 1850 von A. Löwe. a) Sogenanntes fruftallifirtes Rofenauer, b) derbes Liptauer, c) Neusohler. a b с Schwefeleifen . . . 1,102 4,093 3,235 Schwefelblei . . . — ____ Schwefelarsenik . . 0,568 0,247  $3_{,403}$ Schwefelantimon . 98,330 92,504 96,<u>518</u> 100,000 100,000 100,000. 2. Antimonium crudum, untersucht 1855 von A. Löwe. a) Von Magurka, b) von Aranyidka. Un fremdartigen Bestandtheilen wurde gefunden in 100 Theilen: b Rupfer . . . 0,50 0,10 Blei . . . 3,75 5,53 Arfenikt . . . -0,76 Eisen . . . 2,85 0,35. b) Blei. 1. Bleiforten aus Rärnten, untersucht 1841 von 2. Löwe. a) Bleiberger ordinäres Blei; b) Kaltwaffer Rührblei; c) Kalt= maffer Pregblei; d) Thörler Rührblei; e) Thörler Pregblei; f) Rückstand vom Umschmelzen des Raibler Bleies. a.b с d e Blei . . . . 98,32 99,32 98,24 98,36 99,00 96,₉₆ Binf . . . .  $1_{120}$   $0_{164}$   $1_{144}$   $1_{117}$   $0_{180}$ 1,90 0,22 ----0,10 Spur -0,15 Eifen . . . . Spur Spur Spur Spur Spur  $99_{,52}$   $99_{,96}$   $99_{,90}$   $99_{,53}$   $99_{,90}$   $99_{,03}$ . 2. hartblei von der f. f. Hutte in Tajowa, untersucht 1851 von M. v. Lill.

#### 

3. Drei Posten Rremniter ärarisches Beichblei, untersucht 1860 von M. Mraget auf beren Berunreinigungen. Muster Nr. 0 Nr. 1 nr. 2 Silber . . . Spur Spur Spur 0,044⁰/0  $0_{,054}^{0}/_{0}$ 0,058%/0 Rupfer . . . Antimon. . . Schwache Spur Schwache Spur Schwache Spur Gifen . . . Spur Spur Spur. Die Abwesenheit von Urfen und Bint murbe nachaemiefen. 4. Bei den Aerarial-Bütten des Schemniter Bezirfes erzeugtes gebohltes Weichblei, untersucht 1860 von A. Eichfa. Spez. Gewicht 11,41. Silber . . . . . . Spur Gold . . . . . . Spur Gifen . . . . . . 0,009 // Die Abwefenheit von Schwefel, Urfen, Antimon und Bint wurde nachgewiesen. 5. Produkte von bei der f. f. Rapniker Hütte abgeführten Bleiraffinirungs=Versuchen 1861 von 5. Sturm und 28. Draget auf die verunreinigenden Bestandtheile. Untimon Rupfer Gifen 0/0 Hartblei vor der Reinigung . . . . . 0,375 0,₉₃₁ Spur  $3_{,54}$ 0,16 1. fchwarze Glätte vom Treibherde . . . 7,08 0,56 0,24 2. " " " "  $4_{180}$ 0,20 0,12 Bleimetall, nach dem Abstechen des Bleies in den Keffel . . . . . . . . . . Spur 0,130 Spur 1. Keffelglätte vor dem Bohlen . . . . Spur 1,49 0,51 2. " vom 1. Bohlen . . . . . Spur 1,02  $0_{,32}$ Bleimetall nach dem 1. Bohlen . . . . . 0,473 Spur 3. Reffelglätte vom 2. Bohlen . . . . . . 0,15 0,42 Bleimetall nach dem 2. Bohlen (Berichleißblei) - 0,518 0,012. Die aufgeführten Antimonmengen involviren auch geringe Mengen von Urfen, die nicht besonders bestimmt wurden.

Aus diesen Mesultaten ist zu erschen, daß von den beiden, das ursprüngliche Armblei verunreinigenden fremden Metallen das Antimon bereits vor dem Akte des Bohlens durch das partielle

.

49

III. hüttenprodukte.

Treiben bis auf ganz unbeträchtliche Spuren entfernt worden ist, das Rupfer aber zum großen Theile in dem schließlich erhaltenen Bleimetall verblieben ist.

50

- 6. Hüttenprodukte von der Bleiraffinirung bei der f. f. Hütte zu Rapnik, untersucht 1862 von M. v. Lill und A. Efchka.
- a) Reichblei zum Treiben vom Ofen, b) abgefallenes Armblei vor der Saigerung, c) abgefallenes Armblei nach der Saige= rung, d) Abstrich.

	a	b	e		d
Antimon	$5_{,816}$	Spur	Geringe	Rieselfäure	. 2,80
			Spur	Ralferde .	
Arsen	Spur			Magnesia .	. 0,68
Rupfer	1,570	0,530	0,120	Arsensäure	. 2,15
Eisen	0,021	Spur	Spur	Antimonfäur	e 39,45
	0,2651	0,011	0,011	Bleiornd .	. 49,52
Gold	0,0029	Spur	Spur	Rupferozyd	. 0,05
Blei (die Ergän				Eisenoryd .	. 0, ₅₃
zung zu 100) 9		99,459	99, ₈₆₉	Silber .	. 0,0508
1(	00,000	100,000	100,000	Gold	. 0,0039
Spez. Gew. 1	0,76	11,39	11,38	Schwefel .	
					99,7947.

7. Granulirtes Blei, eingefendet von der f. f. Berg=, Forst= und Güter=Direktion zu Nagybanya, untersucht 1862 von A. Eschka.

Antimon	•					$0_{102}$	Silber 0,005	
Arfen .						Spur	Gold Spur	
Rupfer .	•	•	•	•	•	0,009	Blei (aus dem Abgange) 99,884	
Eisen .		•	٠	•		Spur	100,000.	1

#### c) Gifen.

 Floßen zu Alt = Limpert in Siebenbürgen im Jahre 1839, bei erhitzter Gebläscluft erblasen, ergaben einen Gehalt an Antimon von 0.33 pCt., das daraus erzeugte Stabeisen jedoch nur eine Spur Antimon. Ueber die Beschaffenheit der verschmolzenen Eisensteine siehe Analhsen der Eisenerze von Gyalar unter Abtheilung II.

#### 2. Sochofenschlacke von St Gertraud in Rärnten, untersucht 1843.

	2				Sauersto	fprozente
Riefelfäure .		•	•	60,35	31,35	
Thonerde .	•			7,30	3,40	
Ralferde .	٠.			14,54	4,08	
Eisenorydul	•	•		4,05	0,92	8,29.
Manganory	oul		• .	14,68	3,29	
				100,92.		

3. Sochofenschlade von St. Leonhard in Rärnten, untersucht 1843.

				Sauersto	fprozente
Riefelfäure	•		44,51	23,12	
Thonerde			8,57	3,95	
Kalkerde			23,48	6,59	
Eifenorydul .			6,10	1,38	11,58.
Manganoxydul		• ·	17,44	3,91	
			100,00.		
			00		

4. Hochofenschlacke von Eisenerz in Steiermark vom Jahre 1852. a) Dunkelgrün, b) olivengrün, c) grünlichweiß.

		a			b			с	
		Sau	erstoff		Sau	erstoff		Sau	erstoff
Rieselsäure	35,20		18,27	$43_{/20}$		22,43	43,25		22,45
Thonerde .	5,20		$2_{,43}$	6,92		3,23	9,10		4,25
Kalferde	16,04	4,56			4,99	)		5,48	1
Talkerde	$5_{,59}$	2,19		Spur			0,12	0,04	
Mangan=			$\rangle 15_{,05}$			212,09			211,51
oxydul	13,72	3,08		$21_{,06}$	4,73		17,14	3,85	
Eisenozydul	23,56	5,22	,	10,72	2,37			2,14	) .
	99, ₃₁		-	99,47			98,54		

5. Hochofenschlacken von Sieflau in Steiermark vom 3. 1852.

4*

a) Vom Rohgang, dunkel, grünlichblau;

b) vom guten Gang des Ofens, olivengrün, glafig, dicht;

c) vom Gargang, gelblichweiß, bimsfteinartig.

. 38

h C Sauerstoff Sauerstoff Sauerstoff Riefelfäure  $36_{\prime 47}$   $10_{\prime 93}$   $10_{\prime 20}$ Thonerde .  $10_{\prime 40}$   $4_{\prime 86}$   $10_{\prime 45}$   $4_{\prime}$ Ralferde . .  $14_{\prime 21}$   $4_{\prime 04}$   $16_{\prime 28}$   $4_{\prime 62}$  $7_{\prime 29}$   $2_{\prime 68}$ 24,01 47,38 24,60 4,92 9,22 4,30  $\begin{array}{c} 17_{,78} & 5_{,05} \\ 8_{,14} & 3_{,19} \end{array}$ )13,₈₉ 11,66 Mangan= >11,₆₈ oxydul . . 11,52 2,59 Eifenoxydul 21,69 4,81 10,91 2,45  $\frac{12_{,98}}{5_{,74}} \frac{2_{,91}}{1_{,27}}$  $\frac{4_{,47}}{97_{,90}}, 0_{,99} \Big)$ 99,08 100,54

- 6. Schlacken von dem freiherrlich Rothschild'schen Gifenwerke zu Wittowitz, untersucht 1854 von H. Sturm.
- a) Vom garen Hochofengang aus Erzen mit Kalffteinzuschlag;
- b) vom übergaren Hochofengang mit Kalfsteinzuschlag;
- c) vom Rohgang mit Kalksteinzuschlag;
- d) vom Gargang;
- e) vom übergaren Gang aus 44 pCt. Schweißofenschlacken, 27 pCt. Erz, 29 pCt. Kaltstein;
- f) vom Rohgang bei gleicher Gattirung;
- g) Puddlingsofenschlacke;
- h) Schweißofenschlacke;
- i) Marienthaler Hochofenschlacke vom Rohgang;
- k) Marienthaler Hochofenschlacke vom Gargang.

		_			-				1 .	
Ъ	54,40	$13_{,8(}$	28,40	I	$1_{,40}$	$1_{,53}$	I	1	99,53.	
.1	58,00	12,60	$15_{s_0}$		1,20	$12_{,51}$	1	l	100,11	
Ч	$14_{,00}$	1,20	Spur	1	1,76	78,30	$2_{r_{80}}$	1,25	99,21	
- <b>5</b> 0	$15_{,15}$	$1_{,95}$	Spur	Spur	$1_{,51}$	76,73	2,22	1,36	98,82	
f	$43_{70}$	7,10	$23_{,00}$	$2_{,90}$	$0_{r74}$	$19_{, 85}$	1,71	0,82	99, ₈₂	
Φ	$49_{,80}$	9,30	35, ₉₁	Spur	1,11	1,35	Spur	1,51	98, ₉₈	
q	56, ₈₉	4,72	$12_{,48}$	ľ	0,76	$19_{,80}$	$2_{,56}$	0,62	97, _{S3}	
υ	45,00	$14_{,25}$	36,47	I	0,93	1,53	Spur	0,70	98, ₈₈	
q	43,70	$16_{74}$	$35_{,60}$	İ	$1_{,02}$	C hitr	ind)	1,30	98, ₃₆	
ದ	$49_{,80}$	$22_{,60}$	$25_{,25}$	I	1,90	S hitr	ind)	1,11	100,66	
	Rieselfäure	Thonerde	Kalferde	Talkerde	Manganoxydul	Eisenorydul · )	Phosphorfäure (	Schwefel		

	-						
			Gro	nes	Roheif	en Gußeisen	
	Kohlenstoff .				3,55	3,80	
	Silicium				3,12	2,88	
	(2)				0,90	0,88	
	~ / . /				0,20	$0_{25}^{(81)}$	
	Mangan .				1,06	1,00	
	Eisen			. 9	1,60	92,02	
	<b>C</b> .(		-	10	0,43	100,76.	
	8. Roheifen= und Stabei						arn vom
	Jahre 1859, untersu						
2.	a) Rohcifen, grau, erblafen				<i>lacsta'e</i>		ia'er Erz;
	b) " " "		20		"	,, 80 ,,	11
	c) "weiß, spiegelig"		50		"	<b>,</b> 50 <b>,</b>	11
	d) Stabeisen, feinförnig u		gläı	izeni	d im L		
	e) " grobförnig			,	"	", rohbrüc	hig.
	a	k			с	d	e
		0,6	36%		0,805%		0, ₂₇₂ °/ ₀
	Schwefel 0,066	0,0	27		Spur	0,132	Spur
	Rupfer —		-		Spur	Spur	Spur
	Mangan 2,173 quan	titat	iv ni	cht	4,334		
		estin				0	0
	Silicium 3,269	$2_{,3}$			0,467	0,029	0,072.
	9. Hochofenschlacke von 2	D2 a	ria	zel	l in St	eiermark, vom (	Bargang,
	untersucht 1859 von	W	. M	rá	z e f.		
						Sauerstoff	
	Rieselfäure .	•	•	•	$46_{,65}$	24,22	
	Thonerde	·	•	•	8,06	3,77	
	Ralferde	•	•	•	18,94	5,38	
	Talkerde		•		$20,_{41}$	$\frac{8_{,16}}{0}$ 14,45	
	Eisenorydul			•	0,76	0,17	
	Manganoxydul .	·			3,30	0,74)	
	Kali				Spur		
	Schwefel				0,23		
1					98,35.		
	10 Meise strahlige Floi	ben	a) '	nnn		erz b) non s	vieflau.

10. Weiße, strahlige Floßen a) von Eifenerz, b) von Hieflau, vom 3. 1860, untersucht von H. Sturm und W. Mräzef.

55

7. Hochofenprodukte von dem Eisenwerke zu Maków in Galizien, untersucht 1858 von M. v. Lill, H. Sturm, E. Bittsánsky.

54

#### A. Hochofenschlacken:

a) vo	m guter	n Dfei	igange	b) vc	m No	hgang	c) vom Gargang		
		Sau	erstoff			erstoff		Sauerstoff	
Riejelfäure	53,00		27,52	55, ₅₀		28, ₈₂	49, ₈₀	$25_{,86}$	
Thonerde .			4,25	10,52		4,92	9,80		
Ralferde	27,20	7,73				)	28,05		
Magnesia .	$5_{,06}$	2,02			0,65		4,86		
Mangan=			10,75			> 9,09		211,25	
oxydul	3, ₀₀	0,67		6, ₆₃			5,15	1,16	
Eisenorydul	$1_{,50}$	0, ₃₃			0,34	)	0,77	0,17	
Schwefel .	0,41		_	0,25			0,51		
-	99,27			99,32			98, ₉₄ .		

#### B. Gießereischlacken, nach Abscheidung des mechanisch beigemengten Gifens.

						a		b	
						Sauerstoff		Sauerstoff	
Rieselfäure	•		·		54,50	28,30	$53_{,40}$	27, ₇₃	
Thonerde .	•				9,55	4,46	9,65	4,51	
Kalkerde .	۰.	•		•	20,36	5,79	$21_{,82}$	6,20	
Magnesia .		•	•	·	$1_{,50}$	$\frac{0}{2}$ 9,22		2 9,37	
Manganoxyi	mĺ		·	•	10,70	-140	11,85	-166	
Eisenorydul		•	٠	•		0,43)		0,51	
Schwefel .	• .		ł	•	0,20		0,25		
					98,73		99, ₂₈ .		

### C. Frischschlade.

Rieselfäure		•	•	•	$13_{75}$
Ralferde .					. 2,58
Manganory	Sul		•	•	9,30
Eisenorydul			•		69, ₆₆
Eifenoryd					4,19
Schwefel					Spur
					 99,48.

Sauerstoff 13,₇₅ . 2,₅₈ 7,14  $\begin{array}{c} 0_{,73} \\ 2_{,09} \\ 18_{,28} \end{array}$ 9,30 15,46 69,66 4,19 1,26 Spur

	a D -
	Kohlenstoff 3,400 3,300
	Silicium 0,092 0,100
	Schwefel 0,004 0,015
	Phosphor 0,622 0,025
	Rupfer Spur Spur
	Mangan 0,767 0,519
	Sifen (aus dem Abgange) 95,715 96,042
	100,000 100,000.
11	
~ ~	und Schweißofenschlacken nach der priv. Methode der Herren
	Laug und Freh, untersucht 1860 von H. Sturm.
,	a) Reives Roheifen ( b) graues Roheifen a b
	Rohlenstoff, chemisch gebunden $\left\{\begin{array}{cc} a \\ 2'_{40} \\ 2'_{24} \end{array}\right\}$
	Strafit $2_{140}$ $2_{24}$
	$\Im_{16}$ $\Im_{16}$ $\Im_{16}$ $\Im_{16}$ $\Im_{16}$ $\Im_{16}$
	Phosphor 0,22 0,11
	Schwefel
	Mangan Spur Spur
	Eisen
	Mangan Spur Spur Eisen
12.	
14.	Eine Sorte gepuddeltes, schlecht schweißbares Eisen von Nabrág in Ungarn, untersucht 1861 von W. Mrázet auf dessen Ver=
	unreinigungen :
	Riefeljäure als Schlacke 0,63%
	$arten O_{763}$
	Rupfer
	Schwefel Spur
	Phosphor 0,29
	$\Re \operatorname{ide} (1 - 1) = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1$
	Robalt
19	/017
13.	
	chenau in NDesterreich, untersucht 1862 von H. Sturm.
ć	a) Graues Roheisen aus einem Erzsatze von 170 Pfund Alten-
	berger Erzen, 50 Pfd. Schweißofenschlacke; b) graues Roh-
	eifen aus 146 Pfd. Altenberger Erzen und 34 Pfd. Grillenberger
	Erzen; c) stark halbirtes und graues Roheisen aus 206 Pfd. Al-

tenberger Erzen und 34 Pfd. Grillenberger Erzen; d) halbirtes Roheifen aus 160 Pfd. Altenberger Erzen und 50 Pfd. Schweiß= ofenschlacken; e) stark halbirtes und weißes Noheisen aus 206 Pfund Altenberger Erzen und 34 Pfund Grillenberger Erzen; f) weißes Noheisen aus 170 Pfd. Altenberger Erzen und 50 Pfd. Schweißofenschlacken; g) weißes Noheisen aus 136 Pfd. Altenberger und 34 Pfd. Grillenberger Erzen und 50 Pfd. Schweiß= ofenschlacken.

				a	b	с	d	e	$\mathbf{f}$	g
Silicium		•		1,05	0,87	0,76	0,67	0,96	0,77	0,48
Schwefel			•	0,04	0,03	0,03	0, ₀₃	Spur	0,04	0,02
Phosphor	•			0,048	0,040	0,038	0,046	0,048	0,037	0,035
Rupfer .										
					1) @					

#### d) Rupfer.

- 1. Kupferhüttenprodukte von der Aerarialhütte zu Schmöllnitz, untersucht 1838 von A Löwe.
- a) Schwarzfupfer; b) Rückstände von der Schwarzfupfer=Amalga= mation; c) Gartupfer aus für sich verschmolzenen Zementschlichen.

								a	b		$\mathbf{c}$		
	Я	upfer		•				83,43	74,	9	9,828		
	E	isen .	•	•	•	•	•	5,20	2,,	1 (	),108		
	20	ntimon						6,25	15,				
	A	rsen .		•				4,01	6,	31 -			
	C	ölber	•	•		•		0,306					
	(5)	old.				•		0,007					
	C	chwefel	[						0,,	35			
							1	99,945	99,	9	9,936		
2.	Schm	elzprod	uft	e v	011	der							:genom=
	menen	Verfi	(d)e	n,	die	21	ĺt	waffe	r Hüt	tenfpeif	e m	ittel	ift Ber=
													Löwe.
	Reic	hblei					Ş	ech			Schl	acte	
231	lei .	. 62	<b>'90</b>		Я	npf	er	. 12	$2_{,53}$	Riefelf	äure		40,81
Ru		. 12			S	ifen	ι.	. 54	1,75	Thone			10,03
	ilber				0	5ilb	er	. (	),13	Eiseno	rydu		40,30
An	ntimon	. 24	/53		21	ntii	noi	ı. 1-	1,67	Ralfer	de.		8,82
	2.5	100	/76	-	C	Echn	oefe	f. 18		Schwe			
									), ₀₈	Silber			Spur
													100,76.

3. Rosettenkupfer von der Aerarial = Hütte zu Lend, untersucht 1857 von M. v. Lill. Dieses in Folge besonderer Umstände von der normalen Erzeugung in der Qualität abweichende Produkt enthielt etwas über 1 pEt. Kupferglimmer (nach Rammelsberg [Cu O, N i O]¹² Sb O³), welcher in Gestalt von gold= gelben, theilweise in regelmäßigen sechsseitigen Taseln aus= gebildeten Krystallen das Kupfer auf der Oberfläche bedeckte und sich zum Theile in das Innere desselben hineinzog.

Die Analyse des Rupfers ergab in 100 Theilen:

e .											07
Rupfer .	•	٠		٠	٠	•	٠	·	٠	٠	91,00
Nickel .		٠									0,46
Blei .			•				٠			- •	(),70
Antimon	1111	5 8	Urfe	n	•						1,10
Silber .	•	٠	. •	•			•	•	•	•	0,066
Gold .	•			•		•	•			•	0,0115
Sauerste	off		•						•	٠	0,72
											100,0575.

Der Gehalt an Sauerstoff wurde durch Glühen der fein= vertheilten Probe in Basserstoffgas bestimmt.

- 4. Uebergares Verbleiungskupfer aus Zalathna, untersucht 1858, enthielt in einem Muster 1,52 pCt., in dem anderen 0,5 pCt. Rupferglimmer.
- 5. Plattenkupfer aus Rezbanha, erzeugt aus Rosettenkupfer, untersucht 1858, von M. v. Lill.

Rupfer				98,82	Silber	•		•	٠	. 0, ₁₆
Blei .	• .	•	•	0,70	Gisen		•		٠	. Spur
Antimon		•	•	0,37						100,05.

6. In einem Stücke Rosettenkupfer aus Tergove, untersucht 1860, fanden sich äußerst kleine, metallisch glänzende Krustalle von braunschwarzer Farbe vor, welche sich durch Auflösen des Kupfers in Salpetersäure isoliren ließen, und deren Gewicht 11 pCt. des untersuchten Kupferstückes betrug. Unter dem Mikrossop zeigten diese Krustalle die Form des Oktaöders; die chemische Untersuchung ergab, daß dieselben aus reinem Nickeloxydul bestanden. 7. Rupfer von der k. k. Hütte zu Agorbo, wegen von dem normalen Produkte abweichender Qualität untersucht 1861 von M. v. Lill.

a) Rosetten=, b) Plattenkupfer.

								a	b	
Rupfer	•	•		•	٠		•	98,78	99,10	
Arfen .	•	•				•	•	0,64	0,42	
Antimon	•	•		•••				0,04	Spur	
Blei .		•	٠,			•		0,20	0,10	
Nickel .				•			. ]			
Robalt				•			. \	Spuren	Spuren	
Gifen .			•				. ]			
Silber	•						•	0,10	0,09	
Schwefel	•	•		•				0,04	0,01	
								99,80	99,79.	

Beim Glühen im Bafferstoffftrome ließen sich geringe Mengen von Sauerstoff in beiden Sorten nachweifen.

8. Geröftete Kiesstöckel aus Agordo, untersucht 1861 von W. Mräzek und A. Eschka behufs Bestimmung des Rupfer= gehaltes der Stöckel, Ermittlung der Auslaugungsfähigkeit, so wie der chemischen Zusammensetzung der Laugen und des Rück= standes; ferner Bestimmung des bei der Fällung des Kupfers sich ergebenden Eisenabganges und der sich dabei bildenden basischen Salze.

	Rupfergeh	alt der S:	töckel.	• •		$1_{71}^{0/0}$	
Gewicht i	ver 1. Lau	ige von de	r Dichte	1,24,	erhalter	1 bei eine	r Luft=
tempera	ntur von !	22º R					91 %
		ge von de					70
einer &	ufttempere	atur von 2	22º R.	• •		1	07. %
Gewicht a	es Rückst	andes	• •	· ·			71 %

#### A. Entferntere Bestandtheile ber beiden Laugen.

60

	In 100 Gewichtstheilen							
	a) der Flüffigfeit   b) der gelöften Sto							
	enthält die Lauge							
	Nr. 1   Nr. 2    Nr. 1   Nr. 2							
Rupferozyd	$\begin{array}{c ccccc} 1_{\prime 568} & 0_{\prime 299} & 8_{\prime 59} & 7_{\prime 00} \\ 3_{\prime 144} & 0_{\prime 448} & 14_{\prime 97} & 10_{\prime 47} \end{array}$							
Cifenozydul	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
Robaltozydul (mit einer Spur von Monganozydul) Thonerde	$\begin{array}{c ccccc} 0_{\prime 137} & 0_{\prime 049} & 0_{\prime 65} & 1_{\prime 14} \\ 1_{\prime 204} & 0_{\prime 301} & 5_{\prime 73} & 7_{\prime 03} \end{array}$							
Talferde	$\begin{array}{c c c} 0_{\prime 237} & 0_{\prime 077} & 1_{\prime 13} & 1_{\prime 80} \\ 0_{\prime 077} & 0_{\prime 089} & 0_{37} & 2_{\prime 08} \end{array}$							
Zusammen: Basen	$8_{,587}$   $1_{,675}$   $40_{,88}$   $39_{,14}$							
Schwefelfäure	$\begin{array}{c c c} 12_{\prime 400} & 2_{\prime 605} & 59_{\prime 03} & 60_{\prime 86} \\ 0_{\prime 019} & - & 0_{\prime 09} & - \end{array}$							
Zusammen: Säuren .	$12_{\prime 419}   -2_{\prime 605}     59_{\prime 12}   -60_{\prime 86}$							
Insgesammt: Gelöste Stoffe . Walser (und Ubgang bei der	$21_{,006}$ $4_{,280}$ $100_{,00}$ $100_{,00}$							
Analyje)	$78_{,994}$ $95_{,720}$ $376_{,00}$ $2336_{,00}$							
	$100_{,000} 100_{,000}  476_{,00} 2436_{,00} $							

B. Unmittelbare Bestandtheile (Salze) der beiden Laugen.

Schwefelsaures Rupferozyd " Eisenozyd, neu=	3, ₇₅₀	0, <b>600</b>	17,85	14,02
trales (Fe ₂ O ₃ .3 S O ₃ ) Schwefelsaures Eisenorydul ", Zinforyd ", Robaltorydul	$\begin{array}{c} 7,860\\ 0,519\\ 3,328\\ 0.000\end{array}$	$0_{,133} \\ 0_{,694}$	$15^{2}_{,47}_{,84}$	$\frac{3_{\prime 11}}{16_{\prime 21}}$
(mit einer Spur v. Manganozydul) Schwefelfaure Thonerde, neutrale (Al ₂ O ₃ . 3 SO ₃ )	1		1, ₃₄ 19, ₁₇	8
" Talferde "Ralferde Schwefelfäure, freie	$\begin{array}{c} 0,026\\ 0,711\\ 0,187\\ 0,324\end{array}$	$0_{231} \\ 0_{216}$	3,39	5,40 5.05
Arfenfäure	$\frac{0_{,019}}{21_{,006}}$	4,000	0,09 100,00	
			ALL DESCRIPTION OF THE OWNER OF T	9490

 $100_{000}$   $100_{000}$   $476_{00}$   $2436_{00}$ 

#### C. Chemische Zusammenstellung des Rückstandes.

	/11
Thonerbe	0,00
Ralferde	1,10
Ialferde	0
Rupfer	0
Zink, Robalt, Mangan, Blei, Antimon, Arfen @	buren
Schwefel, an Metalle gebunden	
Schwefelfäure, an Kalf- und Talferde gebunden, und zwar	- /17
ausziehbar mit heißem Wasser	$1_{,88}$
In Säuren unlöslicher Rückstand (Quarz und fieselfaure	
The country and country and information	0
Thonerde)	6,85
	)9,43.

Der Kupferinhalt des Rostes vertheilt sich sonach mit 79 % auf die 1. Lauge

" 5 " " den Rückstand.

Der Sisenverbrauch bei der Rupferfällung

aus der 1. Lange betrug das 2,21 fache Gewicht des gefällten Rupfers,

#### Bei der 1. Lauge:

aus drittelschwefelsaurem Cisenoryd, Thonerde und Zinkoryd von der allgemeinen Formel:

$\operatorname{Fe}_{2}\operatorname{O}_{3}$	
$\left\{ \mathrm{Al}_{2} \mathrm{O}_{3} \right\}$	$SO_3 + aq.$
$3 \mathrm{Zn}\mathrm{O}$	

#### Bei der 2. Lauge:

ans einem Gemenge von neuntel= und fechstelschwefelsaurem Eisen= oxyd mit Thonerde, in welchem das fäureärmere Salz das bei weitem überwiegende ist, von der Formel:

# $3 \begin{pmatrix} 3 \operatorname{Fe}_2 \operatorname{O}_3 \\ 3 \operatorname{Al}_2 \operatorname{O}_3 \end{pmatrix} \cdot \operatorname{S} \operatorname{O}_3, \begin{cases} 2 \operatorname{Fe}_2 \operatorname{O}_3 \\ 2 \operatorname{Al}_2 \operatorname{O}_3 \end{cases} \cdot \operatorname{S} \operatorname{O}_3, \operatorname{aq}.$

9. Rosettenkupfer von der Aerarial=Hütte in Cfertest, aus Gelf= erzen erzeugt, untersucht 1861 von M. v. Lill.

Rupfer .		•			98, ₉₈	Gold		•		٠	0,014
Antimon						Arfen				•	Spur
Blei .		•			0,58	Gifen	•		•	•	Spur
Silber .	•	•	•	•	0,11					1	00,104.

10. Rohkupfer vom Fahlerz=Schmelzen auf der oberungarischen waldbürgerlichen Stefanshütte zu Kluknau, untersucht 1861 von 28. Mrazef.

Rupfer	. 77 67	Schwefel .		. 1,82
Eisen		Silicium .	• •	. 0, ₆₇
Nickel und Kobalt	. 0,47	Silber		. 0,2292
Antimon	. 11,97	Gold	• •	. Spur
				99,1992.

11. Unreines Verbleiungs=Rosettenkupfer von Zalathna, unter= sucht 1862 von M. v. Lill.

Rupfer			•		94,60	Arsen	• •	0,30
Blei	•			•	2,13	Silber		0,052
Nickel		•	•		0,45	Gold	•••	0,008
Eisen				•	Spur	Schwefel	• •	Spur
Antimo	m	•		•	1,20	Schlacke u. Sauer	cstoff	1,260
							1	100,000.

#### c) Nictel.

1. Nickelmetall von der Aerarial-Erzeugung in Joachimsthal, untersucht 1857 von M. von Lill und H. Sturm.

a) Nickelschwamm, b) Würfel.

Riefelfäure 0,92 1,20 Schwefel Spur Spur	
Schmefel Smir Smir	
Eisen 0,33 0,35	
Zink Spur Spur	
Rupfer 0,26 0,25	
Robalt 0,90 0,85	
Nickel (aus dem Verluste) 97,59 97,35	
100,00 100,00	-

2. Nickel in Bürfeln aus der Gersdorff'schen Fabrik zu Schlad-ming, untersucht 1858 von F. Hillebrand.

Unlöslicher Rück	stand. 0,	5 Rup	fer	• • •	1,80
Arfen	0,,		alt		6,75
Gifen	1,		el		87,98
				1	.00,00.
3. Zwei Sorten I	dickelmetall,	aus ober	ungar	ifchen Erze	n dar=
gestellt vom §					
von H. Stu	rm.		a	b	
Nickel .			86,90	94,60	
Robalt.			9,30	0,45	
Gijen .			0,21	Spur	
Rupfer .			Spur	{ eput	
Schwefel			0,22	0,16	
Rieselfäur	re		1,40	2,80	
Ralferde			1,95	1,82	
Magnesic	ι		Spur	Spur	
			99,98	99,83.	×
	f)	Wismu			
Wismuth=Me	/			b 0111.	a) aus
Sachfen, b) aus			a a	b. b. b. b.	a) uno
Schwefel				. 0	
Supfer .			0,10	Spur	
Silber .			0, ₀₈	0, ₃₈	
Blei .			0,05		
Gifen .			$\sim$	0,30 Spur	
Wismutl	• • •		99,77	99, ₃₂	
2018111111	)	· · · <u>·</u>	100,00	$\frac{33}{100,00}$	
				100,00.	
	i	g) Zinn.			
1. Zinnsorten,	untersucht I	1842 von 8	A. Lön	) e.	
a)Schlaggenwa	lder Rolle	nzinn; b) S	Rollen	zinn der M	aurizi=
Zeche im Joa	chimsthaler	Distrift;	c) jäch	fisches Rol	llenzinn;
d) fächsisches	Stangenzin	n; e) Ban	ca=Zinn	; f) englisch	es Zinn.
a	b	с	d	е	$\mathbf{f}$
Zinn 98,66	99,66	99,76	99, ₉₃	99,90	99,73
Rupfer . 1,36	0,16				Spur
Gifen 0,06	0,06	0,04	0,06	0,20	0,13
Arfen Spur	Spur	Spur	Spur	Geringe Spu	
180,08	99,88	99, ₈₀	99,99	100,10	99,86.

2. Schlaggenwalder Feinzinn, untersucht 1849 von A. Löwe. a) Aus Erzen des Schönfelder Ganges;

b) "	"		"	Ge	ĺInc	auer	:		"	
<i>,</i>									a	b
2	linn	•							99,594	99,410
S	enpfer		•		•	•			0,406	0,590
2	lrsen			•	•	•	٠	•	Spur	Spur
6	eisen			•		•	•		<u>)</u>	
									100,000	100,000.

3. Zinnhütten Produkte aus Schlaggenwald, untersucht 1851.
a) Geflößtes Hüttenzinn; b) Rohzinn aus röschem Hüttenwerk;
e) Nohzinn aus mildem Hüttenwerk; d) Rohzinn aus hältigen Schlacken und Ofenbrüchen; e) beim Abstechen ausgeschöpfte, im Abstichtigel schnell zu Boden gesommene Legirung, analysirt von F. Hillebrand; f) Rücktand vom Saigern in Töpfen des beim Saigern am Herde zurückgebliebenen unreinen Zinnes aus Hüttenwerk; g) ungelöschte getriebene, d. h. für sich durchgeschmolzene Hüttenzinnschlacke, analysirt von M. v. Lill.

ANC. 0. 1						
	a	$\mathbf{b}$	с	d		e
3inn	97, ₀₅₀	95,339	94, ₉₂₄	94,539		92,56
Rupfer	2,326	2,726	3,648	$2_{,553}$		3,06
Eisen	0,624	0,684	0,762	$1_{,965}$		3 98
Wolfram			_			Spur
Arfen	Spur	Spur	Spur	Spur		0,15
Schwefel.	Spur	Spur	Spur	0,130		0,25
8	100,000	98,749	99, ₃₃₄	99,187		100,00.
		f				g
3inn		59,09	Riefelfäure		•	$24_{,06}$
Gifen		9,24	Wolframfär	rre	•	$24_{,33}$
Wolfram		3,35	Zinnorydul		•	10,41
Rupfer		11,80	Eisenorydul		٠	20,75
Quarz und Sc	hlacke .	8,47	Manganory	)δuί		$5_{,64}$
Mechanisch bei	gemengte		Thonerde		•	9,00
Kohle und	mit den		Kalkerde .		•	3,50
Metallen ver	bundener		Magnesia		•	0,37
Sauerstoff .	• • •	8,05				98, ₀₆ .
		100, ₀₀ .				

4. Schlaggenwalder Rollenzinn 2. Sorte, analysirt 1859 von H. Sturm.



#### h) Zint.

Zinksorten, untersucht 1850; a) aus Dombrawa im Kra= kauer Gebiete; b) aus Sagor in Krain. In 100 Theilen wur= den an fremden Metallen gesunden:

				a	b
Blei	•	•		$1_{100}$	0,450
Eisen	•	~.		0,155	0,150.

#### i) Süttenspeife.

1. Speise und speisiger Kupferstein von der Joachimsthaler Sütte untersucht 1840 von A. Löwe.

a) Ausgesuchte Hüttenspeise; b) ordinäre Hüttenspeise; c) speisiger Kupferstein.

					a	$\mathbf{b}$	с	
Schwefel	•			•	4,57	21,37	$12_{r20}$	
Arfenik .		•	•	•		14,01	13,88	
Antimon	•	•		•			Spur	
Eisen .				•%	$43_{/65}$	44,89	6,36	
Nickel (mi						16,42	17,76	2
Rupfer .			•	•			47,00	
Rieselfäure	•	•	•	•		3,31	2,80	
				1	00 00	100,00	100,00.	

2. Rupferspeise von einer Schlackenhalde zu Libethen in Ungarn, untersucht 1847 von A. Löwe.

								a	D	
Arfen 1	ınd	A	ntii	non		•	•	$34_{,50}$	35,05	
Rupfer	•				•		•	59, ₈₀	59,50	
Nickel				•	•			2,75	1/18	
Gijen		•					•	1,83	2,77	
								98,ss	98,50.	
			•					100	/00	5

 Speise von der Schwarzfupfer=Erzengung in Altwasser in - Ungarn, aus verschiedenen Perioden untersucht von A. Löwe in den Jahren 1839, 1843, 1850.

	ben Ongeen	~ `		/	/		
	Schwefel			•	$2_{,06}$	0,65	0,68
2	Antimon	•	•	•	71,90	63. ₉₃	46,06
	Arfen .	•			2,21		
	Rupfer .		•		$13_{,59}$	29,31	26 _{/80}
	Eisen .			•	5,18	5,11	$23_{,36}$
	Wismuth	•		•	$2_{,34}$		0, <b>36</b>
	Robalt .		•		2,02	Spur	$1_{,24}$
	Silber .	•	•	•	0,367	0,319	0,2493
	Gold .	•	•	٠	0,050	0,00125	0, <b>0047</b>
	Rücksiand	•	•	•			0,46
					99,717	99,32025	99,1540.
				-	. ~		0. 4

4. Speise, abgefallen beim Entsilbern der Leche in der k. k. Rupser= und Silberhütte zu Lend, untersucht 1859 von M. v. Lill.

••													100	
	Arfen	mit	t	5pu	ren	U	011	Au	tim	on	•	•		
	Schwe	fel	•			•		•				•	$3_{21}$	
	Gifen												44,29	
	Rupfer													
	Robali	t m	it	etw	as	Ni	cfel	•	•		•	•		
	Blei	٠	•	•	•	•		•	·	·	•	•		
	Silber	:.		•			•	•		·	·	·	0,030	
	Gold	•		•	•	•	•	•	·		·	•	0,013	-
													99, ₀₀₃ .	

5. Speise, abgefallen bei der Verschmelzung von Rusztberger Bleigefällen in der Aerarial=Hütte zu Cfertest, analysirt 1859 von M. v. Lill und F. Hillebrand.

Arfen .			•		٠	16, ₄₈	Blei.	•	·	•	•	٠	14,00
Antimon	•	•		•	•	16. ₂₈	Kobalt	m	it S	Nict	el	•	4,15
Schwefel	•	•	•		•	3,30	Silber	•	•	•	•		0,270
Gifen .	•	•	۰.	•	•	12,21	Gold	•		•	•	•	() _{/136}
Rupfer .													$98_{,856}$ .

6. Zwei Proben der bei der Schmöllnitzer Aerarial=Hütte nach Augustin's Methode entfilberten Fahlerzspeise, untersucht 1860 von B. Mräzek.

a) S	Bon	de	r r	ein	ıcn	M	two	ffer	$\mathfrak{S}$	pei	se;			
b) -t	0011	der	: g	em	ijcht	en	211	twa	ffer	u	nd	S	hmöllnitzer	Speise.
													a	b
Rupferi	oryt	)			•	•		•	•		•	•	26, ₈₀	16, ₅₈
													18,07	34,97
Robalta	oryd	mí,	ni	cfe	lhal	tig		•		•	•		1,12	1,17
Wismu	tho:	ryd	111	it	Sp	ure	n i	0011	BI	lei	•		0,91	0,51
Antimo	njä	ure		•	•	•		•	•		•	·	48,48	37,23
Arfenfä	ure	•	•	•	•			•			•		Deutl. Spur	Deutí. Spur
Schwef	elfä	ure	•	•	•	•			•	·	•	•	0,85	2,42
Chlorn	atri	um		•		•			• '	•	•		0,95	3,10
Quarz	un	d e	iser	ıhä	iltig	cr	Th	on	•	•	٠		0,95	$2_{,45}$
Gold		٠				•			•				0,0047	0 0042
Silber		·	•	•	•	٠		•	•	•	٠	٠		0,0274
													98,1804	98,4616.

- Zwei Sorten Nickel-Robalt-Speise, aus oberungarischen Erzen erzeugt, eingesendet durch Se. Excellenz Grafen Georg v. Andrassyn, untersucht 1860 von H. Sturm und W. Mrazek.
- a) Körnig mattgraue; b) blättrig, frystallinisch.

			a	b
Nickel .			16,00	$22_{,36}$
Robalt .	•	•	13,47	15,64
Arsen .			27,63	34,19
Rupfer .	•	•	$2_{62}$	5,70
Eisen .	÷	•	35,10	18,41
Schwefel	·	•	6,1 <u>3</u>	3, ₉₈
			100,95	100,28.

8. Rohfpeife vom Fahlerz-Rohfchmelzen auf der oberungarischen waldbürgerlichen Stefanshütte zu Klutnan, untersucht 1861 von 28. Der aget.

Rupfer .	•				27,32					97 _{/8850} .
Wismuth	•			۶.	0,72	Gold		• •	•	0,0032
Antimon .	•	•	•	•	43,76					
Arsen	·									
Schwefel.		•			$2_{,95}$					
	Arfen Antimon . Wismuth	Arfen Antimon Wismuth .	Arfen Antimon Wismuth	Arfen	Urfen	Schweiel $2_{795}$ Arfen $2_{769}$ Antimon $43_{776}$ Wismuth $0_{772}$ Ampfer $27_{732}$	Arfen	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	Arfen

 $5^*$ 

#### IV. Legirungen.

1. Verschiedene Legirungen zu Zapfenlagern, untersucht von H. Sturm.
a b c
Rupfer 77,40 Rupfer 83,50 Rupfer 7,18
$3inf 8_{140}$ $3inf 7_{100}$ $3inf 1_{100}$
$3ini - 12_{,20}$ $3ini - 8_{,45}$ $3ini - 77_{,32}$
98,000. Eisen O,52 Eisen Spar
Blei 0,41 Antimon . 14,53
. 99, ₈₈ . 100, ₀₀ .
2. Hämmerbares Meffing, untersucht 1858 von M. v. Lill.
Rupfer 61,0
3inf <u>. 38,8</u>
100,0.
3. Legirung für Glocken, untersucht 1861 von M. v. Lill und A. Esch fa.
Silicium 2,05
Eijen 85,95 (mit Spuren von Mangan)
Zinn 7,87
Rupfer 0,16
Rohlenstoff und Abgang . 3,97
100,00.
Diese Legirung besteht sonach aus Noheisen mit einem Zusatz
von Zinn.
4. Sterro-Metall, untersucht 1861 und 1862 von M. v. Lill.
a b c d e f
Rupfer 57,63 57,88 58,30 58,42 54,68 59,98
$3inf$ $40_{/22}$ $40_{/12}$ $36_{/85}$ $39_{/50}$ $42_{/66}$ $45_{/50}$
Binn       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .
1 120 111 121 101 100
Silicium Spur Spur — — — — —
$99_{,86}  99_{,75}  99_{,51}  100_{,00}  100_{,00}  100_{,00}.$
5. Britannia=Metall in Blechform, untersucht 1862 von H. St urm
21

 Zinn
 .
 .
 .
 .
 89

 Antimon
 .
 .
 .
 .
 11

 Blei
 und Eisen
 .
 .
 .
 .

 100
 .
 .
 .
 .
 .

6. Legirung zur Erzeugung stereotypirter Platten, untersucht 1858 von M. v. Lill. Blei. . . . . . . . 84,10 Zinn . . . . . 1,90 Antimon . . . 14,60 Wismuth . . . . Spur 100,60. 7. Scheidemüngen ber nordamerikanischen Staaten vom 3. 1857. unterjucht 1860 von &. Sillebrand. Rupfer . . . . . . . . . . . 85,14 Nickel . . . . . . 13/90 Eisen . . . . . . . 0,59 99,63. V. Sabriksprodukte. 1. Bitriol, erzeugt beim Berg= und Suttenamte zu Mühlbach aus der Bitriol-Mutterlauge, untersucht im 3. 1842 von M. v. &ill. Eisenorydul. . . . . 14 494 Schwefeljäure . . . . 29,1270 Zinforpo . . . . 5,600 Baffer (aus dem Verlufte) 44 223 100,000. Rupferozyd . . . . . 6,413 2. Nückstand nach dem Sieden der Bitriollauge bei Bereitung des gemischten Bitriols von Mühlbach, untersucht 1847 von A. Löwe. Rohliger Rückstand . . 7,00 Ralferde . . . . . 5,00 Riefelerde (Quarz) . . 1,50 Rupferozyd . . . . 0,75 Talferde . . . . . Spur Baffer . . . . . . . 2,50 Eisenoryd . . . . . 44,50 99,50. 3. Drei Sorten Bitriol von dem f. f. Rupferwerte in Agordo, untersucht 1851 von A. Löwe. a) Rupfervitriol; b) grüner Gifenvitriol; c) blaugrüner Gifenvitriol. b a с Kobaltorydul . . . . — — 3,886 Eisenoryd (als Hydrat) . 0,58 3,20 ----

Baffer (aus dem Verlufte) 36,09 42 52 46,646

100,00 100,00 100,000.

70 4. Rupfervitriol von ber Merarial=Erzeugung in Schmöllnit, untersucht 1851 von M. v. Lill. Eifenorydul . . . . . 1,2 Schwefelfäure . . . . 32,3 Waffer (aus dem Verlufte) 36,3 100... 5. Rupfervitriol, untersucht 1855 von A. Löwe. a) Erzeugt in der Scheideanstalt der f. f. Münze in Benedig; b) in Venedig als französischer in Handel gebracht. An Verunreinigungen wurde gefunden: b а Schwefelfaures Gifenorydul . . 0,85 1,21 Schwefelfaure Ralferde . . . 0,51 0,47. Der Gehalt an Rupferornd wurde in a) mit 31,50 pCt., in b) mit 30,44 pEt. gefunden. 6. Sieben Blaufarben=Sorten, von der in Schlögelmühl bestandenen f. f. Fabrif herrührend, unterfucht auf den Robalt= und Nickelgehalt im Jahre 1851 von A. Löwe. In 100 Theilen wurde gefunden: OE OES OE MEFE FFE FFFE Mickel . . 1,23 1,70 1,85 2,20 2,03 2,00 1,95 Robalt . . 0,61 0,75 0,73 0,55 0,79 1,23 1,95. 7. Zwei Mufter Chilifalpeter, unterfucht 1858 von 5. Sturm. b a In Baffer unlöslicher Rückstand (Sand) . . . Spur 0 40  $2_{,10}$ 0,50 Spur Salpetersaures Natron (aus dem Abgange) . . 98,90 97,00 100,00 100,00. 8. Drei Sorten Urangelb, eingesendet von dem f. t. Bergoberamte in Joachimsthal, untersucht 1860 und 1861 von M. v. Lill und A. Eschfa.

a) Englisches Urangelb; b) Ivachimsthaler Urangelb, orange; c) Ivachimsthaler Urangelb, licht.

с Uranoryd . . . . 77,02 85,₈₃ 84,15 Arfen . . . . . --Spur Natron . . . . . 11/30 3,91 7,63 0,63 0,34 Kali . . . . . . Spur Riefelfäure . . . . 0,22 0,84 1,01 Schwefeljäure . . . 1/11 Spur 0,31 Rohlenfäure . . . ) 9,65 7,76 5,07 Baffer aus dem Berlufte 100,00 100,00 100,00.

#### VI. Hydraulischer Kalk, Cement, Gyps.

1. Hydraulischer Ralt vom Berge Hocheck, Altenmarkt, untersucht 1846.

a) Vom Mittagsfogel, b) Baffergraben.

							a	b	
Thom			•				$21_{,64}$	2,00	
Eifenorydul			•	•		•	2,83	0,89	
Thonerde (lö	slic	$\mathfrak{h})$	•				1,11	1,00	
Ralferde	•			٠		•	37, ₇₀	43,55	
Magnesia .		•	•			٠	2,20	8,43	
Rali	•	•	•	•	•	٠	0,52		
Kohlenfäure	٠	· •		٠	•	•	$34_{00}$	$44_{/40}$	
							100,00	100,27.	~

2. Hydraulischer Kalk von Stollberg B. D. W. W. Desterreich, untersucht 1846.

a) Licht, b) dunkel, c) gebrannt.

÷	á	b	С	
Rieselsäure	8,37	11,90	13,50	
Thouerde und Eifenornt	2,08	$3_{/13}$	4,48	
Rohlenfaure Kalferde	. 89, ₀₈	83,13	80, ₇₈	
	99,53	98,16	98,76.	

3. Kalffteine und hydraulische Cemente des Herrn Thomas Grillz aus Steiermark, untersucht 1848.
a) Kalfftein, b) Cement, c) Kalfstein, d) Cement.

-			a	b	c	d
Inlöslicher S	Rückstand .	1	/50	$4_{'25}$	34,00	35,25
Thonerde.			/50	1,50	5,20	- 2,00
Rohlensaure	Talkerde .	19	/10	18,50	2,15	3,25
"	Kalkerde .	77		73,10	52,15	53,15
Fisenoryd		0	/25	1,00	5,20	4,20
Basser .			/50	0,65	1,00	0,25
			/50	99,00	99,70	98,10.
4. Roher §	Lalfstein zur	Cement	hereitun			
Trieftin	g, untersucht	1862	oon K.	Sillef	rand	
Quarz un	d Rieselsäure	24		-		0,51
Thonerde				lien .		0 ₈₁
Eifenornd				lenfäure .		$27_{85}^{81}$
Eifenorndi				sphorjäu		
Manganoz		Spur		wefeljäur		0 _{/20}
Ralkerde .		39,09			Abgang .	
		/09	· cc u	Ilte and		100,00.
Ė Santan						-
5. Santor	in von der 3	snjel S	antori	11 0 1m (	griechtichen	Urchipel,
	cht von A. L					0
		62, ₁₄	Rali .			0,50
Thonerde	••••	$11_{,86}$	Natroi		• • • •	0,75
Eisenoryd		6,19		feljäure .		0,22
Manganoz Kalferde					• • • •	0,25
		12,35	zwaller		· · · <u>·</u>	5,23
Magnesia		$2_{'46}$				101,75.
6. a) Cem	ent aus Ru	ftein,	b) Por	rtland=Ce	ment aus	England
(Robs d	& C ^{ie.} ), unter	jucht 18	858 voi	1 H. SI	urm.	
				a	b	
			• •	. 20,2	20,2	
			• •	. 59,5	58,2	
				. 9,4	7,4	
	enornd			. 3,1	3,4	
	i und Natro			. 1,5	1,2	
Rol	jlenfäure .			. 4,4	7,8	
	wefelfänre			. 1,2	1,,	
Ph	osphorsäure			. Spur		
				99,3	99,3.	
	~					

7. Hydraulischer	Cement	aus t	ver Fab	rik von	St. Andre	a
bei Novigno	in Istrier	1 des	Herrn	Escher,	untersucht 186	51
durch W. M	rázef.					

In Salzfäure lösliche Bestandtheile:

Ralferde $28_{/11}$ Einfachichwefeleisen $0_{/29}$ Magnesta $8_{/00}$ Manganoxydoxydoul SpurRali $0_{/20}$ Schwefelsäure $1_{/37}$ Natron $0_{/16}$ Rohlensäure. $1_{/45}$ Thonerde $24_{/85}$ Phosphorjäure. $0_{/05}$ Eifenoxyd $0_{/95}$ Ehlor $0_{/08}$ Eifenoxydul $3_{/03}$ Wassfer
In Salzfäure unlösliche Bestandtheile:
In Kalilauge lösliche Riefelfäure 9,55
Unlöslicher Rückstand, bestehend aus:
Riefelfäure 1,54
Thonerde 16,75
Ralferde 0,61
Magnefia
<u> </u>
100,49.
8. Cement aus der Fabrik des A. Schmidt & C. in Prag, untersucht 1862 von H. Sturm
Baffer Spur Schwefelfäure 1,74
Ralferde 59,36 Rali 0,64
Magnesta 1,55 Natron 0,34
Eisenoryd $3_{,35}$ Kieselsäure $22_{,65}$
Thonerde 7,14 (in Kalilange löslich)
Kohlenfäure 1,55 Thon und Sand 1,10
Phosphorfäure 0,11 99,86.
× 1000× 1001 miller · · · · · · · · · · · · · · · · · · ·

9. a) Gyps, b) Anhydrit von Buchberg in Niederöfterreich, untersucht 1861 von M. v. Lill und W. Mräzek.

								a	b
Schwefelf	äm	e	•		•	•		46, 0	51,78
Ralferde	•	•	•					32, ₂₈	36, ₂₈
Magnesia		•			•	•	•		2,14
Thonerde		ið	Eij	eno	ryd		•		1,65
Rieselfäur		•	•			i.	•	3. 3	4,.0
Schwefele	iser	t	•			•		<u> </u>	Spur
2Baffer	•	•	٠	•	•	•		20,94	3,80
								99,70	99.75.

#### VII. Thon und Kaolin.

1.	Thon von Pö	i ch	laı	:n,	1111	teri	inch	t 1	848	3 v	011	A. Löwe.
	Ju Säure	11	unli	58(i	icher	9	tiict	ītai	ið			86,00
	Eisenoryd	•						•				6,00
	Ralferde											
	Talferde											
												99,36.
0	~		m						-	~	~	m · · · ·

2. Schieferthon zur Benützung als feuerfestes Materiale aus Thallern in Desterreich des Herrn Heinrich Drasche, untersucht 1860 von W. Mrazek.

Riefelfäur	ė.			45,80	Magnesia Spur
Thonerde				28,51	Schwefeleisen (Fe S2) 1,33
Eisenoryd		٠	•	2,30	Waffer, Bitumen und
Ralferde		•		0,75	Rohle 20,85
					99,54.

3. Zwei Sorten fenerfester Thone aus Thallern des Herrn Heinrich Drasche; a) aus der Grube, b) vom Tage; unter= sucht 1860 von W. Mräzet.

							a	b
Ricselfäure							47,08	44,45
Thouerde .						٠	31,47	31,81
Eisenoryd .				•	•		3,91	4,59
Kalkerde .					•		0,53	0,43
Magnesia .			•	•	•		0,16	0,20
Schwefelfäu	re	•			•		0,65	0,75
Baffer und	org	an.	SI	tbji	tanz	en	16,43	17,62
							100,23	99,85.

4. Thon aus dem Krafauer Gebiete, untersucht 1843 von A. Löwe. Riefelfäure. . . . 61,17 Talferde . . . . . O,... Thouerde . . . . 21,55 Rali . . . . . . 0/14 Gifenoryd . . . . 0,98 Wasser . . . . . 9,68 Ralferde . . . . 5,76 98,78. 5. Porzellanerde aus Dubrinitz in Ungarn, untersucht 1861 von A. Eichfa. a) Vom höchften oder Mathias=Stollen, abgeschlämmt, 36 %; Rückstand, 64 %; b) " " " " ungeschlämmt ; c)mittleren oder Alexander=Stollen, ungeschlämmt; d) .. e) tiefften oder Caroli=Stollen, frijch, ungeschlämmt; " f) zweijährig, abgeschlämmt, .. 40,4%; " Rückstand 59,6%. g) d e a b с f g Riefelfäure . . 70,07 81,71 77,47 75,12 77,23 74 82 83,11 Thonerde. . . 20,12 9,94 13,34 13,68 12,84 17,19 11,01 Eisenvryd . . 1,04 2,20 1,86 2,28 2,17 0,37 0,46 Manganoryd . beutl.Sp. deutl.Sp. deutl.Sp. deutl.Sp. 0,31 geringe Sp. ger.Sp. Kalferde . . . 0,11 0,28 0,20 0,18  $0_{,00} = 0_{,03}$ 0,15 Kali . . . . 1,50 1,34 1,47 2,98 2,06 2,02 1,91 0,38 Natron. . . . 0,32 0,22 0,24 0,48 0,32 0,26 Schwefel... — Spur Sp. Sp. Sp. -----4,45 4,32 Baffer. . . . 6,77 3,57 4,95 2,82  $4_{,31}$ 99,₉₃ 99,₂₆ 99,₅₃ 99,03 99,45 99,46 99,79.

Die angeführten Spuren Schwefel gehören äußerst geringen, quantitativ nicht bestimmbaren Mengen Schwefelfies zu, welche sich durch das Mitrostop entdecken lassen. Ein entsprechender geringer Antheil des Eisens, welcher als Dryd bestimmt wurde, war daher als Bisulphuret vorhanden.

#### VIII. Graphit.

Bier Sorten Graphit vom Berrn Bergmann aus Böhmen, untersucht 1862 von A. Eschfa.

								a	b	с	d
Rohlenstoff			•	•			•	58, ₄₈	56, ₉₅	72,95	72,40
Rieselfäure		•	•					21,05	21,44	15,34	8,78
Thouerde .			•					8,78	9,69	6,22	5,73
Eifenoryd mi	it C	5pu	ren	υ.	Ma	inge	an		3,93	1,21	1,91
Eisenorydul	•				•				0,22	0,22	1,29
Kalferde .	•	•	•		•	•		0,48	0,59	0,09	0,05
Magnesia .	•	•	٠		٠	•		0,42	0,64	0,30	0,21
Kali		•	•					1	$2_{28}$	1,77	1,22
Natron .				•				0,39	0,18	0,27	0,03
Schwefeljäu	re	•							0,10	0,20	1,58
Eifenbifulph	ure	t (:	Sch	wei	felfi	e8)			0,03	0,09	3,75
Waffer und	ger	ing	e D	Ren	gen	Ro	h=				
lenfäure (	aus	8 d	em	Be	erlu	ste)		4,17	3,95	1,34	3, ₀₅
								100,00	100,00	100,00	100,00

Die bei 100° C. getrocfnete Sub=

stanz verliert durch	Glühen	. 3,70	3,10	1,60	4,95
gibt beim Verbrennen	Asche .	. 36, ₉₀	39,45	$25_{,55}$	22, ₃₀ .

Der Kohlenstoff wurde durch direkte Wägung nach vorher= gegangener Behandlung des Graphits mit Fluorwafferstofffäure und Königswaffer bestimmt.

Ein Theil ber Kalkerde und Magnefia, fowie das Gifenorndul bei d ift an Schwefelfäure, bas Gifenorydul bei a, b, c aber an Rohlenfäure gebunden.

Die nachgewiesenen Alkalien find als tiefelfaure Berbindungen vorhanden; es ift demnach mahrscheinlich, daß dem Graphit Feld= fpath oder ein demfelben nahestehendes Mineral beigemengt ift.

uzirte Schwefel Coaks Wärme= Zärme= art dinteriu. Unteriu. Unteriu. Unteriu.	Flüchtige 2 Theer Mi					
	21 H H	Jahr der Unterju chung	Wärme= Einheiten	Coafs %	Schmefel %	ouzirte dei= tenge

IX. Mineralkohlen.

	1
Anmerfung	$ \begin{split} \mathfrak{F}(\mathrm{iid}\mathrm{tig} \mathfrak{e} \ \mathfrak{U} \mathfrak{e}^{\mathrm{f}}\mathrm{inn} \mathfrak{h} \mathfrak{l} \mathfrak{h} \mathfrak{e} \mathfrak{l} \mathfrak{e} : \\ \mathfrak{F}(\mathrm{iid} \mathfrak{h} \mathfrak{i} \mathfrak{g} \mathfrak{e} \ \mathfrak{U} \mathfrak{g} \mathfrak{h} \mathfrak{g} \mathfrak{h} \mathfrak{n} \mathfrak{h} \mathfrak{h} \mathfrak{h} \mathfrak{e} \mathfrak{l} \mathfrak{e} : \\ \mathfrak{L} \mathfrak{h} \mathfrak{e} \mathfrak{e} \ \mathfrak{F}(\mathrm{iid} \mathfrak{h} \mathfrak{g} \mathfrak{g} \ \mathfrak{G} \mathfrak{n} \mathfrak{h} \ \mathfrak{n} \mathfrak{h} \mathfrak{h} \mathfrak{h} \mathfrak{h} \mathfrak{h} \mathfrak{h} \mathfrak{h} h$
Junterju Unterju chung	1840 1847 1847
Wärme= Einheiten	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Coafs %	67.20 66.72 66.72 66.72 66.72 66.72 66.72 66.72 66.72 66.72 66.72 66.72 66.72 66.72 66.72 66.72 66.72 66.72 66.72 66.72 66.72 66.72 66.72 66.72 66.72 66.72 66.72 66.72 66.72 66.72 66.72 66.72 66.72 66.72 66.72 66.72 66.72 66.72 66.72 66.72 66.72 66.72 66.72 66.72 66.72 66.72 66.72 66.72 66.72 66.72 66.72 66.72 66.72 66.72 66.72 66.72 66.72 66.72 66.72 66.72 66.72 66.72 66.72 66.72 66.72 66.72 66.72 66.72 66.72 66.72 66.72 66.72 66.72 66.72 66.72 66.72 66.72 66.72 66.72 66.72 66.72 66.72 66.72 66.72 66.72 66.72 66.72 66.72 66.72 66.72 66.72 66.72 66.72 66.72 66.72 66.72 66.72 66.72 66.72 66.72 66.72 66.72 66.72 66.72 66.72 66.72 66.72 66.72 66.72 66.72 66.72 66.72 66.72 66.72 66.72 66.72 66.72 66.72 66.72 66.72 66.72 66.72 66.72 66.72 66.72 66.72 66.72 66.72 66.72 66.72 66.72 66.72 66.72 66.72 66.72 66.72 66.72 66.72 66.72 66.72 66.72 66.72 66.72 67.72 67.72 67.72 67.72 67.72 67.72 67.72 67.72 67.72 67.72 67.72 67.72 67.72 67.72 67.72 67.72 67.72 67.72 67.72 67.72 67.72 67.72 67.72 67.72 67.72 67.72 67.72 67.72 67.72 67.72 67.72 67.72 67.72 67.72 67.72 67.72 67.72 67.72 67.72 67.72 67.72 67.72 67.72 67.72 67.72 67.72 67.72 67.72 67.72 67.72 67.72 67.72 67.72 67.72 67.72 67.72 67.72 67.72 67.72 67.72 67.72 67.72 67.72 67.72 67.72 67.72 67.72 67.72 67.72 67.72 67.72 67.72 67.72 67.72 67.72 67.72 67.72 67.72 67.72 67.72 67.72 67.72 67.72 67.72 67.72 67.72 67.72 67.72 67.72 67.72 67.72 67.72 67.72 67.72 67.72 67.72 67.72 67.72 67.72 67.72 67.72 67.72 67.72 67.72 67.72 67.72 67.72 67.72 67.72 67.72 67.72 67.72 67.72 67.72 67.72 67.72 67.72 67.72 67.72 67.72 67.72 67.72 67.72 67.72 67.72 67.72 67.72 67.72 67.72 67.72 67.72 67.72 67.72 67.72 67.72 67.72 67.72 67.72 67.72 67.72 67.72 67.72 67.72 77.72 77.72 77.72 77.72 77.72 77.72 77
Echmefel %	· · · · · · · · · · · · · · · · · · ·
Veoustere Blei= menge	26.88.95 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.48 26.
Ufafje %	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Waffer ^{0/0}	
Fundort	Defterreich unter der Enns Pottenftein, ältere Brauntohle Gaming, Steintohle Staffau E. Autoni E. Autoni E. Antoni E. Mattern, Brauntohle Brannreith nächf. Baibhöfen an der Höst, back Steintohle bto. witehenden Flöt bto. i ftehenden flöt bto.

77

	WALLAND		-	-				-					-	-		6 ×(×4)		M-TANK					-				
	bei Silweg	Fohnsdorf, Brauntohle:	Steiermark	St. Wolfgang (Stollen)	Weißenbach (Unsbiß)	Salzburg			folle	Wolfegg=Traunthaler Braun=	Defterreich ob der Enns			" "		Ligauerii, Drainitohie	Stoffgnus, right	Stillional, Sanotohie	Slogging, Lignit	Srünbach, ältere Steinkohle .	St. Bolten	bradsomodis.	Suterhols "	Wiesenbach, Steinkohle	(	Fundort	
	•			•	•		13/74	5772	39,10			18,94	22,11	10,70	17/158	i .	•	•	•	•	•	•	•	•	/0	213 aller	3
	1,30			7,20	6,80		24,88	91,6	7,30			16,00	$14_{,53}$	28,00	11,38	9,20	D,30	4,50	2,50	18,50	28,60	2/50	6175	4,50	0/2	)e	
,	22/85			21,70	22,85		$1.5$ $n_{-5}$	24,05	13,50			. 16,25	14,89	12,30	17,03	16,00	16,30	21,70	15,50	20,50	19,82	21/12	28,94	28,00	menge	Blei-	Reduzirte
	·			•			2,65	•	•			3,43	•	•	•	•	•	•	•	•	•	•	•	•	0/	Edjwefel	2
_	52, ₀₀			57,48	36,60		•	60, ₀₀	•			•			•	•	•	50, ₀₀	·.	35,60	72,50	52/90	63,70	65,60	0/0	Coafs	1
_	5256			4991	5255		3482	5491	3105			3735	3422	2827	3915	3680	3749	4991	3565	4715	4558	4858	6656	6440	Emherten	Wärme=	
=	1839		;	:	1846		1861	1860	1858			1862	:	:	1861	:	1858	1854	1853	1852	:	1848	:	1847	tinu(p	Unterfus	Chafty Sav
	Sandcoafs							loje Coafs																		SI u ma v Fu u a	

•

	පුද
3( n m c r f n n g	Saudcoafs "" "" Klüchtige Beftandtheile: Klüchtige Beftandtheile: Ther Fillings Gaie und teit Vaie und Toss Vaie und teit Vaie vaie und teit Vaie vaie und teit Vaie vaie und Toss Vaie vaie vaie vaie vaie vaie vaie vaie v
3ahr der Unterfu≠ chung	1839 1842 1842 1845 1845 1853 1853 1853 1858 1858 1858 1858
Wärme- Einheiten	$\begin{array}{c} 4643\\ 4643\\ 5042\\ 5767\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753\\ 5753$ 5753\\ 5753 5753 5753 5753 5753 5753 5755 5755 5755 5755 5755 5755 5755 5755 5755 5755 5755 5755 5755 5755 5755 5755 5755 5755 5755 5755 5755 5755 5755 5755 5755 5755 5755 5755 5755 5755 5755 5755 5755 5755 5755 5755 5755 5755 5755 5755 5755 5755 5755
Coafs ⁰∕₀	$52_{100}$ $52_{100}$ $52_{100}$ $52_{150}$ $52_{150}$ $52_{150}$ $79_{250}$ $79_{250}$ $76_{100}$ $76_{100}$
Schmefel 0/0	· · · · · · · · · · · · · · · · · · ·
Reduzirte Blei= menge	$\begin{array}{c} 20 \\ 21 \\ 21 \\ 20 \\ 15 \\ 10 \\ 15 \\ 10 \\ 10 \\ 10 \\ 10 \\ 1$
Afdje %	64%%24 .8%%24 .8%%24 .8%%24 .8%%24 .8%%24 .8%%24 .8%%24 .8%%24 .8%%24 .8%%24 .8%%24 .8%%24 .8%%24 .8%%24 .8%%24 .8%%24 .8%%24 .8%%24 .8%%24 .8%%24 .8%%24 .8%%24 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%26 .8%%2
Waffer %	33 21,50 21,50
Fundort	Sohnsborf, Braunfohle: Zofeffollen in Dittersdorf bei Seling " Untonifiellen " " " Punaftollen " " " Franzhellen " " " Paridylug " " " Paridylug " " Paridylug " " Bartienegg, v. Kogel, bto. Gomsgrober, dto " Frobenthal, Stanifohle " Pranichfeld " "

Bistichrad, Steintohle Kladno Lufchine, Brannkohle Stadnow, Steintohle Startow Bulchine, Brannkohle Savender, Etginit Billjen, Eteintohle Oftrau, Brannkohle Oftrau, Steintohle Statichfowiy, Brannkohle Gechardig Etitisa, Steintohle Salienow, Hagendes Kern Bodhorze, Liegendes " Sangendes "	Fundort
$\begin{array}{c}1&1\\1&5_{00}\\1&3_{700}\\6_{746}\\6_{746}\\1&6_{746}\\1&7_{700}\\1&8_{700}\\1&8_{700}\\1&8_{700}\end{array}$	Daaffer %
11 11 11 11 11 11 11 12 12 12	Alfdje %
1976 1977 1977 1977 1977 1977 1977 1977	Reduzirte Blei≠ menge
 の単数数 うなき。	Echnefel %
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Coats %
$\begin{array}{c} 6169\\ 5660\\ 3680\\ 5171\\ 3995\\ 5171\\ 3680\\ 5891\\ 5171\\ 3680\\ 5891\\ 6328\\ 4170\\ 4170\\ 4170\\ 4170\\ 4170\\ 4183\\ 3930\\ 2942\\ 4183\\ 3930\\ 4183\\ 3942\\ 4183\\ 3942\\ 4183\\ 3942\\ 4183\\ 3942\\ 4183\\ 3942\\ 4183\\ 3942\\ 4183\\ 3942\\ 4183\\ 3942\\ 4183\\ 3942\\ 4183\\ 3942\\ 4183\\ 3942\\ 4183\\ 3942\\ 4183\\ 3942\\ 4183\\ 3942\\ 4183\\ 3942\\ 4183\\ 3942\\ 4183\\ 3942\\ 4183\\ 3942\\ 4183\\ 3942\\ 4183\\ 3942\\ 4183\\ 3942\\ 4183\\ 3942\\ 4183\\ 3942\\ 4183\\ 3942\\ 4183\\ 3942\\ 4183\\ 3942\\ 4183\\ 3942\\ 4183\\ 3942\\ 4183\\ 3942\\ 4183\\ 3942\\ 4183\\ 3942\\ 4183\\ 3942\\ 4183\\ 3942\\ 4183\\ 3942\\ 4183\\ 3942\\ 4183\\ 3942\\ 4183\\ 3942\\ 4183\\ 3942\\ 4183\\ 3942\\ 4183\\ 3942\\ 4183\\ 3942\\ 4183\\ 3942\\ 4183\\ 3942\\ 4183\\ 3942\\ 4183\\ 3942\\ 4183\\ 3942\\ 4183\\ 3942\\ 4183\\ 3942\\ 4183\\ 3942\\ 4183\\ 3942\\ 4183\\ 3942\\ 4183\\ 3942\\ 4183\\ 3942\\ 4183\\ 3942\\ 4183\\ 3942\\ 4183\\ 3942\\ 4183\\ 3942\\ 4183\\ 3942\\ 4183\\ 3942\\ 4183\\ 3942\\ 4183\\ 3942\\ 4183\\ 3942\\ 4183\\ 3942\\ 4183\\ 3942\\ 4183\\ 3942\\ 4183\\ 3942\\ 4183\\ 3942\\ 4183\\ 3942\\ 4183\\ 3942\\ 4183\\ 3942\\ 4183\\ 3942\\ 4183\\ 3942\\ 4183\\ 3942\\ 4183\\ 3942\\ 4183\\ 3942\\ 4183\\ 3942\\ 4183\\ 3942\\ 4183\\ 3942\\ 4183\\ 3942\\ 4183\\ 3942\\ 4183\\ 3942\\ 4183\\ 3942\\ 4183\\ 3942\\ 4183\\ 3942\\ 4183\\ 3942\\ 4183\\ 3942\\ 4183\\ 3942\\ 4183\\ 3942\\ 4183\\ 3942\\ 4183\\ 3942\\ 4183\\ 3942\\ 4183\\ 3942\\ 4183\\ 3942\\ 4183\\ 3942\\ 4183\\ 3942\\ 4183\\ 3942\\ 4183\\ 3942\\ 4183\\ 3942\\ 4184\\ 4184\\ 4184\\ 4184\\ 4184\\ 4184\\ 4184\\ 4184\\ 4184\\ 4184\\ 4184\\ 4184\\ 4184\\ 4184\\ 4184\\ 4184\\ 4184\\ 4184\\ 4184\\ 4184\\ 4184\\ 4184\\ 4184\\ 4184\\ 4184\\ 4184\\ 4184\\ 4184\\ 4184\\ 4184\\ 4184\\ 4184\\ 4184\\ 4184\\ 4184\\ 4184\\ 4184\\ 4184\\ 4184\\ 4184\\ 4184\\ 4184\\ 4184\\ 4184\\ 4184\\ 4184\\ 4184\\ 4184\\ 4184\\ 4184\\ 4184\\ 4184\\ 4184\\ 4184\\ 4184\\ 4184\\ 4184\\ 4184\\ 4184\\ 4184\\ 4184\\ 4184\\ 4184\\ 4184\\ 4184\\ 4184\\ 4184\\ 4184\\ 4184\\ 4184\\ 4184\\ 4184\\ 4184\\ 4184\\ 4184\\ 4184\\ 4184\\ 4184\\ 4184\\ 4184\\ 4184\\ 4184\\ 4184\\ 4184\\ 4184\\ 4184\\ 4184\\ 4184\\ 4184\\ 4184\\ 4184\\ 4184\\ 4184\\ 4184\\ 4184\\ 4184\\ 4184\\ 4184\\ 4184\\ 4184\\ 4184\\ 4184\\ 4184\\ 4184\\ 4184\\ 4184\\ 4184\\ 4184\\ 4184\\ 4184\\ 4184\\ 4184\\ 4184\\ 4184\\ 4184\\ 4184\\ 4184\\ 4184\\ 4184\\ 4184$	Wärme≠ Einheiten
1850 1853 1855 1855 1855 1856 1856 1856 1851 1851	Jahr der Unter∫u≠ chung
loje Coafs Sintercoafs	Ջ՛ ս ա շ ւ՞ ս ո ց

							.81
Anmerfung		10/6 &0013					
Sahr der Unteriu= chung	1856 "	1861 • •	••	••		••••••••••••••••••••••••••••••••••••••	• • •
Wärme= Sinheiten	4712 4781 3678 3678	5181 5181 5162 4921	5045 5296	5326	5316 5006 5135 5135	5252 5470 5868	4349 4243 4680
&oafs %		••••			••••	• • • •	
Schnefel %	•••	• • • • •			••••	0, ₂₄	
Reduzirte Blei= menge	20,50 20,50 16,00 20	22,54 22,54 22,46 21,41	$21_{,95}$ $23_{,04}$	23, ₁₇ 23, ₁₁	21,78 21,78 22,34 52,34	222,85 23,85 25,53 25,53	18, ₉₂ 18, ₉₂ 20, ₃₆
Uldje %	5,30 5,00 17,50 6.2	$4_{759}$ $2_{83}$ $6_{14}$	$9_{,82}^{}4_{,32}^{}$	5 ₁₁₀ 4,70	8 0 10 8 0 10 8 0 10 8 0 10 8 0 10 8 0 10 8 0 10 8 0 10 8 0 10 8 0 10 8 0 10 8 0 10 8 0 10 8 0 10 8 0 10 8 0 10 8 0 10 8 0 10 8 0 10 8 0 10 8 0 10 8 0 10 8 0 10 8 0 10 8 0 10 8 0 10 8 0 10 8 0 10 8 0 10 8 0 10 8 0 10 8 0 10 8 0 10 8 0 10 8 0 10 8 0 10 8 0 10 8 0 10 8 0 10 8 0 10 8 0 10 8 0 10 8 0 10 8 0 10 8 0 10 8 0 10 8 0 10 8 0 10 8 0 10 8 0 10 8 0 10 8 0 10 8 0 10 8 0 10 8 0 10 8 0 10 8 0 10 8 0 10 8 0 10 8 0 10 8 0 10 8 0 10 8 0 10 8 0 10 8 0 10 8 0 10 8 0 10 8 0 10 8 0 10 8 0 10 8 0 10 8 0 10 8 0 10 8 0 10 8 0 10 8 0 10 8 0 10 8 0 10 8 0 10 8 0 10 8 0 10 8 0 10 8 0 10 8 0 10 8 0 10 8 0 10 8 0 10 8 0 10 8 0 10 8 0 10 8 0 10 8 0 10 8 0 10 8 0 10 8 0 10 8 0 10 8 0 10 8 0 10 8 0 10 8 0 10 8 0 10 8 0 10 8 0 10 8 0 10 8 0 10 8 0 10 8 0 10 8 0 10 8 0 10 8 0 10 8 0 10 8 0 10 8 0 10 8 0 10 8 0 10 8 0 10 8 0 10 8 0 10 8 0 10 8 0 10 8 0 10 8 0 10 8 0 10 8 0 10 8 0 10 8 0 10 8 0 10 8 0 10 8 0 10 8 0 10 8 0 10 8 0 10 8 0 10 8 0 10 8 0 10 8 0 10 8 0 10 8 0 10 8 0 10 8 0 10 8 0 10 8 0 10 8 0 10 8 0 10 8 0 10 8 0 10 10 8 0 10 8 0 10 8 0 10 10 10 10 10 10 10 10 10 10 10 10 1	7,92 5,94 250	7,00 6,52 3,38
Waffer %		$13_{,91}$ $15_{,13}$ $11_{,94}$				4,86 4,80 7,30	$16_{,99}$ $18_{,78}$ $15_{,07}$
Fundort .	Podhorze, Kern, Lignit " Liegendes, Lignit. Trzwinia	Zaivorno, Fried. Ang Flötz, Eteinfohle " " " " " "	" Inter County, Filit, Firth " Sfidorfafaacht, Franzjeka	Flötz, Hrit " Sohle " Martinfahacht, Frich. Ung. Frich. Arive	", Niedzielistater Srube, ", Niedzielistater Srube, 1. Flöty Firft	" " " 2. " Fiult " " " Sohine " " Sohile Dinsann. Rolomen'er Areis	Ludovita sflötz, Brauntofte Aaifer Franz . Erzh. Ferd. d'Efte dto. "
						6	

`

.81

-	Salader Comitat, Lignit.	Kostolan, Lignit.	Karolinafiollen, Brauntohle	Neufeld, Lignit	Zimbro, Arad. Comit., Lignit	Rakowatz bei Meusatz	-						Fünftirchen, Steinkohle	Balaha Gyarmath, Brannfohle	St. Undrea	••••	Tichbißa		Fünftirchen, Steintohle	" " dto. (Griestohle)	Brennberg, ältere Braunkohle	Arva, Braunkohle	11 an Gult	11		Fundort	
	25 80		14 34	27,80	2.	•	·	•	•	•	•	•	•		•	•		•	•	•	•					Waller %	
	11.20	3,75	13,10	20,90	13,00	6,50	25,30	4,50	9.00°	7,00	15,00	18,50	7 00	7,70	7.40	21,60	7,40	$13{20}$	7,70		•	10,50				QLIdje %	
-	14,30	20, 50	16,27	$13_{'11}$	14,70	18,50	20,60	28,50	29,00	28,80	25,80	24.00	28 50	19,00	15,20	18,95	18.82	26 70	28,92	•	•	17,46			munge	Blei=	03.5
	•		•	•	-						•			•						•	·					Schwefel %	-
		•	44.00		•	52,00	83,00	79.00	78,50	80,50	85,00	82,50		40,00	$48_{50}$	63,40	62.60	83,30	84,80	50, ₈₀	48,90	45,53				Coafs %	
	3287	4712	3740	1997	3376	4255	4738	6555	6670	6624	5934	5520	6555	4508	3496	4358	4328	6141	6651	•	•	4013				Wärme= Einheiten	
	2	1862	1861	AGET	1000	1898		3		:	:		1856	1855	1854	1852		:	1851		1842	1841			Gunda	Unterju:	Calm Sav
						1010 Sours	Y					Badcoats -	3				Candcoats			20 20	21,90		Sulling	Kliichtige Bestandtheile:		Anmerfung	

	رید کی میں <del>ک</del> ور میں کی میں کو	Sintercoafs		2	2	2		Sintercoafs in Backcoafs übergehend	. Ann. d. Ned.
1862 "	2 080 F	"	2 2	2	"	2	2 2	٤	unfohlen
4229 3379 3328	0101	4004	5094 5094	5897	5782	6309 6732	6277	4698	ocru Braı
• • •	ç	00.02 53,90 56	53 40	<i>5</i> 7, ₁₀	56,05	58,20 58	57,10	37,40	ohlen, font
		•••	•••	•	•	•	•	•	eine Steinf
$18_{40}$ $14_{70}$ $14_{70}$	80 - OG	$21_{08}^{20,95}$	22,15 22,15	25 ₁₆₄	$25_{n_4}$	27,43	27,22	20,42	cgen find fa
0,64 9,24 14,24		8,00 8,00	0,00 7,60	4,60	$6_{r_{70}}$	6, ₇₀	6,10	3,10	Siebenbür
$13_{ m ss}$ $16_{ m ts}$ $21_{ m ts}$	002		• •	•	•		•••	•	Thale in
Bubendorf,St.Mauritius-Ge= werf, Lignit mit Holztertur Masifenthura signit	Cempa bei Betrilla, im ungar.	Bytter Thate, Sterntohle ') Balha Lufrunz dto. "	Sercu hel Sonole oto. "	tim walach. Zitike Thate	gru ver dem Dorfe uritany im walach. Zfiler Thale .	biczeny, im walach. 3fil. Th.	Rimpultunhaf """"""""""""""""""""""""""""""""""""	nächft dem eisernen Bhore an der Grenze von Banat, Brauntohle	1) Die Kohlen im Bilter Thale in Siebenbürgen find keine Steinkohlen, sondern Braunkohlen.
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

	Schlestien	Witesbach in Baiern, Brauns tohle	Auständische Kohlen	Alt Schonyhat	Gorna Beth	Dubla	Eibenthal	Steintohle	Drawita Schutz	Banat	Fundort
	9,02 2,38	4,66 5. ₃₄					•	•	••		Waffer %
	5,69 2,44	20, ₇₈ 2, ₄₄		9,70	31/80	$4^{,50}_{,70}$	1,70	0,50	$\begin{smallmatrix}10.00\\0_{90}\end{smallmatrix}$	-	Ufdje %
¹ x x	$rac{23,_{90}}{27_{\prime 2.7}}$	$\frac{18_{,86}}{26_{,50}}$		29,30	20,20 21,70	$21^{+60}_{-50}$	27,50	26,	$26^{+}_{,50}$	1	Reduzirte Blei= menge
	0, ₉₈	2 ₁₉ 0 ₈₉		•	•••	••••		•	•••		Schwefel %
21 	57, ₉₀			96,98	$\frac{46.80}{90.50}$	53.50 46	•	•	80, ₈₀ 75, ₀₀		Coafs %
-	$5493 \\ 6291$	$4335 \\ 6091$	N	6704	$4646 \\ 4992$	4968 3474	6325	5980	$6095 \\ 6716$	(b.:	Aärme= Einheiten
		1861 "		: :		<b>18</b> 59	"	1858	1851 1856		Jahr der Unterfu- chung
	loje Coaks				Sintercoaks lofe Coaks	lofe Coaks			Baccoafs		An mertung

X. Corf.

	•	85
Anmerfuug		
Jahr der Unterfu= chung	1855 1855 1855 1855 1855 1855 1855 1855	
Wärme= Einheiten	1706 2070 4439 3956 3255 3255 3664 3664 3993 3993 3190 3461	
Coafs %	$56_{50}$	
Schwefel %	· · · · · · · · · · · · · · · · · · ·	e T
Neduzirte Blei= menge	$7_{12}$ 9,00 19,00 17,20 14,16 15,95 15,94 17,11 17,11 15,94 15,96 15,96 15,96	5
20(fcf)e °/0	$\begin{array}{c} 36.50\\ 3.455\\ 10.60\\ 40.00\\ 26.40\\ 2.48\\ 3.80\\ 2.48\\ 3.80\\ 2.48\\ 2.48\\ 2.48\\ 2.48\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ 2.59\\ $	5 
Waffer %	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
Fundort	Hannsöd, Niederöfferreich . Elunacz, Galizien	

Afche der eben angeführten Torfe von Mitterbach in Steiermark, untersucht 1861 von H. Sturm.

							į	a) Fajertorf;	b) Specktorf.
Rieselfäure			•					33, _{ss}	· 20,28
Thonerde.								22,05	15,08
Eifenoryd								4,95	5, ₅₆
Mangan .		•							Spur
Kalferde .								21,78	34,85
Magnesia			29					5,66	5,48
Schwefelfäu	re							5, ₈₁	10,50
Rohlenfäure			•					2,70	6, ₄₈
Phosphorfäu								0,28	0,23
Alfalien, von			hent	5 5	Rali			1,20	0,87
Chlor .	•	•						Spur	Spur
						-		98,31	99,33.
								/01	-/33

#### XI. Cementwässer, Quicktrübe.

 Gruben=Cementwäffer aus Schmöllnitz, untersucht 1859 von M. v. Lill.
 a) Vor der Entfupferung. b) nach der Entfupferung.

Spez. Gew. bei + 17° R. . . . 1,03197. Schwefeljaures Eijenogybul Fe O, SO₃ . . 1,762 " Eijenogyb Fe₂ O₃, 3 S O₃ . 0,020 " Rupferogyb Cu O, S O₈ . . 0,008 " Zinfogyb Zn O, S O₃ . . 0,007

87 Schwefelfaure Thouerde Alg O3, 3 S O3. . 0,770 Ralferde Ca O, SO3 . . . 0/104 11 Talferde Mg O, S O3 . . . 0,495 Summe ber festen Bestandtheile . . . 3,236. 2. Quicktrübe von der Amalgamation zu Fernezely in Ungarn, untersucht 1861 von M. v. Lill. a) Die klare Flüffigkeit; b) Sat, welcher fich am Boden der Flasche, worin die Trübe eingesendet wurde, abgesetzt hatte. In 1000 Gewichtstheilen: Chlorfilber . . . . . . . 0,00236 Ralferde . . . . . 1,401 Rupferoryd . . . . 0,033 Zinkoryd . . . . 4,174 (mit Manganorydul) Eisenoryd . . . . 0,588 Bufammen feste Bestandtheile. 50,77636. b. In 100 Theilen der bei 100° C. getrockneten Substang: Quarz und Riefelthon . . 83,85 Eisenoryd. . . . . . 9,10 Bleiornd . . . . . . . 2150 Ralferde . . . . . . 0,50 Schwefelfäure . . . . 1,00 Arfenfäure . . . . . 1,33 Waffer . . . . . . 0,85 99,34. Die dozimastische Probe ergab . . . . 0,0156% Silber. XII. Reffelftein.

1. Keffelftein, welcher sich an die Wände der Dampflessel bei dem k. k. Vergamte in Fohnsdorf abgesetzt hatte; unter= sucht 1861 von A. Eschka. a) In Salzfäure unlöslicher Rückftand, bestehend aus:

Riefelfäure 2,05	Ralferde 34,85
Eisenoryd Out	Magnesia 3,65
Thonerde Spur	Gifenornd 1
Schwefelf. Kalferde 0,40 2,60	Eisenorydul 0,57
b) In Salzjäure löslich:	Thonerde O.
Schwefelfäure 51,12	Mangan deutliche Shur
Kohlenfäure Spur	Glühverluft (Wasser) 4.00
Chlor Spur	99 _{/50} .
	/50

2. Keffelstein aus einem Dampffessel der freiherrl. v. Sina'= schen Fabrik zu Szeut = Miklos, untersucht 1862 von F. Hillebrand.

Schwefelfäure . . . 43,95 Riefelfäure . . . . . . 5,10 Kohlenfäure u. Waffer 11,00 99,00.