I. VORBEMERKUNG

Die Feldarbeit wurde Ende 1978 im Raume Windisch-Bleiberg mit dem Ziel durchgeführt, um Proben von Erzen und Nebengesteinen, einschließlich der Raibler Schichten, zu erhalten. Es wurden 250 Handstücke aufgesammelt, Fundpunkte und makroskopisch festgestellte Erzführung (Pb, Zn, Ba und Fe (Eisensulfide)) der einzelnen Halden sind in Abbildung 1 dargestellt.

2. PROBENVORBEREITUNG UND ANGEWANDTE ANALYTISCHE METHODEN

a) Probenentnahme und Probenvorbereitung

Nach Vorzerkleinerung wurden die Proben in einer Achatschale jeweils 30 Minuten händisch analysenfein zerkleinert.

b) Atomabsorptionsspektrometrie

Probenvorbereitung:

42 Calcitproben wurden auf Strontium, Mangan, Eisen, Blei, Zink und Mangan untersucht. Die Proben (1 g Einwaage) wurden mit 10 ml 1:4 gelöst. Eine Lösung von 5 % Lanthanchlorid (La^{+3}) wurde zugesetzt. Die Eichlösungen von Sr enthielt 0,5, 1, 2,5 und 5 ppm Sr, die von Mn je 1, 5, 10 und 50 ppm Mn, die von Fe 0,5, 1, 2,5 5, 10 und 25 ppm Fe, die von Zn 5, 7,5, 10 und 50 ppm Zn, die von Pb 1,5, 10, 25 und 50 ppm Pb un die von Mg je 1, 2,5, 5, 10 und 25 ppm Mg.

Analysenbedingungen:

Gerät:	Jarrell & Ash 0,5 m-AA-Spektrophoto- meter, Modell Nr. 82-259.
Spannung:	450/300 V
Brenner:	Laminarbrenner 10
Brenngas:	C ₂ H ₂
Oxidationsgas:	Luft
Dämpfung:	3/2
Eingangsspalt:	100 m
Ausgangsspalt:	100 m
Elemente:	Sr, Mn, Fe, Zn, Pb und Mg

Westinghouse 12/15 m	A
5/5	
0 - 10 mA ·	
30 mm/min	
	Westinghouse 12/15 m 5/5 0 - 10 mA 30 mm/min

c) Röntgendiffraktionsanalyse:

Probenvorbereitung

Für die Diffraktionsanalyse wurden 21 Barytproben in einer Achatschale pulverisiert und anschließend ein Polyesterpräparat hergestellt. Für die Calibrierung wurden chemisch analysierte Proben von Bleiberg-Kreuth verwendet (siehe Tabelle 3 und Abbildung \$).

Analysenbedingungen:

Cu-Röhre:	40 kV, 20 mA, Ni-Filter
Geiger-Müller-Zählrohr:	1650 V
Betriebsart:	Mittelwertmessung
Untersetzer:	16/16
Zeitkonstante:	4
Meßfaktor:	0,6
Divergenz- und Streustrahlenschlitz:	
Auffangschlitz:	0,1
Zählrohrgeschwindigkeit:	0 1/min
Papiervorschub:	80 m/h 🖌
Winkelbereich:	4 - 60 ⁰

Auswertung:

Die Auswertung erfolgte nach der ASTM-Kartei (American Society for Testing and Material).

3

konzentration %

TABELLE 3

Die Konzentration von Strontium in Baryt durch Röntgendiffraktion

Proben Nr.	Fundort	Paragenese	.Sr %	
ĸ	östlich von Barbara	PbS, Calcit	1,25	
D	östlich von Theresia	PbS, ZnS, Calcit	1,03	
B ₂	Barbara	PbS, ZnS, Calcit	0,77	
P3	Barbara	PbS, ZnS, Calcit	1,57	
6	südl. von oberer Georgi	PbS, ZnS, Calcit	1,77	
7	Krenz-Barbara	PbS, Calcit	2,18	
8	Floriani	PbS, Calcit	2,89	
9	nördl. von W.B.	PbS, ZnS, Calcit	1,78	
AB	w.B. (Bachbett)	ZnS, Calcit	1,02	
23	Obere Anna	PbS, Calcit	1,63	
28	westl. von Nikolaus	PbS, ZnS, Calcit	1,02	
33	Nikolaus	PbS, ZnS, Calcit	1,27	
21	Gustav	PbS, Calcit	2,89	
34	Hemma	PbS, Calcit	0,99	
4]	nordwestl. von Hemma	PbS, Calcit	2,30	
45	nordwestl. von Hemma	PbS, Calcit	1,79	
50	Ferdinand	PbS, Calcit	0,76	
51	westl. von Simon	PbS, ZnS, Calcit	2,89	
57 H ₁	Grubla	PbS, ZnS, Calcit	1,49	
57	Grubla	PbS, ZnS, Calcit	1,47	
26	nordwestl.v.Obere Anna	PbS, Calcit	0,77	

~..

d) DTA- und Diffraktionsanalyse

DIFFERENTIALTHERMOANALYSE

Probenvorbereitung:

Eine Tonschieferprobe (Raibler Schiefer, P 9) wurde mittels Differentialthermoanalyse und Thermogravimetrie untersucht.

Analysenbedingungen:

Gerät:	Recording Vacuum Thermoanalyzer (METTLER)
Einwaage:	180 mg
Vergleichssubstanz:	Al ₂ O3 geglüht
Höchsttempertur:	1400 ⁰ C
Atmosphäre:	stehende Luft
Aufheizgeschwindigkeit:	15 ⁰ C/min

Die DTA-Analyse wurde durch Röntgendiffraktionsuntersuchungen ergänzt.

Auswertung:

Die Auswertung erfolgt nach der DTA-Kartei von R.C. MACKENZIE (1964).

Als Ergebnis der Analysen wurde folgender Mineralbestand erhalten:

Illit .	52,1 %	(mit erhöhtem Gehalt, 110°C)	н ₂ 0-
Quarz	16,1 %		
Organische Substanzen	1,3 %		
Chlorit	11,1 %		
Calcit	4,5 %		
Feldspat	14,5 %		
Feuchtigkeit	0,5 %		
Summe	99,9 %		

e) Lumineszenzuntersuchungen

Der Reifegrad der Raibler Schichten aus den anstehenden Aufschlüssen in Windisch-Bleiberg wurde zu ermitteln versucht.

Untersuchungsmethoden:

Für die fluoreszenzmikroskopische Untersuchung im Auflicht wurden die planen Schnittflächen von Sedimenthandstücken im Ausmaß von 5x5x1 cm herangezogen.

Verwendet wurde ein ZEISS-Fluoreszenzmikroskop mit einer hochstabilisierten Quecksilber-Höchstdrucklampe HBO 100 W/2 unter Verwendung des Erregerfilters BG 12 (maximale Transmission bei rund 400 nm) und Sperrfilters 53 (530 nm). Das von der Probe emittierte Fluoreszenzlicht wurde durchgehend bei 546 mm (Halbwertsbereich 22 nm) mit Hilfe der hochstabilisierten Mikroskop-Photometer-Ausrüstung MPM₁ der Firma ZEISS photometriert. Der photometrierte Bereich weist bei Verwendung des Trocken-Objektives EPIPLAN 40/0,85 Pol, der Optvareinstellung 1,25x und der Meßblende 7 einen Durchmesser von 0,03 mm auf. Die während der 30 Minuten Strahlungszeit auftretenden Intensitätsänderungen wurden mit dem hochempfindlichen Schreiber "SERVO-GOR" der Fa. GOERZ aufgezeichnet.

Untersucht wurde ausschließlich das Fluoreszenzverhalten bituminöser, onkolithischer Grundmasse der Tonschiefer.

Die mineralisch-bituminöse Grundmasse, die größtenteils aus Illit besteht, absorbiert den größten Teil der organischen Substanz.

Folgende Fluoreszenzkennzahlen wurden bestimmt:

- Die Fluoreszenzintensität I_o, bei beginnender Bestrahlung (nach 0 Minuten).
- 1 b) Die Fluoreszenzintensität I_{μ} , nach 4 Minuten.

2) Positive oder negative Alteration (Änderung der Intensität) der Fluoreszenzintensitäten, A_I 4 - 30, innerhalb des Bestrahlungszeitraumes von 4 bis 30 Minunten in Prozenten, bezogen auf die Intensität nach 4 Minuten. Bestrahlungsdauer (I_{μ}).

Die Untersuchungsergebnisse sind in der Tabelle 4 sowie in den Abbildungen 9 bis 10 wiedergegeben.

Windisch-Bleiberg	Auf- nahme	Alteration %	Rm-Bereich geschätzt % (u.eig.Daten)	Rm-Bereich	Max. Anna	Rm Min. ahme
Onkolithische helle Kalke			8 	af - Canada - San Bandha di Badha ang san Ban.		
(Raiblerschicht)	Н3	- 35,7				
Onkolithische dunkle Kalke	D 3	- 5,5	0,47 - 0,86	0,67 - 0,7 6	0,72	0,51
Onkolithische mit Pyrit vererzte Raiblerschichten	7	- 11,9	0,57 - 0,98	0,67 - 0,76		
Tonschiefer der Raiblerschichten	5	- 6,0	0,47 - 0,87	0,60 - 0,68	0,66	0,50
Tonschiefer der Raiblerschichten	4	+ 42,8	0,28 - 0,37	0,35 - 0,55		
Schiefer	27 N ₂	- 45,4		**		
Onkolithische Kalke der Raiblerschichten	13	- 59,0				

TABELLE 4

Diese ersten Meßergebnisse deuten auf äußerst niedrige Temperaturbelastungen hin. 100° C dürften für längere Zeiträume auf keinen Fall überschritten worden sein. Nach einem einfachen tektonischen Modell würden sich für etwa 12 Mio Jahre (Karn + Nor) eine durchschnittliche Wirkungstemperatur von 27° C, für 110 Mio Jahre (bis Turon) von 54° C (mit Spitzentemperaturen nach der vorgosauischen Überschiebung von rund 105° C) und vom Turon bis heute unter stetiger Erosion (90 Mio a) etwa 59° C annehmen lassen. Die angegebenen Temperaturen sind als Maximalwerte zu verstehen.

TABELLE 1:

Chemismus von Erzkalziten und Nebensteinen

Lfd. Nr.	Proben Nr.	Fundort	Paragenese	Sr ppm	Mn ppm	Fe %	РЬ %	Zn %	Mg %
	Erzkalzi	ite							
1	40 H	westl. Untergeorgie	Pb, Zn	200	570	0,07	0,015	0,003	0,17
2	60 I	Josefi	Pb, Zn, Ba, Fe	150	500	0,012	0,012	0,002	1,2
3	3	Barbara	Pb, Zn, Ba	100	560	0,093	0,003	0,013	0,19
4	H ₁	Barbara	Pb, Zn, Ba	110	198	0,012	0,007	0, 006	0,18
5	B ₂	Barbara	Pb, Zn, Ba	100	350	0,04	0,026	0,003	0,31
6	9	nördl. Ort W.B.	Zn, Ba	.130	200	0,05	0,009	0,031	0,22
7	60 IV	Josefi	Pb, Zn, Ba, Fe	240	530	0,01	0,009	0,003	1,05
8	24	Unter-Anna	Pb, Ba	140	1200	0,015	0,015	0,023	. 0,19
9	40 D	westl. v. Unter-Georgie	Pb, Zn	230	260	0,091	0,003	0,026	0,24
	Nebenge	esteine (Wettersteinkalk)							
1	14	Maria	РЪ	140	1400	0,014	0,018	0,01	0,22
2	8	Floriani	Pb, Ba	140	780	0,058	0,003	0,006	0,23
3	19	Karl-Zubau	Pb	180	900	0,072	0,021	0,003	0,23
4	33	Nikolaus	Pb, Zn, Ba	390	Í 30	0,016	0,005	0,014	0,06
5	26	nordwestl. Obere Anna	Рь	150	150	0,02	0,017	0,004	0,25
6	31	Hemma-Neubau	₽Ь	120	250	0,052	0,035	0,005	6,90

Lfd. Nr.	Proben Nr.	Fundort	Paragenese	Sr ppm	Mn ppm	Fe %	Pb %	Zn %	Mg %
7	21	Gustav	Pb, Ba	70	280	0,025	0,012	0,002	0,2
8	52	Companie Barbara	Pb, Zn, Ba	150	200	0,033	0,029	0,009	0,88
9	7	Krenz-Barbara	Pb, Ba	110	110	0,027	0,006	0,011	4,20
10	22	Krischnig	Pb	160	1230	0,063	0,002	0,002	0,25
11	29	südöstl. v. Silbernag.	Pb	130	400	0,013	0,013	0,002	0,2
12	49	Neben-Simon	Pb	110	280	0,026	0,021	0,014	0,23
13	55	Silbernagel	Pb	140	1550	0,089	0,026	0,01	0,24
[4	32	Stefanie	Pb, Zn	60	1050	0,01	0,025	0,023	0,3
15	к	Östl. Barbara	Pb, Ba	70	330	0,045	0,036	0,009	0,85
16	J	nördl. Barbara	Pb, Ba	140	200	0,088	0,035	0,007	1,25
17	23	Obere Anna	Pb, Ba	80	150	0,045	0,025	0,022	0,21
18	50	Ferdinand	Pb, Ba	490	200	0,045	0,009	0,006	0,13
19	57	Grubla	Pb, Zn	130	780	0,048	0,003	0,003	0,18
20	10	Albert	Zn	20	740	0,02	· 0,018	0,015	0,14
21	·· 27	nördl. Obere Anna	Pb, Ba	70	1100	0,013	0,014	0,022	0,45
22	11	Satman F.	Pb	120	200	0,03	0,003	0,002	2,25
23	5	westl. Daniel	Pb	160	200	0,036	0,004	0,028	0,14
24	6	südl. Oberer Georgie	Pb, Zn, Ba	160	750	0,026	0,0008	0,004	0,24
25	12	Leonhard •	Pb, Zn, Ba	70	1900	0,023	0,015	0,014	0,07
16	35	nordöstl. Hemma	Pb, Zn	200	290	0,012	0,013	0,007	2,45
-	54	Aloisius Zubau	Pb, Zn, Ba	70	360	0,016	0,012	0,006	0,14
13	15	Gustav	Ъ.	180	270	0,013	0,014	0,023	0,26
1	4	Daniel	ЭР	130.	1430	0,031	0.014	0,018	0,21

Strontiumgehalte in Gang-Calcit und Nebengestein

	Mitt el- wert Ø	Sr niedr. höchst.	Standard- abweichung
Calcit	x 153	n = 10 100 240	52
Wettersteinkalk	142	n = 28 20 290	95

•

Mangangehalte in Gang-Calcit und Nebengestein

ŗ			
	Mittel- wert Ø	Mn niedr. höchst.	Standard- abweichung
		n = 10	
Calcit	456	198 1200(1230)	304
		n = 28	
Nebengestein	621	110 1550(1900)	515

Eisengehalte in Gang-Calcit und Nebengestein

Mittel- wert Ø	Fe niedr.	höchst.	Standard- abweichung
	n =	• 10	
481	120	930	352
	n =	28	
329	100	890	202
	Mittel- wert Ø 481 329	Mittel- Fe wert niedr. ø 120 n = 481 120 n = 329 100	Mittel- Fe wert ø niedr. höchst. n = 10 481 120 930 n = 28 329 100 890

Magnesiumgehalte in Gang-Calcit und Nebengestein

	Mittel- wert Ø	Mg niedr. höchst.	Standard- abweichung
498-8 00 - 200 -		n = 10	
Calcit	5000	0,17 1,25	
		n = 28	
Nebengestein	7896	0,06 6,9	