DIE GROSSFORMEN DER ERDRINDE UND IHRE BEWEGUNGEN

Einer der grössten allgemeinen Züge, die die Erdoberfläche aufweist, ist die Diskordanz zwischen dem Algonkium und dem Kambrium. Sie ist weltweit verbreitet. Die älteren Gesteine sind fast ausnahmslos stark gestört, gefaltet, metamorph verändert und daher meist fossilleer. Das Kambrium liegt schon über weite Flächen ungestört, z. T. petrographisch wenig verändert und birgt fast überall reiche Faunen. Das lang umstrittene überraschende Auftreten reicher Tiergesellschaften in dieser Formation ist sicher nicht ursprünglich so unvermittelt gewesen, sondern beruht auf Zerstörung der Fossilreste in den älteren Schichten.

Es ist also tief begründet, dass man daran festhält, das Altertum der Erde, das Paläozoikum, mit diesem Zeitpunkte beginnen zu lassen und was vorher liegt als prähistorische Ära abzutrennen, in der nur eine unsichere Zeitfolge erkannt werden kann.

Zu Beginn des paläozoischen Zeitalters treten schon zum erstenmale die grossen Grundlinien hervor, die das heutige Bild der Erdoberfäche bedingen und die sich seit dieser Zeit nicht mehr grundlegend verändert haben. Der Bauplan der Erdkruste ist uralt. Er ist vorkambrisch vollendet gewesen.

Man unterscheidet darin:

1. - Epeirogene, die starren Kerne der Festländer,
2. - Pelagogene, die starren Böden der grossen ozeanischen Becken,
3. - Orogene, Geosynklinalen, die zwischen diesen starren Schollen gelegenen beweglichen Zonen, die Scharniere, an denen Bewegungen vor sich gehen. Es sind dies die Linien der Senkung und Gebirgsbildung.

Wenn wir die Erde ohne Wasserhülle betrachten, zeigt sich der Gegensatz zwischen den hochgelegenen kontinentalen

Schollen und den tiefliegenden Böden der Ozeane. Die mittlere Höhe des Festlandes beträgt 825 m über, die mittlere Tiefe der Ozeane etwa 3700 m unter dem Meeresspiegel. Diese 4.5 km . Höhenunterschied sind verschwindend gegenüber dem 6378 km . messenden Erdhalbmesser am Äquator.

Die Kontinentalschollen sind, wie Schweremessungen ergeben haben, spezifisch leichte Schollen der Erdrinde mit einer Dichte von etwa 2.8. Sie sind vorherrschend aus Gesteinen gebildet, die die weiteste Verbreitung auf der Erdoberfäche besitzen, Massengesteinen, die reich an Silicium und Aluminium sind wie der Granit und kristallinischen Schiefern, vor allem Gneis und Sedimentgesteinen. Wir bezeichnen ihre Gesamtheit mit den Anfangsbuchstaben dieser Elemente als Sal oder besser Sial.

In den Kontinentalmassen kann man nun alte, starre Teile erkennen, die vorkambrischen Kerne, die fast ausschliesslich aus alten Massengesteinen und kristallinischen Schiefern bestehen. Das sind die Urgebirgsmassen von Kanada mit Grönland (kanadischer Schild), Finnland mit dem östlichen Schweden, der deutschen Tiefebene und einem Teile der russischen Platte (baltischer Schild, Fennoskandia), ein Teil Sibiriens und Ohinas (sibirischer Schild, Angaraland), Ostchina, Brasilien und benachbarte Teile Südamerikas, Afrika südlich vom Atlas mit Arabien und Dekhan (Indoafrika), der grösste Teil Australiens und der antarktische Kontinent.

Es sind dies die bei der ersten Entmischung des Magmas ausgeschiedenen und erstarrten Massen, die spezifisch leichter sich auf der Erdoberfläche sammelten und wohldurch Aufschmelzung und Druck tiefgründig verändert worden sind. Zum Teil sind sie wohl auch durch Abtragung und Sedimentation umgelagert worden. Sie sind durchwegs stark gefaltet, von Verwerfungen durchsetzt und seit dem Beginne der kambrischen Zeit von keiner starken Faltung mehr ergriffen worden. Die kambrischen Schichten liegen auf ihnen ungestört. Der grösste Teil des arktischen Gebietes und der nördlichste atlantische Ozean stellen wohl seicht überflutete Epeirogenschollen dar.

Zwischen den Epeirogenen liegen die grossen ozeanischen Becken, das atlantische, das pazifische un das indische. Deren Boden, die Pelagogene, sind tiefliegende Schollen der Erdrinde und besitzen, wie Schweremessungen gezeigt haben, ein spezifisches Gewicht von etwa 3.4. Sie dürften vorherrschend aus Gesteinen der Hauptgemengteile Silicum und Magnesium
bestehen und werden als Sima bezeichnet. Es ist kein Anhaltspunkt dafür vorhanden, aus statischen Gründen auch ganz unwahrscheinlich, dass sie je ihre Höhenlage gegenüber den Epeirogenen wesentlich geändert haben, dass sie z. B. Festland gewesen sind. Sie sind wohl die oberflächlichen, erstarrten Partien einer dichteren Erdschale, auf der die leichteren Epeirogene schwimmen.

Das Verhältnis der spezifischen Gewichte dieser beiden Krustenteile ist wie 4:5 und aus dem Unterschiede der mittleren Höhenlagen von 4.5 km . ergibt sich, dass in etwa 25 km . Tiefe eine Ausgleichszone liegen müsse, in der alle Störungen der Lage dieser Schollen isostatisch durch Bewegungen der benachbarten Krustenteile ausgeglichen werden.

Die Epeirogene haben seit dem Kambrium eine wesentliche Änderung ihres Umfanges nur dadurch erfahren, dass sie durch Anschweissung neu gefalteter Zonen der Orogene erweitert warden. Durch junge Bruchlinien werden sie aber vielfach durchsetzt, wie der meridionale afrikanisch-syrische Graben u. a. sie darstellen.

Zwischen den Epeirogenen und zwischen diesen und den Pelagogenen liegen die labilen Zonen der Geosynklinalen, die Orogene, uralte Spaltensysteme der Erdkruste, wohl die Stellen, wo der Wechsel des Magmas und nachher der Gesteine Schwächezonen geschaffen hat. In ihnen werden die Abtragungsprodukte zu Dutzende von Kilometern mächtigen Schichtpaketen aufgehäuft. Wir können sie und ihre Lithogenese, ihre Umwandlung in Gesteine, in den Gebirgen der Erde studieren und erkennen, dass sie durchwegs in verhältnismässig geringer Wassertiefe abgelagert sind. Alles deutet darauf hin, dass die unserer Beobachtung zugänglichen Sedimentgesteine in Tiefen bis zu 1000 m gebildet worden sind, dass also die Geosynklinalen während der Ablagerung der so überaus mächtigen Schichtfolgen in andauernder langsamer Senkung begriffen gewesen sind. Diese muss also mit dem Betrage der Sedimentierung Schritt gehalten haben, sodass die Wassertiefe stets annähernd gleich geblieben ist. Est ist also sehr wahrscheinlich, dass die Last der auflagernden Sedimente die Senkung des labilen Bodens bewirkt hat, dass also ein Gileichgewichtszustand geherrscht hat, der von der Ablagerung abhängig gewesen ist.

Die mächtigen Sedimentmassen pressen die Liegendschichten in eine solche Tiefe der Erdrinde, dass sie durch Druck und erhöhte Temperatur metamorphosiert werden.

Diese Zonen von Ablagerungsgesteinen werden nun durch seitliche Bewegung zu Gebirgen emporgepresst, verfestigt und vergrössern, an die alten, starren Schollen der Kontinente angeschweisst, die Epeirogene. Teile der Orogene erstarren, die beweglichen Züge der Oberfläche der Erde werden immer enger umgrenzt. So ist in Europa die Scholle des baltischen Gebietes und der russischen Tafel vorkambrisch gefaltet und tief abgetragen gewesen. Im älteren Paläozoikum ist daran im Westen das kaledonische Gebirge, die Ketten Skandinaviens, angeschweisst worden und im jüngeren eine breite Zone, die Mitteleuropa von England ostwärts bis nach Russland durchzieht, das armorikanisch-variszische (herzynische) Gebirge. Es ist im Mesozoikum durch Brüche zerstückt und abgetragen worden und einige stehengebliebene Schollen, wie Böhmen, das französische Zentralplateau, die mitteldeutschen Gebirge und einige Zentralmassen der Westalpen, sind wom Mittelmeere umflutet oder uiberflutet worden. Das Mittelmeer hat sich damals von Böhmen südwärts bis an das Festland der Sahara erstreckt und in ihm wurden grosse Massen von Absatzgesteinen gebildet und dann bei der Faltung in der kre-tazisch-tertiären Zeit zum alpin-himalaüschen Gebirgssystem aufgewölbt. An dem nördlichen und südlichen Rande wurden neue Gebiete landfest. Die Pyrenaeen, die südspanischen Ketten, Apennin, Alpen, Karpathen und die dinarischen Gebirgszüge, die in die vorder-und südasiatischen übergehen und im Süden der Atlas wurden aufgerichtet, sodass heute nur mehr die enge Mulde des Mittelmeeres als Sammeltrog übrig geblieben ist, wo neue orogenetische Bewegungen für die Zukunft zu erwarten sind.

Nur mehr zwei grosse Geosynklinalen sind heute aktiv, die den Stillen Ozean umgebende zirkumpazifische und die alpin-himalaïsche bis in den hinterindischen Archipel.

Jede Bewegung eines Teilchens der Erdkruste, die sich in nachweisbaren Erschütterungen äussert, heissen wir Erdbeben. Die orogenen Zonen sind also ihrer Natur nach Gebiete der Erderschïtterungen und die alten Kontinentalmassen und wohl auch die ozeanischen Böden sind im allgemeinen mit Ausnahme jüngerer Bruchzonen bebenfrei, aseismich.
A. v. Humboldt hat schon eine Zone gesteigerter Erderschütterungen unter dem 40° nördl. Breite erkannt. Omori und Montessus de Ballore haben gezeigt, dass von 70.000 registrierten Erdbeben 95% auf die erwähnten Zonen junger Gebirgszüge, die Geosynklinalen des Mesozoikums, die heutigen Oro-
gene fallen. Aber diese Zonen besitzen recht verschiedene Grade von Seismizität. Manche Gebiete zeigen verhältnismässige Ruhe und rege Erdbebenzentren liegen auch ausserhalb. Dazu gehört das Gebiet am unteren Mississippi, das eine Reihe von Katastrophenbeben aufweist. Es liegt fern von jeder jungen gefalteten Gebirgskette und Montessus hat es als abnormal und seine Ursache als mystisch bezeichnet.

Nun konnte ich schon 1909 nachweisen, dass der 40° nördl. und südl. Breite durch das Auftreten von Katastrophenbeben ausgezeichnet ist. In sie fallen auch die Punkte, die ausserhalb der Orogene liegen. Nördlich vom 40° nördl. Breite dehnt sich die grosse, mit Ausnahme der Westküste Nordamerikas und der Ostküste Asiens, d. i. der Orogene, aseismische Region der Nordhalbkugel aus. Südlich vom 40° südl. Breite gibt es bis auf Patagonien und den antarktischen Kontinent kein ausgedehntes Festland und diese scheinen ebenfalls bebenarm zu sein. Zwischen den beiden Parallelkreisen ziehen sich längs der jungen Faltengebirge der amerikanischen Westküste, des Inselbogens Ostasiens und durch Südeuropa, Nordafrika, die südasiatischen Hochketten nach Hinterindien, die Sundawelt, und die australisch-neuseeländischen Inselbögen die Schütterzonen auf die Südhalbkugel fort. Es liegt also zwischen dem 40° nördl. und 40° südl. Breite ein Gürtel um die Erde, auf den die Katastrophenbeben fast völlig beschränkt sind. Maxima der Erschütterungen finden sich dort, wo die Grenzen dieses Gürtels die heutigen Geosynklinalen schneiden oder mit ihnen zusammenfallen. San Franzisko, Valparaiso, Nippon und die Cookstrasse in Neuseeland sind die Schnittpunkte mit der pazifischen Geosynklinale und zwischen Lissabon und Wernoje in Turkestan fallen die alpinen Falten mit der Nordgrenze des Gürtels zusammen.

Es wird immer deutlicher, wie die grossen Erderschütterungen mit den jungen Gebirgsfalten verknüpft sind. In diesen hat man, wie z. B. in den Alpen, bedeutende Verbiegungen der Erdkruste in jungquartärer oder nachquartärer Zeit feststellen können und auch bei Tunnelbauten konnte die Fortdauer von Gebirgsbewegungen erkannt werden.

Die Geosynklinalen sind auch hauptsächlich der Sitz der vulkanischen Erscheinungen der Gegenwart und der jüngsten Vergangenheit, die vorzugsweise in einem Gürtel um den pazifischen Ozean und in der südeuropäisch-südasiatischen Zone verbreitet sind. Von den Faltengebirgen sind sie in recht auffälliger Weise unabhängig, sodass sogar gezeigt werden konnte,
dass die Gebirgsfaltung ihnen ein Ende bereitet, indem deren recht oberflächliche tangentiale Bewegungen die Erdkruste verdicken und die Verbindungen des Erdinnern mit der Oberfläche unterbrechen. Sie stehen im Zusammenhange mit Bruchlinien, die sich weit in das Erdinnere fortsetzen. Dies ist der Fall, wo Gebirgsfalten zusammentreffen und tiefgehende Störungen verursachen, dann im Rücklande von Gebirgen, wo Einbrüche stattgefunden haben wie in Oberitalien, Ungarn, an der Westküste von Unteritalien, an Grabenversenkungen wie am Mittelrhein, in Japan oder an der grössten Bruchzone der Erde, dem afrikanisch-syrischen Graben und an Bruchlinien, wie in den grossen Ozeanen.

Vulkane reichen weit in die Polarregionen und finden sich auch auf den Epeirogenen, die nicht mehr von tangentialen Bewegungen beeinflusst, aber von Brüchen durchsetzt werden. Dies ist besonders an der Zerstückung des Tafellandes im südlichen Arizona zu sehen.

Man hat früher geglaubt, dass Vulkane in einem ursächlichen Zusammenhange mit dem Meere ständen, da sie meist in der Nähe der Küsten auftreten. Aber die eruptiven Vorgänge sind an die Bruchlinien gebunden, die die Grenze der Kontinente. und der ozeanischen Becken bestimmen. Dies ist besonders an der Umrandung des pazifischen Ozeans deutlich zu erkennen.

Man kann in der Erdgeschichte Perioden unterscheiden, in denen die orogenetischen Bewegungen zu erlahmen scheinen und solche, in denen sie zu neuem Leben erwacht waren. Aber diese Zeiten sind nicht scharf gegeneinander abgetrennt. Völlige Ruhe hat es niemals auf der Erdoberfläche gegeben und die Gebirgsbildung schreitet ununterbrochen fort. Wir können aber eine Beschränkung dieser Vorgänge auf engere Zonen annehmen.

Die Zeiten lebhafter Bewegung der Erdrinde sind auch Phasen gesteigerter vulkanischer Tätigkeit, die ebenfalls niemals zur Ruhe gekommen ist und auch ein Erlahmen der Äusserung der Kräfte des Erdinnern gegen die Erdoberfläche verrät. Es ist dies ein deutliches Zeichen, dass unsere Erde schon in einen Zustand vorgeschrittenen Alters eingetreten ist.

Hebungen und Senkungen der Kontinentalschollen, tangentiale und vertikale Bewegung in den Geosynklinalen mit Erderschütterungen verbunden und eruptive Tätigkeit sind die Vorgänge auf der Erdoberfläche, die wir auf einheitliche grosszügige Vorgänge zurückzuführen trachten müssen, die das Gesamtbild der Erdoberfläche beherrschen.

Hier werden wohl die Gesichtspunkte zur weiteren Erkenntnis führen, die Böhm-Böhmersheim über den Zusammenhang der Änderung der Abplattung der Erde und der Gebirgsbildung berührt hat. Unter dem Einflusse der Anziehungskraft des Mondes und der Sonne entstehen im Erdkörper wie in der Wasserhülle Gezeiten, das sind Massenverschiebungen, die eine Reibung ausüben und auf die Rotation bremsend einwirken (Gezeitenbremsung). Infolge der dadurch bewirkten Verringerung der Umdrehungsgeschwindigkeit erlangt der Erdkörper eine Neigung seine Abplattung zu verringern und die ideale Kugelgestalt anzunehmen. Freilich wird dagegen eingewendet, dass infolge der Kontraktion wieder ein Anwachsen der Rotationsgeschwindigkeit erfolgt. Aber über diese Werte ist man noch ganz im Unklaren und wir rechnen also mit einer Verringerung der Abplattung, bei der am Äquator Senkung und an den Polen Hebung der Erdkruste eintritt. Die dazwischen liegenden Punkte der Oberfläche werden dabei mehr minder tangential, das ist horizontal bewegt.

Der äquatoriale Wulst senkt sich von selbst infolge der Schwere und dieser Druck setzt sich im Erdinnern allseitig fort und die Polarregionen werden emporgepresst. Dazwischen tritt ein aktives Fliessen der Erdkrustenteile polwärts ein. Diese horizontale Bewegung ist am grössten zwischen dem 35. und 55., theoretisch am 45. Breitegrade und geht ohne Zug und Druck vor sich. Es tritt also keine Beanspruchung der Wiederstandsfähigkeit der Gesteine ein, die ihre Struktur unverändert bewahren können.

Die Wasserhülle ist leicht beweglich und passt sich bei einer Abnahme der Rotationsgeschwindigkeit unmitteblar der Rotationsgestalt an, die der jeweiligen Umdrehungsgeschwindigkeit entspricht. Der Meeresspiegel sinkt also dabei langsam bis zum 35. Breitegrade und steigt von da polwärts an. Die Erdrinde folgt infolge ihrer Starrheit diesem Impulse nicht sofort, sondern erst, wenn die aufgespeicherten Energien diesen Widerstand überwinden können. Es tritt also zuerst ein Sinken des Meeresspiegels in niederen Breiten und Ansteigen gegen die Pole ein, das heisst, das Land taucht in niederen Breiten auf und wird polwärts überflutet. Dies erfolgt langsam; die Transgression in höheren Breiten und die Regression in niederen gehen langsam vor sich. Die Erdfeste gibt aber plötzlich den aufgespeicherten Kräften nach, die Landmassen tauchen polwärts rasch auf und die Überflutung gegen den Äquator vollzieht sich in kurzer Zeit.

Dadurch werden schaukelnde Bewegungen der starren Rindenstücke, vielleicht auch geringe Verbiegungen und sicher Sprünge bewirkt, an denen sich möglicherweise wieder Bewegungen vollziehen können, wie etwa am Roten Meer-Graben. Gleichzeitig aber erfolgen auch horizontale Bewegungen polwärts, besonders um den 45. Breitegrad. Und die leicht beweglichen Massen, wie die grossen Sedimentanhäufungen und das Trümmerwerk alter Gebirge, werden in den Geosynklinalen ohne besonderen seitlichen Druck in eine polwärts gerichtete fliessende Bewegung geraten und Anlass zur Auffaltung von Gebirgen geben. In den meridional verlaufenden Geosynklinalen tritt zwischen den starren Schollen eine seitliche Pressung ein, da diese sich auf einen engeren Raum zusammendrängen. Bei meridionalen Gebirgen muss also theoretisch ein seitlicher Druck erkennbar und eine weitergehende petrographische Veränderung der Gesteine nachweisbar sein.

Die Überflutungen und Trockenlegungen der Festländer stehen also in keinem ursächlichen Zusammenhange mit der Gebirgsbildung. Sie können als Folgen des isostatischen Ausgleiches der Erdkrustenteile gleichzeitig auftreten, schliessen einander aber in der Erdgeschichte grossenteils aus. Sie sind durch verschiedene, vertikale und horizontale Bewegungen der Erdrinde verursacht.

Es liegt kein Beweis vor, dass einst an Stelle der grossen ozeanischen Becken, Landmassen, sog. Landbrücken, die Epeirogene verbunden haben. Die beständige Lage der verschieden schweren Schollen der Erdkruste schliesst dies aus. Aber durch geringe vertikale Bewegungen der Epeirogene können seichte Meeresteile trockengelegt werden, wie z. B. der nicht unter die 1000 m Tiefenlinie reichende Teil des nordatlantischen Meeres zwischen Grönland und Nordeuropa, das arktische Gebiet u. a. Ebenso haben die aufgewölbten Geosynklinalen vorübergehende Verbindungen fast zwischen allen Kontinenten, vor allem zwischen Europa und Afrika, zwischen Asien und Australien und zwischen den Südkontinenten und dem antarktischen Festlande geschaffen, die wir in der Erdgeschichte wiederholt eine Rolle spielen sehen.

Eine der auffälligsten Erscheinungen in der Geschichte der Erde sind die wiederholten, an verschiedenen Teilen der Erdoberfäche nachgewiesenen, oft recht ausgebreiteten Vereisungen. Man kennt sie aus dem Algonkium in Australien, Indien, China, an den kanadischen Seen und fragliche in

Spitzbergen und im Kaplande, aus dem Kambrium von Norwegen, Australien, Südafrika (?), China und Pennsylvanien und aus dem Devon des Kaplandes. Im Perm bestand eine weite Vereisung auf der indischen Halbinsel mit einer Richtung der Eisbèwegung nach Norden, in Australien von Tasmanien bis Queensland mit derselben Richtung, in Südafrika mit einer fächerförmigen Verbreitung südwärts und im südlichen Brasilien. Gerade einige der heute trockensten und heissesten Gebiete sind damals vereist gewesen. Ausserdem kennt man Gletscherspuren im Ruhrgebiete in Deutschland und bei Boston, Mass. Es ist vergeblich versucht worden diese Vereisungen durch Verlegung des Südpoles in den Indischen Ozean zu erklären.

Man kennt Spuren von Eistätigkeit in der Trias Zentralafrikas und im unteren Tertiär Colorados. Vor allem ist aber die uns so nahe liegende quartäre Vereisung wegen ihrer Verbreitung von grösster Wichtigkeit. Die Eiskalotten der beiden Pole haben wenigstens den Umfang eines Viertels der heutigen Festlandsoberfäche besessen. Von den skandinavischen Hochgebirgen ist das Eis über die deutsche Tiefebene bis in die Gegend von Leipzig und in Nordamerika von Zentren in Labrador, an der Hudson Bay und in den Rocky Mountains bis zum 38. Breitegrade im Osten und bis zum 48. im Westen nach Süden vorgedrungen. Auf der Südhalbkugel war auch die polare Eisbedeckung weit ausgedehnter als heute.

Diese Eismassen haben die physikalischen Verhältnisse der Erdoberfläche tiefgreifend beeinflusst und als Folgeerscheinung die Vergletscherung so vieler Gebirge, darunter auch der Alpen bewirkt. Das nordische Eis ist wohl 500 m stark bis über Leipzig vorgedrungen, dann völlig abgeschmolzen und sodann wieder bis an seinen alten Stand vorgerückt. Dann zog es sich bis nach Mittelschweden zurück und rückte wieder bis an die Elbe bei Magdeburg vor, um sodann mit Stillständen und kleinen Vorstössen auf seinen heutigen Umfang in Hochskandinavien zurückzuweichen.

Die Vergletscherung in den Alpen hat sich ganz parallel abgespielt und in Nordamerika hat man ebenfalls zwei Hauptvereisungen erkannt.

Man hat die diluviale Vereisung aus kosmischen und tellurischen Vorgängen zu erklären versucht, aber dies ist ebensowenig gelungen wie mit der Annahme einer Änderung in der Zusammensetzung der Atmosphäre, da immer Voraussetzungen gemacht werden mussten, für die wir keine Begrün-
dung weder in der Erdgeschichte noch in der Gegenwart finden.

Da bringen die Schwankungen der Kontinentalschollen eine handgreifliche Unterlage für die Deutung dieser Erscheinungen aller Zeiten. Die Hebung eines Landstriches um 200 m bewirkt eine Verminderung der mittleren Jahrestemperatur um 1° O. Wir wissen, dass deren Sinken um $2-3^{\circ}$ in Skandinavien zur Erklärung der diluvialen Eiszeit genügt und es ist nachgewiesen, dass im Diluvium Skandinavien wenigstens 400 m , Norddeutschland wenigstens 300 m und das östliche Nordamerika zweimal um 1000-1200 m höher gelegen haben als heute und dass nach der Eiszeit beide Gebiete mehrere hundert Meter unter den Meeresspiegel gesunken waren. Es ist also sehr naheliegend die Hebung für die Vereisung, die Senkung für das Abschmelzen des Eises verantwortlich zu machen. Die unregelmässig über die Erdoberfläche verteilten Vereisungen sind durch Hebung von Landmassen leicht zu erklären und die wiederholte symmetrische Anordnung der diluvialen Eiskalotten um die Pole steht im Einklange mit den Folgeerscheinungen der Gezeitenbremsung, der gleichzeitigen Hebung und Senkung der Polarregionen.

Es könnte die Frage aufgeworfen werden, warum gerade aus der jüngsten Zeit der Erdgeschichte solche symmetrische Vereisungen bekannt geworden sind und nicht auch aus früheren Perioden. Schuld daran hat wohl die allgemein höhere Temperatur der Erdoberfläche bis in das Tertiär, wo eine subtropische Vegetation bis in hohe Breiten gereicht hat. Mit dem Ende des Tertiär ist dann eine rasche Abkühlung eingetreten, die Klimazonen haben sich schärfer ausgebildet und die geringe Hebung der polaren Festländer konnte die Vereisungen hervorrufen. Das längst erkannte Zusammenfallen der Vereisungen mit dem Ende gebirgsbildender Phasen ist eine wertvolle Stïtze für die Erhebungstheorie. Das durch die Faltung gestörte Gleichgewicht der Erdrinde hat sich durch Schwankungen der starren Schollen ausgeglichen. Wir begreifen nun auch die Unabhängigkeit der Vereisungen von irgend welchen anderen Erscheinungen der Erdoberfläche. Ihre Ursache liegt ebenfalls in der Erdfeste.

[^0]F. X. Schaffer

[^0]: Wien, Naturhistorisches Museum, Geologisch-paläontologische Abteilung.

