Paleontological notes on the Lower Trias of the Himalayas, by C. L.
Griesbach, F. G. S., Geological Survey of India.
Major-General R. Strachey, R.E., C.S.I., was the first to notice and describe ${ }^{1}$ some of the grand sections through the Himalayas, and to draw attention to the existence in these snowy regions of triassic strata closely allied (as E. Suess has first shown) ${ }^{2}$ to the Trias of the Eastern or Austrian Alps. As it has been my good fortane to have been sent to these lofty regions, I must here acknowledge the debt we owe to the learned General for having furnished such an excellent basis for further research in the most interesting region of the globe.

Having mapped the sniowy ranges between the valleys of the Dhauli Ganga and Gori Ganga (Niti and Milam), I was able to collect a considerable material for description, but I must defer the detailed report on these noble sections, with maps, until after the next field season, when I hope to extend the survey to the frontiers of Nepall.

The great anticlinal fold of porphyritic gneiss with granite, termed by Stoliczke "Central gneiss" (by way of comparison with the so called "Central gneiss" of the Alps, a definition which has been given up long ago), is conformably overlaid by various metamorphic schists ${ }^{3}$ and these again by the Palmozoic and following formations, a brief description of which I have given in the companion paper in this number of the Records. I will therefore only mention that on the eroded surface of the carboniferons rises the huge mass of the triassic and Rhætic strata. - The Rhætic beds form high, nearly perpendicular cliffs with an undercliff of older rocks, comprising the whole Trias from the Alpine Werfen beds (Buntsandstein) to the Upper Keuper rocks, all of which are well shown in the natural profile of Plate IV; the proportions of thicknesses and the outlines of the cliff are absolutely correct, being drawn with the aid of a camera lucida, from an opposite height, about in a horizontal plain with the junction of the Rhwtic and Trias.

In the following list I give a detailed enumeration of the beds composing both the Rhøtic and the Trias, with their probable correlations:-

> Upper Oolite (Spiti ehales).

	Upper Oolite (Spiti ehales).				
Lower Lias	1. Black shales and " dark enrthy	limestone			
Hesembles the	oolitic atructure, containing Belemnites bisulcatus, Stol.	13	0
Grestener beds of	" tibeticus,				
the Eastern Alps.	" sp.				
	Ammonites annulatus, Sow, var.				
	1, davsei, Sow.				
	Rhynchonella austriaca, Sss.				
	Thalassites depressus, Qu.				
	Ostrea, sp.				
	Pecten, sp.				
		Total	..	13	0
${ }^{1}$ Quart. Jo	r. Geol. Soc., Vol. VII, p. 292.				
2 Verb. Ged	I. Reichsanst. 1862, p. 258.				
${ }^{9}$ See Text	Uustration, fig. 1 , of my paper in this	number of	he A	ord	

As I intend to give here only a short description of the lowest members of the Trias, I will only say so much, that in the main the above Rhætic section corresponds exactly with the typical sections of that formation in the Austrian Alps, namely, we have here in descending order :-

1. Lithodendron-limestone, interbedded with limestone containing fossils belonging to the Alpine Kössen beds, which have been grouped into four horizons by Suess=Hauptlithodendronkalk with K össen beds.
2. Thick-bedded limestones, here and there dolomitic, still with Lithodendrons here and there, and beds with Megalodon=Dachsteinkalk.
3. Great development of dolomites and flaggy limestones=Hauptdolomit with Gümbel's Plattenkalk.

The andercliff consists of a series of beds which represent the whole of the marine Trias beds of the Eastern Alps. The series rests on the denuded and rugged carboniferous quartzites, which again form a steep cliff falling almost vertically down to the base of the valley.

The detailed section of it is as follows:-

The whole rests on the carboniferous series.

The above list of beds, it will be seen, corresponds in a marvellous degre e with the beds of the Trias as developed in the Eastern Alps, and the order stands therefore as follows:-

The Trias in the Himalayas.

	Character of rocks.	Zones.	Correlation with horizons in the Eastern Alps.	Trias in Germany.
宏	6. Liver-coloured limestone with greenish shales.	Corbis mellingi, Hau. var.	$1\rangle$	
	5. Friable shales and earthy beds.	Spir. Lilangensis, Stol.		
	Limestone .	Tropites ehrlichi .	Hallstadt an	Keuper.
	3. Earthy beds and shales		St. Cassian.	
	2. Black limestone and dolomites.	Daonella tyrolensis, Mojs.	Wengen.	
	1. Black limestone flags and splintery shales.	Brachiopods . .	Buchenstein.	
	4. Hard grey concretionary limestone. 3. Earthy limestone	Ptychites gerardi, Blfd.	$\begin{gathered} \text { Reifling lime•- } \\ \text { stone. } \end{gathered} \text { Vìrgloria }$	\} Muschelkalk.
		Rhynchonella semiplecta, Mün., var.	$\begin{aligned} & \text { Recoaro lime.- limestone } \\ & \text { stone. } \end{aligned}$	
	2. Limestone and shales.	Posidonomy a angusta, Hau.	Campiler beds ${ }^{\text {a }}$	Buntsandstein.
	1. Dark shales, etc. .	Monotis clare, Enm.	Beds of Seiss) beds.	

As far as is known at present, this succession of horizon holds good in India over a considerable area, to judge from certain beds, which have been found in other parts of our Himalayas. The lower group has been described by Stoliczka from the north-west Himalayas (Spiti), but he considered only the upper part of the Lower Trias as such, with Rhynchonella salteriana, Stol., and Ptychites gerardi, Blfd. He certainly came across the lower group, but in the absence of known Trias fossils he represented it as upper carboniferous, containing numerous Productus semireticulatus, Mart. (sp.), Spirifer rajah, Dav. I have compared some of his original specimens with my own collection, and have no doubt that the beds are quite identical both in lithological character and probably in their fossil contents.

It might be urged that the presence of the Productus speaks for a Permian age of these deposits; but taking into consideration the fact that stratigraphically the complex of Trias beds is a connected series of deposits without any interruption, with the greyish black shales invariably at their base, the whole resting on
a rugged and denuded surface of the carboniferous quartzite, it must be admitted that on this account alone the shales (Kuling shales of Stoliczka) must be included amongst the Triassic group. These shales resemble the Werfen beds of the Alps, not only in lithological character, but also in the fact that here as there they contain a number of older forms of life side by side with new arrivals. Such is, it appears, the case with the Werfen beds of Armenia ${ }^{1}$.

The following forms of the 1st and 2nd groups of the lower Trias are identical with such of the Werfen beds of the Alps :-

> Monotis clara, Emm.
> angusta, Han.
> Gervillia mytiloides, Schl.
> Modiola triquetra, Seeb.
> Myophoria ovata, Gdf.
> Avicula venetiana, Hau.

Nearly identical with a Hallstadt form is Ophiceras (Amm.) densitestra, Waag. ${ }^{2}$
All the other species represent earlier stages of forms found also in the triassic beds of the Eastern Alps.

So for instance:-

Ophiceras tibeticum, n.s., allied to Lytoceras sinonyi, Hau., and other Lytoceratites, occurring in the Lower Trias.

DESCRIPTION OF NEW SPECIES.

Class: CEPHALOPODA.

Order : tetrabranchiata.

Family: NAUTILIDE
Genus : NaUtilus.
Nattilus quadrangolus, Beyr., var. brahmanctus, n. s. Plate I, figs. 1-3.
This species is most nearly allied to the Liassic forms, of which N. aratus, Schl., is the representative. The shell is considerably involute, the umbilicus deep. The ventral side flattened, the section of the shell sub-angular. The descent to the umbilicus is vertical and sharply defined. Five radial lines of growth are visible, and a few broad indentations at intervals of about $\frac{3}{4}$ inch along the last chamber indicate a faint kinship of this form to Nautilus fugax, Mojs. ${ }^{3}$ Towards the mouth the shell opens out, trumpet-shaped. What remains of the last

[^0]chamber amounts to exactly one-half of the entire evolution. Siphon situated at about $\frac{2}{3}$ of the height (fig. 3). The septa show nearly the same lines as Nautilus subaratus, Keys.; ${ }^{1}$ the pointed antisiphonal lobe marks this species at once as belonging to the forms of which N. aratus, Schl., is the type. The number of septa are about thirty in a whorl.

The only character which distinguishes this species from Beyrich's species N. quadrangulus ${ }^{2}$ is the fact, that the German Muschelkalk form seems more compressed than our species, so far as I can judge from the figure given. But there can be no doubt that the German Muschelkalk species is a descendant of this lowest Trias form.

Likewise Nautilus spitiensis, Stol,, is probably also only a later stage of development of this species, which is common in the Werfen horizon of the Tibetan Himalayas.

With the exception of the angular shape of the section of the whorls which is so marked in the Indian species, it agrees very nearly with Nautilus subaratus, Keys., both in general shape and course of the lobe line. In fig. 2 I have shown another specimen, which I cannot separate at present from the larger form in spite of the indication of a hexagonal outline of the section of the mouth as shown in the figure. It is probably only a younger individual of the same species.

It is very numerous in Bed 2 (horizon of Posidonomya angusta, Hau.) of the lowest Trias.

Class: CEPHALOPODA.
Order:?
Family: AMMONITIDAE.
Tribe: PINACOCERATID \mathbb{A}.
Genus: OTOCERAS, n. g. ${ }^{3}$
Amongst the numerous forms found in Bed 2 (horizon of Posidonomya angusta, Hau.), one of the most remarkable groups is that for which I propose the above name. Occurring, as they do, in a bed belonging to the lowest Trias, they form the connecting link of a group of forms, the first of which appear in the palmozoic epoch.

The earliest species belonging to the tribe of Pinacoceratids appear in the Devonian, where we find the Sageceras sagittarius, Sandb.

In the Permian of Armenia we find again several species, and representatives of it are found in India (Salt-range) and pass on into Upper Trias, where many species belong to that genus.

The species described under the above generic name appear in the lowest Trias as companions of a number of early Triassic types, in the same bed with

[^1]Pos. angusta, Hau. Though it seems that there are several varieties, if not species, amongst the numerous specimens obtained, I prefer to include them for the present under one collective name.

Otoceras woodwardi, nov. spec. Plate I, figs. 4 \& 5, and Plate II.
Shell involute, with very deep umbilicus, with rapidly increasing outer whorls. The part of the shell nearest the umbilicus bulged out into an ear-like shape, giving the section of the shell (Plate I, fig $4 a$,) a more or less rhomboidal aspect.

It is very probable that the last whorl in adult individuals covered and enclosed the entire shell. In all the specimens which I collected there is a tendency to enlarge the latter whorls at the expense of the umbilicus. The sides of the shell are only slightly carved and slope towards the sharp knife-like siphonal side enclosing an angle of about 67°. The compressed siphonal side is one of the most characteristic features of this species. In one of the adult specimens (Plate I, fig. 4), this part of the shell has quite the appearance of a sharp knife, and only a faint indication of a three-edged termination is visible, whereas in some of the younger specimens (Plate II, figs. 1 and 3) and even in the older form (Plate II, fig. 2a) the tripartite character of the siphonal side is strongly marked. This character alone would stamp this species as belonging to Hungarites, Mojs., ${ }^{1}$ of which H. scaphitiformis, Hau., ${ }^{2}$ and H. zalaensis, Böckh., ${ }^{3}$ are the types, but the shape of the ear-like prolongation of the sides of the shell near the region of the second side-lobes is a character entirely absent in the Austrian genus. A line connecting the ear-like prolongations of the sides, or, in other words, the second side-lobes, will intersect the median plane in a point, from which to the siphonal margin of the preceding whorl is about the third of the entire distance between the point of intersection and the siphonal margin of the outer shell. A vertical projection of the inner margin of the first lateral saddle to the median plane will intersect that plane in the siphon of the preceding whorl.

From Plate I, fig. $4 a$, it will be seen that the proportion in the increase of lateral expansion of the last whorl increases rapidly at the expense of the increase to the height of the shell, and it is not at all improbable that, as I said above, the final chamber inclosed nearly the whole of the shell in adult specimens, which character is indicated in fig. 3 of Plate II, which shows the almost vertical sides of the umbilicus, bat since drawing the plates I have worked out of some blocks of stone the fragment of a larger specimen, showing part of the last chamber with the umbilicus. The latter is very narrow and closing in towards the outer side. The shell is extremely thick near the ear-like prolongation in the umbilical region and covered with wrinkles. The shell is covered with fine wavy lines of growth S -shaped, slightly bent forward near the siphonal margin.

The lobes show some variation, mainly in the auxiliary ones, but these increase in number with the successive whorls in the same specimen. As shown in

[^2]the drawings of lobes in Plate II, this species possesses a broad siphonal lobe ending on both sides of the semicircular siphonal saddle in a sharp point. The external saddle (fig. 1b) is moderately high and a little narrower than the siphonal lobe. The first lateral lobe is the deepest of all, of the same width as the external saddle, and at the base shows plainly a tripartite arrangement of the serration.

I remarked also that the corresponding lobes vary on each side of the specimen (fig. 1). Whilst the first lateral lobe of the left side shows plainly this tripartite arrangement of serration, those on the right side have an additional sharp point added to the lower margin of the lobe as shown in fig. $1 b$. The larger specimen, fig. 4, shows a still more complicated serration of this lateral lobe, similar also in figs. 3 and 5. There follows in all specimens a very large first lateral saddle, slightly bent towards the inner side, with following rather narrow second lateral lobe, serrated at the base, this serration varying in the different specimens. The second lateral saddle is only half as high as the first and great lateral saddle, rather wider in proportion to its height, and followed by one or two auxiliary lobes of varying course. In some specimens the first auxiliary lobe reaches only half down the roanded and broad second lateral saddle and is not serrated at the base and might be described as a rudimentary lobe; in others, figs. $2 b, 4$ and 6 , the anxiliary lobes and saddles are similar in shape to the last lateral lobe and saddle, decreasing in size as they near the ridge (r), noticed above. Beyond this the sutural line rans in a series of rudimentary lobes and saddles to the sutaral margin (s), where it forms a flat serrated lobe; on the antisiphonal side I noticed on prepared specimens (fig. 6) a saddle, as broad as high, sloping towards the margin (s) followed by a narrower but deeper lobe, serrated at base, and a second higher and wider saddle, similarly sloping towards the marginal side. The antisiphonal lobe is bipartite.

Locality.-South of Rimkin Paiar and north of Kiunglung encamping ground, head-waters of the Ganges river.

$$
\text { Otoceras woodwardi, var. dndatom, n. b. Plate I, fig. } 5 .
$$

With the first described specimens and only at one locality were found a few individuals agreeing in general shape and lobes with Otocerve woodwardi, but, unlike even the larger specimens of this species, showing very marked wavy ribs, only very slightly bent forward near the siphonal margin, bat swelling out near the middle of the side of the shell. As none of the other specimens show this character, I have thought best to separate it for the present as a variety of the other form.

Locality.-South of Rimkin Paiar, east slope of the Kurgudthidhar mountain.
Allied forms. -The ancestors of the forms above described must be sought for in the family of the Pinacoceratida, Mojs., the oldest known ones of which occur in the Devonian of Oberscheld, Pinacoceras sagittarius, Sandb. ${ }^{1}$ That Sageceras, known from the .e ermian and which like Pinacoceras lived up to the

[^3]Upper Triassic times, is a descendant from Pinacoceras is probable. There is another form which bears close resemblance to Otoceras, Goniatites intumesens, Bey. ${ }^{1}$ var. acutus, which is a close relation of it and belongs to the Devonian systemIn external shape, thickness of shell, fine lines of growth and the sharp-edged siphonal margin, they are all but identical, and from the figure ($1 a$) it seems as if this species also, in a rudimentary stage, possessed the ear-like prolongations of the shell near the umbilical region. Turning to the lobes we find also the first lateral saddle largely developed and tarned towards the ambilicus, and an indication of a !second lateral saddle, but the lobes terminate in simple sharp points only, though corresponding in general proportion. The line of projection of the preceding siphonal margin (vertical to the median plane) cuts through the second lateral lobe near the inner margin of the great first saddle. We have here the true predecessor of Otoceras in Devonian beds.

The next younger form known is Hungarites (Ceratites) strombecki, Griep. ${ }^{2}$ from the lowest Wellenkalk of Brunswick, which shows many characteristics of my genus, bat most so in the form of the lobes (fig. 3) which are nearly identical with mine. Apparently also the projection of the siphonal margin of the preceding whorl passes through the second lateral lobe.

Whether the genas Hungarites ${ }^{3}$ is a further development of Otoceras is not quite clear to me, but the description of the lobes given by J. Böckh ${ }^{4}$ seems to point to a relation with the older form of Otoceras. Mojsisovic ${ }^{5}$ hints at the possible derivation of Pinacoceras from Goniatites emaciatus, Barr., ${ }^{6}$ and indeed this species shows even greater likeness in general form and arrangement and position of the lobes to Goniatites intumescens, Bey., so that there is the indication of a pedigree, which would stand thus:

[^4]Prychites lawrencianus, DeKon.: Quart. Journ. Geol. Soc., Vol. XIX, PI. VI, fig. 3.
As such I determine a few not well preserved specimens. They agree very well in general shape and in the formation of lobes with the Salt-rauge species, but with this exception, that my specimens' exhibit traces of an ear-like ridge near the umbilical margin, thus showing some kinship to Otoceras woodwardi. Further researches in the Himalayas may reveal better specimens.

Of older forms the most nearly allied are Aoniatites hoeninghausi, Von Buch, ${ }^{1}$ G. intumescens, Bey., var. intermedius, Sandb., ${ }^{2}$ and G. buchii, Vern., ${ }^{3}$ thus. showing in some degree a derivation from the early types of Otoceras, and itself representing a predecessor of the later Ptychites forms of the Muschelkalk.

Genus: NORITES.

Noritrs planolatus, DeKon., var.: Quart. Journ. Geol. Soc., Vol. XIX, Pl. V, fig. 1.
My species differs somewhat from DeKoninck's.figure, in that the ribs on the sides of the shell are more strongly marked and seem indeed to form tuberculons masses; the siphonal part is perfectly flattened, and resembles in that Norites gondola, Mojs. This species is common in the higher beds (89) of the Campiler group of the lower trias.

There is an excellent predecessor to this species found in Goniatites tenuistriatus, Vern. ${ }^{4}$

Tribe: LYTOCERATIDT.
 Genus: OPHICERAS. ${ }^{5}$

Under this generic name I propose to unite forms which possess the external characters of the Lytoceratida, but possess a much simpler lobe-line even than Monophyllites, and must be considered as an older stage of development of the Lytoceratites, which appear first in the Muschelkalk. For the description of the generic characters I refer to Ophiceras tibeticum, n. s., which may be looked upon as the type of my genus.

Ophiceras tibeticom, n. ap. Plate III, figs. 1 to 7.
Shell compressed, section of whorls oval and widening near the umbilicus (see figs. 2 and 3); the latter large and shallow. The shell with seven to nine whorls, each covering a little more than a third of the preceding one. The shell is thick, especially so near the ambilicus, and covered with fine wrinkles or lines of growth S-shaped and bent forward near the siphonal side (figs. 4 and 5) In the body-chamber, they assume the character of fine S-shaped ribs (fig. 6), resembling in that stage the ribs of Lytoceras simonyi, Hau., with which species my form corresponds in many characters. At irregular intervals the shell swells into rounded bumps, largest near the umbilical margin. The siphonal side is rounded,

[^5]and the wrinkles or folds run across it and join with those of the other side. In a larger fragment of a body-chamber, which I refer to this species (fig. 1), the back is smooth, and the wrinkles or folds show only near the umbilical side.

The lobes are simple; the projection of the preceding whorl intersects the second lateral lobe near the outer wall of the second lateral saddle; the siphonal lobe is much wider than high, with a moderately high siphonal saddle, separated by the siphon. The external saddle is about as high as wide. The first lateral lobe is very deep and narrow, followed by a high first lateral saddle, bent inwards. The second lateral lobe is narrow and reaches only half as low as the first one. The second lateral saddle resembles in shape and height the first one, followed by a lobe of about the same depth as the last one, situated at the umbilical margin. The internal sutures are very simple. A deep bipartite antisiphonal lobe is accompanied by a rounded low saddle on each side. The margins of all the saddles are entire and the arches of the lobes very finely serrated, and in younger specimens and the inner whorls of others, often entire. Some fragments of young individuals resemble in general shape this species, but show slight deviations in the lobe-line (fig. 7).

Both in general shape and number, and arrangement (though not shape) of the lobe-lines, this species closely resembles the Lytoceratite genera (Monophyllites and Phylloceras) of the Muschelkalk and Hallstadt respectively, and may be said to be an earlier stage of these forms.

The earliest appearance of a form belonging to the chain of which the above species is only a link may be said to be Goniatites bohemicus, Barr., from the Silurian, and can be traced throngh a variety of allied species to the Devonian of Nassau, where we find in Goniatites aquabilis, Beyr., an exact likeness of our Himalayan species. Both section of shell ${ }^{1}$, general characters and striation, agree perfectly, and there is a strong resemblance even in the lobe-line. The external saddle is rudimentary, as is also the second lateral saddle, which is moved nearer the umbilical margin. But there, as in our species, we find a strongly developed and large first lateral lobe, with a bend towards the inner side, closely resembling the later Himalayan species. We have here connecting links of a long chain of forms beginning already in Silurian times and reaching probably high up in the cretaceous series, thus:

Ophiceran himalayandm, nov. sp. Plate III, fig. 8.
Shell rather less evolute than in the last described species, the last whorls rapidly increasing in height, and in that resembling more the Lytoceras simonyi, Mojs., even than the last species. Bat both the sculpture of the shell and the lobes differ considerably from Ophiceras tibeticum. There are a number of nearly straight, only sightly S-shaped, ribs running across the sides of the shell, which near the commencement of the body-chamber (indicated by a small arrow in fig. 8) almost disappear and change into irregalar fine wrinkles and bumps near the umbilical side. What remains of the body-chamber is about one-half of the entire whorl. The siphonal side is rounded, the umbilical margin sharply defined, descending straight down towards the shallow and wide umbilicus. The lobes are identical with those of the following species (figured in fig. 96).

Ophiceras medium, nov: sp. Plate III, fig. 9.

General proportions of the shell the same as those of the last described species, but the shell is nearly smooth and only shows slight radiating wrinkles, which disappear entirely towards the siphonal side and are only slightly bent forward in that region. The lobe-line, fig. 96 , resembles more that (fig. 7) which I considered as a younger individual of tibeticum, n. s. The siphonal lobe ends in two sharp points on each side of the divided siphonal saddle; the external saddle is a simple arch, rather wider than high, followed by a narrower, very finely serrated (at the base) first lateral lobe. The first lateral saddle is wider than high and bent towards the nmbilical side. The second lateral lobe does not reach so far down as the first, is narrower, but also very finely serrated at the base. The second lateral saddle is low and broad, and reaches over the umbilical margin; on the antisiphonal side I noticed a deep and bipartite antisiphonal lobe with a ronnded saddle on each side connected with the second lateral saddle by a finely serrated lobe-line, representing one or more anxiliary lobes.

Monophyllites wetsoni, Opp., Pal. Mitth. Plate LXXXVI, fig. 2.
Agrees well with Oppel's figure, both in outward appearance and course of lobe-line. It was found only in fragments, but is very common in the upper beds of the lowest JTrias group-the Campiler beds of the Alps.

Trachyceras (?) gibbosjm, nov. sp. Plate III, fig. 10.

With the above forms occurs an Ammonite, which in outline resembles somewhat Trachyceras (Amm.) semipartitum, Von Buch ${ }^{1}$, but the latter is involute in a higher degree than my species, and consequently developes several auxiliary lobes which are wanting in our species. I have at present referred this form to Tracluyceras, but it is very probable that it represents a connecting link between Ophiceras, n. g., and Xenodiscius, Waag., as exemplified in X. gangeticus, DeKon., and Buchianus, DeKon., which I venture to inclade in Waagen's new genus.

[^6]T. gibbosum is moderately involnte, leaving a wide and shallow umbilicus; the shell is thickest, near the middle of the sides, in the region of the "bumps," which occupy exactly the centre-line of the sides, and are about six in number in the last whorl. The inner whorls are quite smooth, and on the surface of the shell itself neither ribs nor strix are visible. The section of the mouth is oval, widest about halfway up the sides. The siphonal side is perfectly rounded. The body-chamber, as far as it is preserved, amounts to about half a whorl (the arrow indicates the commencement of it, fig. 10).

The lobes are very simple and resemble those of Ophiceras medium, n. sp., and partly also those of Trach. semipartitum, v. Buch. Besides the low siphonal lobe there are one external and two lateral lobes with one auxiliary lobe, which is situated near the umbilical margin. The antisiphonal lobe is deep and ends in two minute points (fig. 10b).

Tribe: AEGOCERATID开, Waag.

Genus: XENODISCUS, Waag.

Xenodiscus demissus, Opp.
1862. Ammonites demissus, Opp.: Pal. Mitlh., Taf. 86, fig. 1.
1872. Ceratites carbonarius, Wang. : Mem. Geol. Surv., India, Vol. IX, PI. I, figs, 2 \& 3.
1879. Xenodiscus carbonarius, Waag. : Palæont. Ind., Ser. XIII, PI. II, figs. 2 to 5.

With the species above described and in the same bed (2) with Posidonomya angusta, Hau., and other Werfen bed fossils, occur numerous specimens belonging to a chain of forms which might be roughly described as beginning with the flat and characteristic Xenodiscus demissus, Opp., and ending with Xenodiscus (?) buchianus, DeKon.

I have nothing to add to the description of the above-named species after the excellent exposition given by Waagen in the Palmontologia Indica, but may add, that there can be no doubt that Oppel's figure agrees with Waagen's species, as it does with my specimens. The species is so common in bed 2 , that necessarily there is a great variety of forms, all, however, agreeing in the principal characters. They show greatest variation in the ribs or wrinkles of the shell, to which I may add that the shell itself is rather thick, especially so half-way up the flattened sides, and is covered by wrinkly lines of growth, which at intervals develope into ribs.

It is possible to arrange from amongst them a complete chain, passing from the evolute specimens (representing Oppel and Waagen's species) up to considerably involute varieties, and in that stage closely resembling the two species of DeKoninck's Goniatites gangeticus and Cer. buchianus.

Though Dr. Waagen does not say so in his description of the new genus, I presume that Xenodiseus is really the early stage of development of Aegoceras, Waag., and stands in the same relation to the latter genus as does Otoceras and Ophiceras, respectively, to P inacoceras and Lytoceras.

- monsincomp

Author del\& Lath

explanation of plates.

Platel.

Figs, 1 to 3. Nadtilus brahmanicus, n. s.
Fig. 4. Otoceras woodwardi, n. s.
Fig. $5 . \quad$ var. UNDATUM, n.s.
PLATEII.
Figs. 1 to 6. Otoceras woodwardi, n. s.
PLATEIII.
Figs. 1 to 7. Ophiceras tibeticum, n. a.
Fig. 8. " mimalayandm, n. s.
Fig. 9. " medium, n. s.
Fig. 10. Thachiceras gibbosum, d. g.

PLate IV.

Profile of Trias and Rhætic beds of Shal-Shal in the Tibetan Himalayas. The elevation of the base of the cliff (carboniferous quartzite) is about 14,000 feet above the sea.

On the Artesian Wells at Pondicherry, and the possibility of finding soch sodrges of water-supply at Madras, by William King, b.a., Deputy Superintendent, Geological Survey of India.
Some three years ago it was announced that operations had been commenced History and progress. at Pondicherry with a view to the discovery of artesian wells,-a doubtfal enough experiment when the position of that city on a wide allorial flat bordering the sea is taken into account, and that few of the ordinary pkysical or stratigraphical features, usually considered as giving promise of such outflows of water, are apparent at first sight. Such features do, however, occur partially; and their possible existence became gradually so impressed on the mind of Mr. Ch. Poulain, the manager of the Savana and Oopallem cotton mills, that he urged on the proprietors the advisability of making experiments, and ultimately carried out a boring with such success that water is now issuing from the tube with a hydrostatic level of nearly three feet over the surface soil and a discharge of 44 imperial gallons in the minate.

Mr. Ponlain, from time to time, during the progress of this first well, read a series of papers before the Government Commission on artesian wells, in which he gave his reasons on geological and physico-geographical grounds for expecting that water-bearing strata, or sheets of water with a head, might be tapped onder the Pondicherry plain, at the same time giving short notes of the progress of his work. ${ }^{1}$ The data so recorded and other information obtained personally from this gentleman have been largely included in the present paper.

[^7]
[^0]: ${ }^{1}$ Abich: Geol. Forschangen in den Kaukas. Ländern, 1st. Theil, Wien, 1878.
 See also Mojsisovic's Verh. Geol. Reichsanst., 1879, p. 171.
 ${ }^{2}$ Benecke's Geog. Pal. Beiträge, I, p. 369.
 ${ }^{3}$ Jalrb. k. k. Geol. Reichsanst., 1869, PI. XIX, fig. 3.

[^1]: ${ }^{1}$ Middendorf's Reise in Sibirien, Pl. IV, fig, 3.
 ${ }^{2}$ Abh. Akademie, Berlin, Pl. III, fig. 5.
 ${ }^{3}$ Oच̃s, $\tilde{\omega}$ tos $=$ ear.

[^2]: 1 Verh. Geol. Reichsanst., 1879, p. 140. Denksch. Akademie Wiss., Wien, 1855, Pl, III, fig. 4.
 ${ }^{3}$ A. M. K. Földtani intézet, Pest, 1872, Pl. VII, figs. 1 and 2.

[^3]: ${ }^{1}$ Sandberger : Schichtensystem in Nassau, p. 77.

[^4]: ${ }^{1}$ Snndberger's Verst. Rhein. Schichtensyst., Taf. VII, fig. 1.
 ${ }^{2}$ Zeitsch. Deutsch. Geol. Gesellsch., Taf. VII.
 ${ }^{3}$ Verh. Geol. Reicheanst., 1879, p. 140.
 ${ }^{1}$ Földtani intézet, 1873, p. 156.
 ${ }^{5}$ Abh. Geol. Reichsanst., Bत: VI, p. 43.
 ${ }^{6}$ Syst. Sil., Vol, II, Pl. III.

[^5]: ${ }^{1}$ Trans. Geol. Soc., Vol. VI, 2nd Ser., PI. XXV, fig. 7.
 ${ }^{2}$ Rhein. Schicht. Syst., Pl. VII, fig. 2.
 ${ }^{3}$ Trans. Geol. Soc., Vol. VI, 2nd Scr., Pl. XXVI, fig. 1.
 ${ }^{4}$ Trans. Gcol. Soc., Yol, VI, 2nd Scr., M1, XXYI, fig. 7.
 *Opres = serpent.

[^6]: ${ }^{1}$ Über Ceratites Akad. Wiss., Berlin, 1849, 111. III.

[^7]: ${ }^{1}$ See Appendix 2.

