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Measurement and Characterization of the Periclase 
Crystal Size in Products of the Magnesite Industry and 

in Sintered Magnesia 
Harald Harmuth, Radenthein 

The importance of the periclase crystal size as a characteristic 
property of sintered magnesia is even growing since enhanced 
crystal size has shown to increase durability in many practical 
applications. For the measurement of the periclase crystal 
size lineal analysis of polished sections can be applied. Based 
on that measurement a specification of the crystal size by a 
mean characteristic value (e. g. mean diameter) is possible. 
Moreover the crystal size distribution can be of interest. A 

precondition for the calculation of the size distribution is the 
knowledge of the chord length distribution as it can be deter- 
mined by lineal analysis. Based on this chord length distribu¬ 
tion the distribution of the periclase crystal size can be calcu- 
lated. Various size distributions exist, depending on the frac- 
tionfe. g. volume fraction, area fraction) that is in relation to the 
size interval. Some errors in measurement can be detected by 
a critical examination of the chord length distribution. 

Messung und Charakterisierung der 
Periklaskristallgrößen in Grundstoffen und Produkten 

der Magnesitindustrie 
Seit dervielfachen Praxisbewährung von Sintermagnesiten mit 
höherer Periklaskristallgröße hat sich ihre Bedeutung als 
Kennwert noch erhöht. Für die Bestimmung der Periklaskri¬ 
stallgröße kann die Linearanalyse angewendet werden. Damit 
ist es möglich, eine mittlere Kennzahl (z. B. einen mittleren 
Durchmesser) anzugeben. Darüber hinaus kann auch die Kri¬ 
stallgrößenverteilung von Interesse sein. Voraussetzung für 

ihre Berechnung ist die Kenntnis der Sehnenlängenverteilung, 
wie sie mit der Linearanalyse bestimmt werden kann. Damit 
kann die Periklaskristallgrößenverteilung berechnet werden. 
Es gibt mehrere Größenverteilungen, je nachdem, welcher An¬ 
teil (z. B. Volumsanteil, Flächenanteil) der Größe zugeordnet 
wird. Einige mögliche Meßfehler können durch eine kritische 
Prüfung der Sehnenlängenverteilung erkannt werden. 

Mesure et determination des caracteristiques de grosseur des cristaux de periclase des matieres 
premieres et des produits finis de i’industrie de la magnesie 

Depuis que les magnesies frittees ä base de periclase ä 
grands cristaux ont donne de nombreux resultats positifs dans 
la pratique, cette dimension a pris encore plus d'importance 
en tant que caracteristique. Pour determiner la grosseur des 
cristaux de periclase on peut utiliser l’analyse lineaire. II de- 
vient ainsi possible d’indiquer une grandeur moyenne (par 
exemple le diametre moyen). De plus, il peut etre interessant 
de connaftre la distribution de la grosseur des cristaux. Pour 

ce calcul il est indispensable de connaftre la distribution de la 
longueur des bordures, celle-ci pouvant etre determinee au 
moyen de l’analyse lineaire. II existe plusieurs distributions de 
grosseur, selon la Proportion (par exemple Proportion de vo¬ 
lume, Proportion de surface) qui depend de la grosseur. Cer- 
taines erreurs de mesures possibles peuvent etre mises en 
evidence au moyen d’un examen critique de la distribution des 
longueurs de bordures. 

1. Introduction 

The periclase crystal size is an important property 
of sintered magnesia. Especially since the appli- 
cation of sintered magnesia with enhanced cry¬ 
stal size its determination is a necessary tool for 
production, quality control and development. For 
that purpose microscopical methods of measure¬ 
ment based on the reflected light microscopy of 
polished sections are used. A great variety of 
methods exists. This paper deals only with one 
out of these, the lineal analysis, including the 
evaluation of the measurements. Lineal analysis 

has been chosen out of two reasons: On the one 
hand it enables to simply specify the periclase 
crystal size by a mean characteristic value (e. g. 
a mean diameter), on the other hand it implies the 
possibility of the determination of the size distri¬ 
bution. 

2. Microscopical investigation of polished 
sections by the help of lineal analysis 

The aim of lineal analysis is to get quantitative 
informations about the three dimensional micro- 
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structure out of the investigation of a two dimen¬ 
sional image. The method is based on the mea- 
surement of intercepted lengths along randomly 
applied straight lines across the microstructure. 
This scanning can e.g. be done by moving the 
polished section of the sample relatively to the 
objective of the microscope. Düring this move¬ 
ment the centre of the reticle cuts the boundaries 
of the periclase crystals and the second phase, 
and imaginary chords in these phases are gene- 
rated (2), (3). In dependence on the desired eva- 
luation two different methods of measurement are 
possible: 

(i) In the most simple case only the total length of 
all chords of the phase under examination and 
the number of these chords will be determined. 
If the volume fraction of that phase is of inter- 
est, the total length of the scanning line will be 
determined, too. In the case that the sintered 
magnesia is very pure and contains no second 
phase it is sufficient to measure the total 
length of the scanning line and count the num¬ 
ber of all chords. 

(ii) A fundamental information for all calculations 
of crystal size distribution is the chord length 
distribution. If the knowledge of the crystal size 
distribution is desired all individual chords 
have to be measured. 

A schematic drawing of the principle of lineal ana- 
lysis shows fig. 1. 

c) 100 d) 

Fig. 1 

Microscopical determination of the chord 
length using polished sections 

a) one phase only (schematically) 
b) phase dispersed in a matrix (schematically) 
c) pure sintered magnesia (sea-water magnesia) without 

any second phase detectable by light microscopy 
d) sintered magnesia (iron-rich natural magnesite); 

second phases are dicalciumferrite (bright) surrounding 
dicalciumsilicate (small grey particles) 

Steinwender(l) reports about a Computer aid- 
ed microscopical measuring device that is appli¬ 
cable in both cases (i) and (ii). In the following part 
the methods of measurement and evaluation will 
be discussed in detail. 

3. Results of the lineal analysis that are not 
dependent on the crystal size distribution and 

the crystal shape 

Some fundamental results of lineal analysis are 
not dependent on the shape and the size distri¬ 
bution of the crystals, i. e. no assumptions about 
these attributes are necessary. These results are: 
(i) The volume fraction of any phase 

The volume fraction of any phase relative to the 
total sample volume can be approximated by 
the ratio of the sum of all chord lengths within 
this phase to the total length of the traverse 
within the sample. The accuracy rises when 
the part of the sample volume that is investi- 
gated by this method increases. 

(ii) The surface-to-volume ratio 
The surface-to-volume ratio S„ of a phase a 
is the ratio of the total area of all faces of the 
crystals of a to the volume of the sample. It can 
be calculated with the help of the mean chord 
length l„ of a, that is the quotient of the sum of 
the lengths of all chords within a and the num¬ 
ber of these chords within a. 

If a is the only phase present, then 

Sa = S = f [1a] 
Ja 

is valid. If a is dispersed in a matrix phase, then 

Sa = ~ [10] 
Ja 

holds. In the following parts the subscript a will 
be omitted for simplicity. It is of importance for 
the calculation of a mean crystal diameter by 
the help of the mean chord length that the 
equations [1a] and [1b] are not dependent on 
the size distribution of the crystals (they are 
not dependent on the crystal shape, too). This 
will be shown later. 

4. Results of the lineal analysis that are 
dependent on the crystal size distribution 

and the crystal shape 

4.1. Definition of the size distribution and mean 
characteristic values 

As a rule a mean diameter (or a mean radius) is 
used to represent the crystal size or a particle size 
by a mean characteristic value. This can favour- 
ably be done when the crystal shape can be ap¬ 
proximated by a sphere. In the case of periclase 
crystals this approximation is reasonable - at 
least when the amount of a second phase is not 
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mass (or volume) fraction of particles 
with diameters between 50 and 70^Jm 

Fig, 2 

Example for a frequency function specifying a particle size 
distribution 

too small - due to the idiomorphic shape of the 
crystals. 
The term “mean value” is not without any ambi- 
guity unless it is specified which of the existing 
different definitions is used. The arithmetic and 
the geometric mean of the diameter of the existing 
particles of any phase (weighted by the number of 
particles) is commonly not used because it does 
not correlate with any given property of the struc- 
ture orthe material. The harmonic mean has some 
significance because it can be used to correlate 
with specific surface areas (2). The mean diame¬ 
ters used in this paper are defined as expected 
values of the diameter with respect to certain size 
distributions. The term “size distribution“ deno- 
tes a relation of a fraction or a frequency ratio to 
a value that characterizes the particle or crystal 
size (e.g. diameter or radius). The exact specifi- 
cation of a size distribution can be done by one of 
two functions that are defined in accordance with 
the corresponding functions in mathematical sta- 
tistics. These functions are the distribution func¬ 
tion and the frequency function. The distribution 
function Fn(r0) equals a fraction that is due to par¬ 
ticles with a radius of less of equal r0. This fraction 
can be a mass or volume fraction, a surface area 
fraction or the relative frequency of particles. In 
this paper the subscript n = 0 specifies the rela¬ 
tive frequency of particles, n = 2 the surface area 
fraction and n = 3 the mass or volume fraction; 
Fn(r0) will not be used here for the subscript 
n = 1. The frequency function fn(r) is the first deri¬ 
vative of the distribution function with respect to 
the radius r: 

fn (0 = Fn (r) n = 0, 2, 3 [2] 

That implies that r, 
Fn (M — Fn (r0) = jfn (r) dr 77 = 0,2,3 [3] 

is the fraction due to particles with a radius larger 
than r0 and less or equal r,. Fig. 2, 3 and 4 show 
examples of frequency functions and distribution 
functions for the same arbitrary chosen size distri¬ 
bution. For some of the following calculations a 
function /x(r) is necessary. It equals the product of 

mass (or volume) fraction of particles 
with diameters less than 50^m 

mass (or volume) fraction of particles 
with diameters between 100 and 110 ,um 

Fig. 3 

Frequency function f3(d) and distribution function F3(d) for the 
example of fig. 2 

Comparison of the frequency functions f0(d), f2(d) and f3(d) 
calculated for the size distribution of fig. 2, 3 
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the frequency function f0(r) and the total number of 
particles per unit volume. Therefore 

n\ =Jij.(r)dr [4] 
'<!< r<r, 

'b 

is the number of particles with the specified radius 
per unit volume. With known n(r) the frequency 
function fn(r) can be calculated using 

U0^-^(r)f n = 0, 2, 3 

J P (0 rndr 
[5] 

The smallest and the largest existing particle ra¬ 
dius are denoted by rmin and rmax, respectively. The 
mean radii rn are defined in accordance with the 
expected value in mathematical statistics: 

'max 

rfn(r)dr n = 0,2,3 [6a] 

'min 

or using [5] and [6a] 

'max 

I (r) dr 

^min _ 

r«=7- n=0, 2,3 [6b] 
max L J 

| r" M (r) dr 

4.2. Surface-to-volume ratio and r2; determina- 
tion of r2 for particles with spherical shape 

From equation [6b] it is evident that in the case 
of n = 2 the numerator is proportional to the 
volume of all particles of the phase under exami- 
nation, and the denominator is proportional tqthe 
surface area of the particles. That is why r2 is 
inversely proportional to the surface-to-volume 
ratio S. Often S is called specific surface, too. For 
a single phase with spherical particles [6b] leads 
to 

and for a dispersed phase in a matrix the specific 
surface can be calculated from 

[7b] 

The equations [7a] and [7b] showthe importance 
of r2 for the determination of the periclase crystal 
size. In many applications of basic refractories 

wear is caused by a solving attack on the magne- 
sia that Starts on the surface of the periclase 
crystals. In this case it is therefore of great inter- 
est to lower the specific surface. The equations 
[7a] and [7b] show that r2 is a good indicator for 
the specific surface because it is inversely propor¬ 
tional to it. 

Combination of [1a] with [7a] and [1b] with [7b] 
leads for a single phase and a phase dispersed in 
a matrix to the same result: 

Equation [8] showsJhat the mean radius r2 and 
the mean diameter d2 of spherical particles can 
unambiguously be determined from the mean 
chord length I without any knowledge about the 
size distribution, because T does not depend on 
the size distribution (cf. section 3). This is not valid 
for r0 and r3 in the same way. 

4.3. Determination of distributions 

4.3.1. Fundamentals 

The determination of a crystal or particle size 
distribution is in most cases based on the as- 
sumption of spherical shape (5), (6), (7), (8). This 
assumption is used in this work, too. For the cal- 
culation of the particle size distribution informa- 
tions about the distribution function Fz(z) of the 
chord length z or about the corresponding fre¬ 
quency function f2(z) are necessary. To obtain 
these informations the length of each individual 
chord can be measured with the device described 
in (1). Then the chord length distribution can be 
specified by a histogram. The following fundamen- 
tals are the background for the calculation of the 

Frequency function fz(z) of the chord length distribution 
calculated for the example of fig. 2 and 3 
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particle size distribution when this histogram is 
known. 
For spherical particles the validity of the equation 

z 
p r 
£ max 

jr2n(r) dr+^z2 \ß{r) dr 

'min £ 

Fz(z) =-7--- [9] 
'max 

| r2 /ix (r) dr 

r . 
'mm 

can be shown. 

The first derivative is the frequency function: 
^max 

z J M (r) dr 
Z 

4 (z) = —^- [10] 
'max 

2J r m (4 c/r 

rmin 

Fig. 5 shows fz(z) calculated for the example of fig. 
2 using [10], 
The equation [10] is similar to some identities of 
the papers cited above and it can be shown that 

Fig. 6 

Description and approximation of f2(d) calculated for the 
example of fig. 2, 3 and 4 

they are equivalent. Based on these identities 
usually the number of particles in each diameter 
interval per unit volume is calculated. For that 
purpose the first derivative of a function charac- 
terizing the chord length distribution is often ap- 
proximated by numerical differentiation. Such a 
method is applied by R i c h t e r (8) and he shows, 
that two equations of Spektor (9) and Bock¬ 
stiegel (10) for calculation of the size distribu¬ 
tion can be deduced in this way. R i c h t e r (8) also 
studies the erros of the method of Bockstiegel 
(10) and recommends measures to reduce it. Tö¬ 
rn a n d I (7) describes a different method. He uses 
an expansion of the frequency function of the 
chord length distribution in a series of functions 
which are called invariant functions. This method 
does not demand any numerical differentiation. 
The result is the frequency function of the distri¬ 
bution of the diameter corresponding with f0(d); it 
enables to calculate the number of particles within 
each diameter interval. 

Because of the considerations of section 4.2. in- 
formations about the number of periclase crystals 
in a certain size interval are not of primary impor- 
tance. These informations are equivalent to the 
knowledge of the frequency function f0(r) (cf. equa¬ 
tion [5]).JI)ften the mean radius r2 or the mean 
diameter d2 are used because they are relevant to 
the specific surface. Therefore it seems to be 
more reasonable to calculate the frequency func¬ 
tion f2(r). This function characterizes the area frac- 
tion of each size interval. Moreover it can be useful 
to calculate the mass or volume fraction of size 
intervals in accordance to the granulometry of 
bulk materials. This is equivalent to the knowledge 
of f3(r). Out of these reasons mathematical me- 
thods for the calculation of f2(r) and f3(r) have been 
developed during the work described in this pa- 
per. They will be explained in the following sec- 
tions. 

4.3.2. Determination of the 
distribution that is 
characterizing the area fraction 
(frequency function f2(r)) 

The aim is to calculate a discrete approximation 
of f2 or a histogram as it is shown in fig. 6 for the 
example of fig. 2 and 3. 
Using [9] and [10] the simple equation 

Fz(z)-|fz(z)=F2(|) [11] 

can be deduced. A discretization of the chord 
length z is used. Fig. 7 shows a schematic drawing 
of a histogram. The limits of the intervals are 
labeled 2Rj because they are chosen as the dia- 
meters of the size distribution too. It is not neces- 
sary that they are arranged equidistantly. The 
number of intervals is n. The Symbol f(i) Stands for 
the fraction related to the interval with the lower 
limit 2Rm and the upper limit 2Ri. The subscript 
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7(1) 

0 

r(2) 

2R, 2R2 

7(i) 

7|i*l) 

f 

r(M) 

2R,,2Ri 2R:. 

rz — 

■f 

f(n-l) 
rz . :(n) 

2Rn.22Rn_,2Rn 

Fig. 7 

Schematic description of a histogram of the chord length 
distribution used for the calculation of the particle size 

distribution 

ru) 
I 2 _R'-i + /-i 

z 2 (R, - R,_2) fz l1' 2 (Ri - Ri_2) 

R: 
J-'f 

(i+1) 
Z 

R; 
2(Ri+-Ri_1)> 'z 2(Ri+-Ri_,) [15] 

/ = 3, 4, . . n —1 

fT = f (n-1) f?n-1 
2 (Rn - Rn_z) r (i- 

a 
2 (Rn Rn-2) :) 

The values f2*(l) are sufficient information for a hi¬ 
stogram that specifies the size distribution. The 
expected value r2 can most easily be calculated 
using [8] and does not demand the calculation of 
f *0) 
'2 • 

specifies the fraction (area fraction, fraction of the 
chord number, volume fraction): 

n Fz (2R) -F7 (2R ,) 

t" = F2 (2R) -F, (2R, ,) 

Equations [11], [12a] and [12b] lead to 

^ = fz + Fi^fz{2R,_i)-Rlfz(2R) 

[12a] 

[12b] 

[13] 

The symbol f2(i) Stands for the area fraction of 
particles with diameters larger than 2Ri_, and 
smaller than 2R,. In [13] the value fz(l) is known from 
the measurement, for fz(2Ri) the approximation 

'z(2B,)=^Fz(z) 
2/?, 

7(/+1) 

Fz(2fl,+ 1) -Fy(2R: ,) 
2R/+1-2fl,_1 

rr+n 
2F, + i ~2Ri_1 

applying central differences is used. Special ca- 
ses are: 

/ \ f(2) + f(1) 
f^=^2Rf- 

4 (2Rn) = 0 

[14b] 

[14c] 

The equation [14c] is a consequence of [10]. 
From [11], [13] and [14a] to [14c] the following 
approximation f2*(i) for f2(i) can be deduced: 

po 
1 2 2 R, 

A_ 
2R0 

fT= K 
jr 
2 r (1 

_ Z(3) _ 

Z 2 (ft 

Ai 
2 ft2 

ft2 

2(R3 fti) 
)- US] 

Fi) 

4.3.3. Determination of the 
distribution that is 
characterizing the volume 
fraction (frequency function 
Mr)) 

The following calculations are based on a histo¬ 
gram of the chord length distribution and on equa¬ 
tion [11], According to [12a] and [12b] 

f 31 = F3 (2ft) -F3 (2ft, ,) /= 1, . . n [16] 

is the volume fraction of particles with diameters 
larger than 2Ri_1 and smaller than 2Ri. Similar to 
the procedure of section 4.3.2. the following ap¬ 
proximation f3*(i) for f3(i) can be deduced from [5], 
[11] and [16]: 

7»(1)_ J_ I Jdl/p 2 ftn 7(2) 2 

f3 -T\fz^-3W~fz3 

[14a] 7*<2)_l(7(l1 7(2)rp n + 2 ^ 
'3 ~r y z o q + 'Z (^i+ftz 

,2 Ff 
ft2 

3 ft. 

ft. 

3 R3-Ri 

r»(l) _ I ;(/—1) ^ 
3 ~ TVZ 3 ft, 

■) - t?f 
ftf 

3 R3 —Rf 

F,-i 
Ft,-2 

+ ft, + 
Rf 

3 ft, - ft, 2 *(+1 

z((+p2^ 
' z - 

ft2 

3 ft,+1 

3 ft, 

/= 3, 

- ^z(F,_i+ 

— R / [17] 

n -1 

Z*(n) _ 1 
/ q — — 

3 1 
2(n-1) 2 
' Z 

ft 77—1 

3 ft„ ft„ 
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In equation [17] the mean chord length I is used. 
It can be determined as the quotient of the total 
chord length within the phase under examination 
and the number of chords within this phase. If only 
a histogram of the cord length distribution is avail- 
able it can be approximated by 

r = i4W(R/-i + ^) [18] 

This approximation can be deduced under the 
simplification that the frequency function fz(z) is 
constant in each chord length interval of the histo¬ 
gram. 

Moreover the expected value r3 (cf. equation [6b]) 
is of interest. It can directly be calculated when 
the chord length distribution is known. For that 
purpose starting from equation [11] one can de- 
duce: 

^max 

h24(c) dt 
73 = f^- [19] 

Jc4(^ 
0 

Using the same simplification as for equation [ 18] 
one gets the approximation 

- [2°] 
E f? (*, -1 + ^ 
y-t 

As equation [18] shows the denominator of equa¬ 
tion [20] can be replaced by 1 if it is known from the 
measurement. 

4.4. Properties of the chord length distribution 
for spherical particles 

The frequency function of the chord length distri¬ 
bution has some characteristic properties. The 
knowledge of these properties is helpfui for the 
detection of errors in measurement. From equa¬ 
tion [10] it is evident that the frequency function 
is linear for chord lengths less than 2rmin. This 
linear part includes the origin. It should always 
appear because in all cases a smallest particle 
with a diameter larger then zero exists. But in 
practice it can happen that the linear part is not 
detectable, e.g. when the minimum particle size is 
below the upper limit of the smallest diameter 
intervall 2R,, or due to errors in measurement. 
Moreover by the help of equation [10] it can be 
shown that the frequency function fz(z) has to fulfill 
the condition 

fz{z) [21] 

From this follows that the curved part of fz(z) di¬ 
rectly attached to the linear part at first bends 
down in the direction of the abscissa. This shows 
Richter (8), too. Fig. 8 shows schematically cor- 
rectand incorrect examples offz(z). Forthededuc- 
tion of equation [21] it is of importance that ß(r) 
can never be less than zero. For ^(r) = 0 the sign 
of equality is valid in [21], for iu.(r) > 0 equation 
[21] is an inequality. It can happen that for the 
calculation of f2(r) or f3(r) according to [15] or [17] 
a chord length distribution is used that does not 
fulfill equation [21], This problem is in practice not 
incommon. Especially the case shown in fig. 8c is 
observed occasionally. It is caused by the fact 
that very short chords are more difficult to make 
out and measure precisely than longer ones. 
When such a chord length distribution is used for 
the dejermination of f2(r) or f3(r) negative values of 
f2*(i) or f3’(i) will occur in the region where [21] is not 
satisfied. In many cases the negative values only 
occur for the first few intervals, and their sum is 
very small. Then it can be assumed that errors in 
measurement only occur for very small chords, 
and the longer ones are measured sufficient pre¬ 
cisely. In this case the error can be lessened. It is 
reasonable to replace the negative values by zero 
and then divide each of the positive values by the 
sum of all posit[ve values, so that at last the sum 
of all values of f2*(i) or f3*(i) is unity again. It should 

Examples for a) correct and b), c), d) incorrect behavlour of fz(z) 
(schematically) 
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be mentioned that equation [ 17] gives not exactly 
zero in the linear region of fz(z). Due to the error 
that is caused by replaceing the derivative in 
equation [ 14a] by central differences it leads to a 
small deviation from zero that is in practice negle- 
gible and decreases with decreasing interval 
length (cf. section 4.5.). Another possibility is the 
approximation of the frequency function of the 
chord length distribution by a straight line contain- 
ing the origin in the ränge of the negative calculat- 
ed values, as it is proposed by Richter (8). It is 
also of importance in the case that only the mean 
radius r2 is calculated using [8]. Thus it would be 
sufficient to determine only the total length of all 
chords within the phase under examination and 
the number of these chords. A drawback of this 
method can be that it is not possible to estimate 
whether very short chords have been counted with 
too low frequency or not. Therefore it can even in 
this case be favourable to determine the chord 
length distribution. If necessary the above men¬ 
tioned approximation of the frequency function of 
the chord length distribution can be applied and 
then the mean chord length I and the mean radius 
r2 can be calculated using equations [18] and [8]. 
In the case that too little of the small chord lengths 
have been counted the calculated value of r2 is 
without this correction too large. 

4.5. Remarks on the numerical evaluation of 
chord length distributions 

The equations [15], [17], [18] and [20] allow the 
calculation of approximations of the desired va¬ 
lues. It is reasonable to demand that the error of 
the approximation approaches zero when the 
length of the intervals of the histogram that spe- 
cifies the cord length distribution tends to zero at 
the same time. 

With 

h= max (R, - R^) R0 = o r22] 
/= 1, .. ., n 

the equations 

lim {Z -~r3) = 0 [23] 
/7->0 

lim (7 - 7")= 0 [24] 
h—>0 

should be valid. Contrary to that is the equation 

lirn (fZ’— fm) = 0 /'= 1, . . ., n; m = 2, 3 [25] 
R0 = 0 1 J 

no sufficient condition for a satisfactory behaviour 
of fm*(l) (m = 2, 3) because fm(i) approaches zero 
itself for h —> 0 as [12b] and [16] Show. If the 
condition 

IHD _ r (/) 

|im —#- = o 
fl—/?_,-> o lij ''/—I 

/=1.n\ m = 2, 3 [26] 
Rn=0 

is satisfied, then 

rw 
r'^rR, = fm 

is valid. For a study of the error the following 
specification is used: an error g(h) is said to be of 
0(hk) (k is a positive integer) with the notation 

g(h)=o[hk) [28] 

if in the vicinty of h = 0 the following equation 
is valid: 

I 9 (h)\ < A ■ I hk\ [29] 

In [29] |g(h)| Stands for the absolute value of g(h) 
and A for a positive constant. From this it is ob- 
vious how an upper limit for the absolute value of 
the error changes when h is varied. For the appro¬ 
ximations r3* and I’ k should be at least unity, for 
f2*(l) and fs*01 k 2 should be valid. This can be 
investigated by deducing the equations for f2*(i), 
fs*"’, fa* and I* with the help of a Taylor series of fz(z) 
(it is assumed that the Taylor series expansions 
used exist). The difference of the result of that 
method and the corresponding equations of the 
approximated values [15], [17], [18] and [20] is 
a power series expansion of the error. From this 
series 0(hk) is evident. Fig. 9 shows the error 0(hk) 
for the above-mentioned approximations deduced 
by this method. It is valid for equidistant spacing 

all values of z 

except zpz2Jz3 
Z1 >z2 z3 

f(i) fCO 
7 - ‘3 01h3) 

1) 
Oth2) 0(h2) 

c o(h4) 

?3 0(h2) 

i| 0(h2) is valid for 0(h) is valid for jj(rm;n)>0 

Fig. 9 

Error 0(hk) for the approximations used 
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pf Ri! rmin_and rmax coincide with values of Ri. As for 
f2*(i) and f3*(i) three special cases with 0(h2) exist. 
Apart from this the error is 0(h3). Special cases 
with an error 0(hk) and k > 3 are possible when 
higher derivatives vanish; this is without signifi- 
cance for practical applications. So [26] and [27] 
are fulfilled. The footnote of fig. 9 mentiones a 
special case of O(h) that could appear for two radii 
and Mrmin) > 0. This does not seem to be a severe 
drawback. On the one hand the assumption of 
Mfmin) = 0 is a reasonable approximation for prac¬ 
tical applications. On the other hand even in the 
case M(i'min) > 0 the error is limited to a diameter 
ränge that can be reduced by decreasing the 
length of the intervals. From Fig. 9 it can be seen 
that equations [23] and [24] are valid, too. An 
example for the behaviour of the error in the vicinty 
of h = 0 shows fig. 10. This example is based on 
the distribution characterized by the functions 
shown in fig. 2 and 3. As the particle size distri¬ 
bution of this example was known the functions fz, 
fz. fz. fa, h and f3 as well as I and r3 could be 
calculated analytically. The analytically determin- 
ed values of fz have been used for the calculation 
of f2*, V. I* and r3* by the help of equations [15], 

lg h 

IAÖ=lC’-^l ; m = 2, 3 
2R) = 87,5 /jm 

Fig. 10 

Example for the behaviour of the error of the approximations 
used in the vicinity of h =0. The error is calculated for the size 

distribution shown in fig. 2 and 3 

Histogram of the chord length distribution of a sea-water 
magnesia; microscopical magnification 1000-times 

Histogram f2' (area fraction) calculated from fig. 11 

Fig. 13 

Histogram f3’ (mass fraction) calculated from fig. 11 
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[17], [18] and [20], Forthe denominator of equa- 
tion [17] the approximation [18] has been used. 
The error was calculated using the analytical and 
the approximated values as spezified in fig. 10. 
This figure shows by the slope of the lines that the 
absolute value of an error 0(hk) approaches for 
h —* 0 a function const ■ hk. This example demon- 
strates the results of fig. 9. It has to be mentioned 
that the behaviour of the error in the vicinty of 
h = 0 is not always as simple as it appears in this 
case shown in fig. 10. 

5. Examples 

Fig. 11 shows a histogram (fz(i)) of the chord length 
distribution of a sea-water magnesia. Fig. 1c) 

Fig. 14 

Histogram of the chord length distribution of a sea-water 
magnesia; microscopical magnification 180-times 

Fig. 15 

Histogram f2' (area fraction) calculated from fig. 14 

shows a microphoto of that sample. The number 
of chords counted was 4000, the sum of all chord 
lengths approximately 149 mm. That gives a mean 
chord lengthTof 37^m.Theresultofequation [18] 
is nearly identical. The mean diameter d2 calcula¬ 
ted using equation [8] is 56 um. Fig. 12 and 13 
show f2*(l) and f3*(i). Using equation [20] the mean 
diameter d3* = 70 /un can be calculated. 
For the measurement discribed in fig. 11 a mag¬ 
nification of 1000-times was used. For demonstra- 
tion of the error mentioned in section 4.4. the 
same polished section was investigated with a 
magnification of 180-times. Again 4000 chords 
have been counted. Fig. 14 shows fz(i) for this 
second measurement. It can be seen that the first 
two intervals show the behavior of fig. 8c): be- 
cause of the low magnification small chords have 
been measured in that case with too low fre- 
quency. That is why the mean chord length T is 
42 um and the mean diameter d2 63 miti. From 
fig. 14 negative values for f2*(i) and f3*(i) would 
follow. Application of the correction mentioned in 
section 4.4. leads to the result discribed in fig. 15 
and 16. The mean diameter d3* is 72 /im. Even the 
correction of Richter [8] mentioned in section 
4.4. cannot compensate that error sufficiently. 
Applied on fig. 14 ajid using equation [18] it leads 
to I = 40 ^m and d2 = 60 /im. By comparison of 
both measurements it is evident that the correct 
magnification is of fundamental importanceforthe 
accuracy of the result. In this case the fatal error 
of the second measurement was deliberately 
caused for the sake of clarity. 

Fig. 16 

Histogram f3* (mass fraction) calculated from fig. 14 
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