Untersuchungen über die Isostasie in den Alpen

(II. Mitteilung)

von

Adalbert Prey.

(Mit 6 Textfiguren.)

(Vorgelegt in der Sitzung am 7. Mai 1914.)

In einer Untersuchung über die Isostasie in den Alpen¹ habe ich auf Grund der Schweremessungen in Tirol zwei Konfigurationen für die Lagerung des die Alpen vollständig kompensierenden Massendefektes abgeleitet, welche den beobachteten Schwerestörungen Rechnung tragen. Einer Anregung des Herrn Geheimrates Prof. Helmert folgend, habe ich nun im Anschluß an diese frühere Arbeit und unter Zugrundelegung der daselbst aufgestellten Hypothesen über die Lagerung des Massendefektes auch die durch den gesamten Massenkomplex bedingte Verschiebung der Niveauflächen berechnet.

Die Durchführung dieser Rechnung, welche auch ein Eingehen auf den Verlauf der Schwerewerte in vertikaler Richtung und auf das System der Lotabweichungen nötig machte, bildet den Gegenstand der nachfolgenden Darlegungen.

1.

Wir brauchen zuerst eine Annahme über die Lagerung der sichtbaren Alpenmasse. Wir halten dabei an der Vorstellung fest, daß die Alpen in der Ost-Westrichtung nach

¹ A. Prey, Untersuchungen über die Isostasie in den Alpen auf Grund der Schweremessungen in Tirol. Diese Sitzungsber., Bd. CXXI, Abt. IIa, 1912.

beiden Seiten des untersuchten Gebietes so weit ausgedehnt sind, daß wir die Länge praktisch gleich unendlich nehmen können. Im übrigen bietet sich die prismatische Form mit dreieckigem Querschnitt als bequemste an; sie entspricht den tatsächlichen Verhältnissen wenigstens in erster Annäherung am besten und dann genießt man den Vorteil, die zahlreichen Formeln benutzen zu können, die Helmert in den »Mathematisch-physikalischen Theorien« gibt. Während man aber annehmen kann, daß die Alpen im Süden bis zum Meeresniveau abfallen, schließt im Norden die bayerische Hochebene

Fig. 1.

mit einer Seehöhe von beiläufig 500 m an. Die Masse dieser Platte, obwohl sie großenteils aus glacialen, den Alpen entstammenden Schottern besteht, kann doch nicht mehr der Alpenmasse zugezählt werden, denn, wenn die vollständige Kompensation auf Grund der Isostasie einen Sinn haben soll, so muß sie den heutigen Verhältnissen entsprechen und der Abtransport von Massen muß sich mit einer entsprechenden Änderung im Defekt kompensieren. Es wurde somit hier für den Querschnitt der Alpen die durch Fig. 1 gegebene Form ACBC'A'A gewählt. Für die Dimensionen ergibt sich folgendes: Die Masse der Alpen wurde in meiner früheren Arbeit mit 965.106 t pro 1 m der Längsausdehnung bestimmt. Durch Division durch die mittlere Dichte 2.729 findet sich hieraus der Querschnitt zu 354.106 m^2 . Für die Breite der Alpen ergibt sich als Mittel aus den 18 von mir in der ersten Arbeit gemessenen Querschnitten der Wert $222 \cdot 6 \ km$.

Indem wir die Kammlinie wieder durch die Station Brenner gehen lassen, nehmen wir die Breite des südlichen Hanges zu 145 km, die des nördlichen zu 77.6 km. Die Höhe eines Dreieckes über dieser Basis und mit dem gegebenen Querschnitt ist 3177.1 m. Läßt man aber die Alpen im Norden mit 500 m Seehöhe enden, so geht die Kammhöhe auf rund 3000 m (genauer 3002.8 m) herunter.

Für die Lagerung des Massendefektes benutzen wir die Resultate meiner ersten Arbeit:

Hypothese I. Der Massendefekt ist in einer langgestreckten Platte angeordnet, die eine Breite von rund 190 km (188 $\cdot 4$ km) hat und sich in einer Tiefe von 40 km (43 $\cdot 9$ km) befindet. Man kann damit die Vorstellung verbinden, daß die Scholle, welche die Alpen bildet und eine Dichte von 2 $\cdot 7$ besitzt, infolge ihrer bedeutenden Mächtigkeit einerseits über ihre Umgebung herausragt und so das Gebirge bildet, andrerseits aber auch tiefer in die unten befindliche weiche, flüssige oder wenigstens plastische Schicht größerer Dichte eintaucht und dieselbe verdrängt, wodurch ein Massendefekt entsteht. Bei einem Dichteunterschied gleich 1 beträgt die Tiefe des Eintauchens 5 km (5 $\cdot 130$ km), bei geringerem Dichteunterschied entsprechend mehr. Der Massendefekt liegt symmetrisch zur Station Brenner.

Hypothese II. Der Massendefekt nimmt einen langgestreckten Raum von 190 km (187.9 km) Breite ein, der sich vom Meeresniveau bis zu einer Tiefe von 90 km (94.0 km) erstreckt. Die Defektdichte beträgt dann -0.055 in dem Sinne, daß die Dichte in jedem Punkte der Masse um diesen Betrag kleiner ist, als der normalen Dichteverteilung der Erdrinde entspricht. Die Mitte des Massendefektes liegt 10 km nördlich der Station Brenner.

Die Verhältnisse sind in Fig. 1 zur Anschauung gebracht. Es ist also:

Alpen.		Hypothes	se I.	Hypothese II.
$A^{*}B^{*} = 222600 \ m$	ı	MN = 1	88400 1	$n \qquad RS = 187900 \ m$
A'C' = 77600	$= c_1$	MO = ON =	94200	RT' = 103950
C'B = 145000	$= c_{2}$	C'O =	43900	T'S == 83950
CC' = 3000	= h			C'T' = 94000
A A' = 500	= h'			TT' = 10000
$\measuredangle CAD = 1$ 984	5 = A;	∠ CBC'=1°185	= B;	$\measuredangle C.4'C = 2^{\circ}214 = A'.$

In der Figur erscheinen die Alpen im Verhältnis zu allen übrigen Dimensionen etwa zehnmal überhöht.

ÌI.

Wenn wir nun dazu übergehen, die durch diese Massenanordnung bedingte Verschiebung der Niveaufläche zu berechnen, so stoßen wir sofort auf eine Schwierigkeit. Das Potential eines solchen unendlich langen Prismas ist nämlich selbst unendlich. Es scheint daher notwendig, für die Alpen doch eine begrenzte Länge einzuführen. Im Osten, wo die Alpen ziemlich plötzlich abbrechen, würde dies nicht schwer sein, anders aber im Westen, wo die Alpen sich in einem mächtigen Zuge nach Süden wenden. Da nun offenbar die entfernten Massen sehr viel ausgeben, so wäre es nicht gestattet, diese zu vernachlässigen, sondern man müßte im Gegenteile alle Massen in ihrer wahren Lagerung berücksichtigen, was wohl ein aussichtsloses Unternehmen ist.

Aus diesem Dilemma rettet uns der Umstand, daß die Massen kompensiert sind. Es wird sich zeigen, daß sich aus diesem Grunde gerade jene Glieder wegheben, welche das Unendlichwerden begründen. Wir können daher an der Vorstellung festhalten, daß alle Massen in der Hauptrichtung sich unendlich weit erstrecken, wollen aber in den Formeln die Länge zuerst nur sehr groß voraussetzen und erst zum Schlusse dieselbe gegen Unendlich wachsen lassen.

• Wir beginnen mit der Bestimmung des Potentials der Alpenmasse auf einem Punkte des Kammes, denken uns dieselbe zusammengesetzt aus den zwei dreikantigen Prismen ABC und AA'C der Fig. 1 und benutzen nun die Formeln, die Helmert¹ für das Potential eines dreiseitigen Prismas auf einen Punkt im mittleren Teil einer Kante gibt. Mit der Bezeichnung in Fig. 2 ist das Potential in C:

$$v \equiv 2 k^2 \vartheta \Delta \left(\frac{3}{2} + \log \operatorname{nat} \frac{2L}{r_2} + \frac{r_1 \cos w_1}{c} \log \operatorname{nat} \frac{r_2}{r_1} - \frac{r_1 \sin w_1}{c} \cdot w_0 \right) = 1$$

oder

$$v = 2 k^2 \vartheta \Delta \left(\frac{3}{2} + \log \operatorname{nat} \frac{2L}{r_1} + \frac{r_2 \cos w_2}{c} \log \operatorname{nat} \frac{r_1}{r_2} - \frac{r_2 \sin w_2}{c} \cdot w_0 \right). \quad 2)$$

Hierin ist Δ der Flächeninhalt des dreieckigen Querschnittes.

Für das Prisma A'BC (Fig. 1) erhält man die bequemste Formel, wenn man es sich durch CC' in zwei rechtwinklige zerlegt und auf das eine die erste, auf das andere die zweite Formel anwendet. Man hat dann einzusetzen:

für
$$r_1$$
 r_2 c w_1 w_2 w_0
in $A'CC'$ h $\frac{c_1}{\cos A'}$ c_1 $\frac{\pi}{2}$ A' $\frac{\pi}{2} - A'$
in BCC' $\frac{c_2}{\cos B}$ h c_2 B $\frac{\pi}{2}$ $\frac{\pi}{2} - B$

¹ Helmert, Theorien, II, p. 280.

und findet

$$\begin{split} v_1 &= 2\,k^2\,\vartheta\,\Delta_1 \left[\frac{3}{2} + \log\,2L - \log\frac{c_1}{\cos\,A'} - \frac{h}{c_1}\left(\frac{\pi}{2} - A'\right)\right] = \\ &= 2\,k^2\,\vartheta\,\Delta_1 \left(\log\,2L + \frac{3}{2}\right) + 2k^2\,\vartheta\,u_1 \\ v_2 &= 2\,k^2\,\vartheta\,\Delta_2 \left[\frac{3}{2} + \log\,2L - \log\frac{c_2}{\cos\,B} - \frac{h}{c_2}\left(\frac{\pi}{2} - B\right)\right] = \\ &= 2\,k^2\,\vartheta\,\Delta_2 \left(\log\,2L + \frac{3}{2}\right) + 2\,k^2\,\vartheta\,u_2 \end{split}$$

mit

$$\Delta_1 = \frac{c_1 h}{2} \qquad \Delta_2 = \frac{c_2 h}{2}$$

und

$$u_1 \equiv -\Delta_1 \left[\log \frac{c_1}{\cos A'} + \frac{h}{c_1} \left(\frac{\pi}{2} - A' \right) \right]$$
$$u_2 \equiv -\Delta_2 \left[\log \frac{c_2}{\cos B} + \frac{h}{c_2} \left(\frac{\pi}{2} - B \right) \right]$$

Hierin bedeutet noch 2L die gesamte Länge des Prismas und Δ_1 und Δ_2 den Flächeninhalt der Querschnitte. Höhere Glieder von der Ordnung $\frac{r^2}{L^2} \frac{r^4}{L^4}$ usw. sind dabei schon vernachlässigt. Wenn wir später $L = \infty$ setzen, werden sie streng gleich Null.

Es wird nun

$$v_1 + v_2 = 2k^2 \vartheta \Delta \left(\frac{3}{2} + \log 2L\right) - 2k^2 \vartheta \left[\Delta_1 \log \frac{c_1}{\cos A'} + \Delta_2 \log \frac{c_2}{\cos B} + \frac{h^2}{2} (\pi - A' - B)\right] \quad 3)$$
$$\Delta = \frac{(c_1 + c_2)h}{2} \cdot$$

Für das kleine Prisma AA'C findet man noch nach Formel 2):

$$v_{3} = 2k^{2}\vartheta\Delta_{3}\left[\frac{3}{2} + \log 2L - \log \frac{c_{1}}{\cos A'} + \frac{c_{1}}{h'} \tan A \log \frac{\cos A'}{\cos A} - \frac{c_{1}}{h'}(A - A')\right] \quad 4)$$

$$= 2k^{2}\vartheta\Delta_{3}\left[\frac{3}{2} + \log 2L\right] + 2\pi k^{2}u_{3}$$

$$u_{3} = -\Delta_{3}\left[\log \frac{c_{1}}{\cos A'} - \frac{c_{1}}{h'} \tan A \log \frac{\cos A'}{\cos A} + \frac{c_{1}}{h'}(A - A')\right].$$

 $v_1 + v_2 + v_3$ stellt nun das Potential der Alpenmasse im Punkte C dar.

Fig. 3.

Für das Potential des Massendefektes müssen wir eigene Formeln aufstellen. Für ein langgestrecktes Massenelement von der Länge 2L und dem Querschnitt dq = dx dy ist nach Helmert¹

$$dv = 2k^2\vartheta \log \operatorname{nat} \frac{2L}{r} dq,$$

wobei wieder höhere Glieder vernachlässigt sind. Somit ist (Fig. 3)

$$v = 2k^2 \vartheta \int_{x_1}^{x_2} \int_{y_1}^{y_2} \log \operatorname{nat} \frac{2L}{\sqrt{x^2 + y^2}} \cdot dx \, dy$$

¹ Helmert, Theorien, II, p. 278.

oder in meiner früheren Bezeichnungsweise

$$v \equiv 2k^2 \vartheta \int_{l}^{l+s} \int_{m}^{m+p} \log \operatorname{nat} \frac{2L}{\sqrt{x^2 + y^2}} \cdot dx \, dy.$$

s und p sind dann Breite und Dicke des Massendefektes, l und m die Koordinaten des Eckpunktes P.

Das Integral zerfällt sofort in zwei. Es ist

$$v = 2k^2 \vartheta \int_{x_1}^{x_2} \int_{y_1}^{y_2} \log 2L \, dx \, dy - 2k^2 \vartheta \int_{x_1}^{x_2} \int_{y_1}^{y_2} \log r \, dx \, dy. \quad 5)$$

Der Wert des ersten ist unmittelbar gegeben durch

$$2k^2\vartheta \log 2L(x_2-x_1)(y_2-y_1) \equiv 2k^2\vartheta s.p \log 2L.$$
 6)

Um im zweiten Integral zunächst nach x zu integrieren, lassen wir y konstant und führen r als Variable ein. Es ist

$$x = \sqrt{r^2 - y^2} \qquad dx = \frac{r \, dr}{\sqrt{r^2 - y^2}} \, \cdot$$

Wir finden durch partielle Integration:

$$\int \log r \cdot \frac{r \, dr}{\sqrt{r^2 - y^2}} = \sqrt{r^2 - y^2} \cdot \log r - \int \frac{\sqrt{r^2 - y^2}}{r} \cdot dr. \ 7)$$

Wenn wir in dem letzten Integral oben und unten mit rmultiplizieren und wieder $r^2 = x^2 + y^2$ setzen, so bleibt

$$= \sqrt{r^{2} - y^{2}} \log r - \int \frac{x^{2} dx}{x^{2} + y^{2}}$$
$$= \sqrt{r^{2} - y^{2}} \log r - \int \frac{x^{2} + y^{2} - y^{2}}{x^{2} + y^{2}} dx$$
$$= \sqrt{r^{2} - y^{2}} \log r - x + y \arctan \frac{x}{y}$$
$$= x \log \sqrt{x^{2} + y^{2}} - x + y \arctan \frac{x}{y}.$$

Das Resultat der Integration nach x ist also, wenn wir den Ausdruck 6) hinzunehmen:

$$2k^{2}\vartheta\left\{s.p\,\log\,2L - \int_{y_{1}}^{y_{2}} x_{2}\log\sqrt{x_{2}^{2} + y^{2}}\,dy + x_{2}\int_{y_{1}}^{y_{2}}dy - \int_{y_{1}}^{y_{2}} y\,\arctan\frac{x_{2}}{y}\,dy + \int_{y_{1}}^{y_{2}} x_{1}\log\sqrt{x_{1}^{2} + y^{2}}\,dy - x_{1}\int_{y_{1}}^{y_{2}}dy + \int_{y_{1}}^{y_{2}} y\,\arctan\frac{x_{1}}{y}\,dy\right\}$$

Handelt es sich nur um das Potential einer unendlich dünnen Platte (Hypothese I), so brauchen wir die Integration nach y nicht mehr durchzuführen. Wir setzen $dy = y_2 - y_1 = p$ und erhalten, wenn wir für die Tiefe der Platte y = m einführen:

$$v = 2k^2 \vartheta \left\{ sp \log 2L + sp - px_2 \log \sqrt{x_2^2 + m^2} - mp \arctan \frac{x_2}{m} + px_1 \log \sqrt{x_1^2 + m^2} + mp \arctan \frac{x_1}{m} \right\}.$$

Setzen wir

$$\frac{x_2}{m} = \tan \varphi_2$$
 $\frac{x_1}{m} = \tan \varphi_1$

und

$$\sqrt{x_2^2 + m^2} \equiv r_2$$
 $\sqrt{x_1^2 + m^2} \equiv r_1$,

so können wir auch schreiben:

$$v = 2k^{2}\vartheta sp(\log 2L+1) - 2k^{2}\vartheta p\left\{x_{2} \log r_{2} - x_{1} \log r_{1} + m(\varphi_{2} - \varphi_{1})\right\}$$

= $2k^{2}\vartheta sp\left(\log 2L + \frac{3}{2}\right) - 2k^{2}\vartheta p\left\{\frac{s}{2} + x_{2} \log r_{2} - x_{1} \log r_{1} + m(\varphi_{2} - \varphi_{1})\right\}$
= $2k^{2}\vartheta\left(\log 2L + \frac{3}{2}\right) + 2k^{2}\vartheta U_{1}.$ 8)

Ist p nicht sehr klein gegen die anderen Größen, so ist die Integration nach y auszuführen. Wir haben dazu die folgenden beiden Integrale zu behandeln:

$$\int \log \sqrt{x^2 + y^2} \, dy \quad \text{und} \quad \int y \arctan \frac{x}{y} \, dy$$

Das erstere unterscheidet sich nur durch die Vertauschung von x und y von dem Integral 7). Es ist also

$$\int \log \sqrt{x^2 + y^2} \, dy = y \log \sqrt{x^2 + y^2} - y + x \arctan \frac{y}{x} \cdot 9$$

Für das zweite findet man

$$\int y \arctan \frac{x}{y} \, dy = \frac{1}{2} \left(x^2 + y^2 \right) \arctan \frac{x}{y} + \frac{1}{2} xy. \quad 10$$

Wenn wir die Grenzen einführen, so haben wir nun:

$$\begin{split} \int_{y_1}^{y_2} x_2 \log \sqrt{x_2^2 + y^2} \, dy &= \\ &= x_2 y_2 \log \sqrt{x_2^2 + y_2^2} - x_2 y_2 + x_2^2 \arctan \frac{y_2}{x_2} \\ &- x_2 y_1 \log \sqrt{x_2^2 + y_1^2} + x_2 y_1 - x_2^2 \arctan \frac{y_1}{x_2} \\ &\int_{y_1}^{y_2} x_1 \log \sqrt{x_1^2 + y^2} \, dy &= \\ &= x_1 y_2 \log \sqrt{x_1^2 + y_2^2} - x_1 y_2 + x_1^2 \arctan \frac{y_2}{x_1} \\ &- x_1 y_1 \log \sqrt{x_1^2 + y_2^2} - x_1 y_2 + x_1^2 \arctan \frac{y_1}{x_1} \\ &x_2 \int_{y_1}^{y_2} dy &= x_2 (y_2 - y_1) \\ &x_1 \int_{y_1}^{y_2} dy &= x_1 (y_2 - y_1) \\ &\int_{y_1}^{y_2} y \arctan \frac{x_2}{y} \, dy &= \frac{1}{2} (x_2^2 + y_2^2) \arctan \frac{x_2}{y_2} + \frac{1}{2} x_2 y_2 \\ &- \frac{1}{2} (x_2^2 + y_1^2) \arctan \frac{x_2}{y_1} - \frac{1}{2} x_2 y_1 \end{split}$$

$$\int_{y_1}^{y_2} y \arctan \frac{x_1}{y} \, dy = \frac{1}{2} (x_1^2 + y_2^2) \arctan \frac{x_1}{y_2} + \frac{1}{2} x_1 y_2$$
$$- \frac{1}{2} (x_1^2 + y_1^2) \arctan \frac{x_1}{y_1} - \frac{1}{2} x_1 y_1.$$

Wir setzen:

$$x_{1}^{2} + y_{1}^{2} \equiv r_{11}^{2} \quad x_{1}^{2} + y_{2}^{2} \equiv r_{12}^{2} \quad x_{2}^{2} + y_{1}^{2} \equiv r_{21}^{2} \quad x_{2}^{2} + y_{2}^{2} \equiv r_{22}^{2}$$
$$\frac{x_{1}}{y_{1}} \equiv \tan \varphi_{11} \quad \frac{x_{1}}{y_{2}} \equiv \tan \varphi_{12} \quad \frac{x_{2}}{y_{1}} \equiv \tan \varphi_{21} \quad \frac{x_{2}}{y_{2}} \equiv \tan \varphi_{22}.11$$

Dann ist immer

$$\arctan \frac{x}{y} = \varphi$$
 und $\arctan \frac{y}{x} = 90 - \varphi$.

Ferner ist

$$x_{2}(y_{2}-y_{1})-x_{1}(y_{2}-y_{1}) \equiv (x_{2}-x_{1})(y_{2}-y_{1}) \equiv sp,$$

ebenso

$$x_2 y_2 - x_2 y_1 - x_1 y_2 + x_1 y_1 \equiv (x_2 - x_1)(y_2 - y_1) \equiv sp.$$

Wir finden also,

$$v = 2k^{2}\vartheta \left\{ sp \log 2L + \frac{3}{2}sp - -x_{2}y_{2} \log r_{22} - \frac{1}{2}(y_{2}^{2} - x_{2}^{2})\varphi_{22} + x_{2}y_{1} \log r_{21} + \frac{1}{2}(y_{1}^{2} - x_{2}^{2})\varphi_{21} - 12) + x_{1}y_{2} \log r_{12} + \frac{1}{2}(y_{2}^{2} - x_{1}^{2})\varphi_{12} - x_{1}y_{1} \log r_{12} - \frac{1}{2}(y_{2}^{2} - x_{1}^{2})\varphi_{11} \right\}$$
$$= 2k^{2}\vartheta sp \left[\log 2L + \frac{3}{2} \right] + 2k^{2}\vartheta U_{2}.$$

Dieser Ausdruck gibt das Potential des Massendefektes für Hypothese II.

Um nun alles zusammenzufassen, setzen wir zur Abkürzung

$$\begin{split} v_{1} &= 2 \, k^{2} \, \vartheta \, \left[\Delta_{1} \left(\log 2L + \frac{3}{2} \right) + u_{1} \right] \\ v_{2} &= 2 \, k^{2} \, \vartheta \, \left[\Delta_{2} \left(\log 2L + \frac{3}{2} \right) + u_{2} \right] \\ v_{3} &= 2 \, k^{2} \, \vartheta \, \left[\Delta_{3} \left(\log 2L + \frac{3}{2} \right) + u_{3} \right] \\ V_{1} &= 2 \, k^{2} \, \vartheta' \, \left[s p \left(\log 2L + \frac{3}{2} \right) + U_{1} \right] \\ V_{2} &= 2 \, k^{2} \, \vartheta'' \left[s p \left(\log 2L + \frac{3}{2} \right) + U_{2} \right], \end{split}$$
13)

wo nun zum Unterschied die Potentiale der beiden Defektanordnungen mit V_1 und V_2 und die Defektdichte mit ϑ' , respektive ϑ'' bezeichnet ist.

Da nun der Grundsatz der vollständigen Kompensation die Beziehung verlangt:

$$\vartheta(\Delta_1 + \Delta_2 + \Delta_3) \equiv - artheta' sp$$
, respektive $- artheta'' sp$,

so erhalten wir für das Potential den Ausdruck

$$2 k^2 \vartheta (u_1 + u_2 + u_3) + 2 k^2 \vartheta' U_1$$
 14)

oder

$$2k^2\vartheta(u_1+u_2+u_3)+2k^2\vartheta''U_2$$

für die beiden Hypothesen. Die Glieder mit L heben sich also weg und wenn wir nun diese Größe unendlich werden lassen, ändert sich an der äußeren Form nichts mehr; die Formeln aber werden nun ganz streng, weil die zuerst vernachlässigten Glieder nun wirklich verschwinden.

Um die durch dieses Potential hervorgerufene Verschiebung der Niveaufläche zu finden, haben wir nur durch die Schwerebeschleunigung zu dividieren. Mit

$$g = \frac{4\pi k^2 R \vartheta_m}{3}$$

erhält man so

$$\delta N_1 = \frac{3}{2\pi R} \cdot \frac{\vartheta}{\vartheta_m} (u_1 + u_2 + u_3) + \frac{3}{2\pi R} \cdot \frac{\vartheta'}{\vartheta_m} U_1$$

$$\delta N_2 = \frac{3}{2\pi R} \cdot \frac{\vartheta}{\vartheta_m} (u_1 + u_2 + u_3) + \frac{3}{2\pi R} \cdot \frac{\vartheta''}{\vartheta_m} U_2,$$
(15)

wobei die Ausdrücke für die Größen u und U den Formeln 3), 4), 8) und 12) zu entnehmen sind.

Zur numerischen Berechnung nehmen wir die auf p. 4 gegebenen Werte; ferner ist

$$\vartheta_m \equiv 5 \cdot 6 \quad \vartheta \equiv 2 \cdot 729 \quad \vartheta' p \equiv -5 \cdot 130 \quad \vartheta'' \equiv -0 \cdot 055$$
$$\frac{3}{2\pi R} \cdot \frac{\vartheta}{\vartheta_m} \equiv 2 \cdot 56211 - 10$$
$$\frac{3}{2\pi R} \cdot \frac{\vartheta' p}{\vartheta_m} \equiv 5_n^{\cdot} 83623 - 10$$
$$\frac{3}{2\pi R} \cdot \frac{\vartheta''}{\vartheta_m} \equiv 0_n^{\cdot} 86647 - 10.$$

Damit finden wir:

$$\frac{3}{2\pi R} \cdot \frac{\vartheta}{\vartheta_m} (u_1 + u_2 + u_3) \equiv -151 \cdot 31 \ m$$
$$\frac{3}{2\pi R} \cdot \frac{\vartheta'}{\vartheta_m} \cdot U_1 \equiv +163 \cdot 02 \ m$$
$$\frac{3}{2\pi R} \cdot \frac{\vartheta'}{\vartheta_m} \cdot U_2 \equiv +163 \cdot 94 \ m,$$

somit

$$\begin{split} \delta N_1 &= +11 \cdot 71 \ m \\ \delta N_2 &= +12 \cdot 63 \ m, \end{split} \tag{I}$$

gültig für den Punkt C am Kamm.

Um für diese Berechnung nach den recht komplizierten Formeln eine Kontrolle zu haben, wurde auch die Verschiebung der Niveaufläche durch C' berechnet. Da alle Niveauflächen sehr nahe parallel bleiben, so muß dieser zweite Wert mit dem ersten nahe übereinstimmen. Wir teilen den

A. Prey.

Querschnitt der Alpen so, wie es Fig. 4 zeigt, und finden durch entsprechende Anwendung der Helmert'schen Formel die folgenden Werte:

Fig. 4.

somit für den Punkt C'

$$\delta N'_{1} = +11 \cdot 28 m$$

$$\delta N'_{2} = +12 \cdot 19 m.$$
II)

Die Verschiebung der Niveauflächen beträgt also 11 bis 12 m, und zwar ist die Niveaufläche des Kammes stärker verschoben als die der Basis. Aber auch der erstere Wert stellt noch nicht die größte, wirklich stattfindende Verschiebung vor, und zwar aus zwei Gründen:

1. Die Niveaufläche des Kammes ist nicht die am stärksten verschobene.

2. Die größte Verschiebung liegt wegen der Unsymmetrie der Massenanordnung überhaupt nicht in der Linie CC'.

Über den ersten Punkt geben die Schwerestörungen, über den zweiten die Lotabweichungen Auskunft.

III.

Wir berechnen zunächst die Schwerestörungen für einige Punkte der Linie CC'. Die Werte werden uns gleichzeitig die Mittel an die Hand geben, den Unterschied zwischen δN und $\delta N'$ zu verifizieren. Wir teilen nun den Querschnitt ein, wie es Fig. 5 zeigt, und gehen von der Formel aus, die Helmert für die Schwerestörung in der Mitte der Kante eines langen dreiseitigen Prismas gibt.¹ Die Bezeichnungen sind der Fig. 2 zu entnehmen.

$$\Delta g = 2k^2 \vartheta r_1 \sin w_1 \left[w_0 \cos (w_1 - \varphi_1) - - \sin (w_1 - \varphi_1) \log \operatorname{nat} \frac{r_1}{r_2} \right]$$
 16)

1. a) Wir finden die Störung an einem Punkte E der Linie CD (Fig. 5), hervorgerufen durch das Prisma ACD, durch Kombination der Wirkung der Prismen ACE und AED. Durch

Fig. 5.

mehrfache Anwendung der obigen Formel finden wir, wenn wir Winkel EAD mit ψ bezeichnen und AE = x, CE = zsetzen,

$$\Delta g = 2k^2 \vartheta x \left[\left(\frac{\pi}{2} - \psi \right) \sin \psi - \left(\frac{\pi}{2} + \psi \right) \sin (A - \psi) \cos A - - \sin A \sin (A - \psi) \log \operatorname{nat} \frac{z}{x} \right]; \quad 17)$$

1. b) Für einen Punkt E' zwischen D und C', mit $\psi = DAE'$ und x = AE', z = CE':

$$\Delta g = 2k^2 \vartheta x \left[\left(\frac{\pi}{2} - \phi \right) \sin \phi - \left(\frac{\pi}{2} - \phi \right) \sin (A + \phi) \cos A - - \sin (A + \phi) \sin A \log \operatorname{nat} \frac{z}{x} \right]; \quad 18)$$

¹ Helmert, Theorien, p. 281.

[889]

2. Störung durch das Prisma BCC', Punkt E zwischen C und C': $\phi = C'BE$, y = BE, z = CE:

$$\Delta g = 2k^2 \vartheta y \left[\left(\frac{\pi}{2} - \psi \right) \sin \psi - \left(\frac{\pi}{2} + \psi \right) \sin (B - \psi) \cos B - \sin (B - \psi) \sin B \log \operatorname{nat} \frac{z}{y} \right]. \quad 19)$$

3. Es bleibt noch übrig, die Störung durch das vierkantige Prisma ADA'C' zu berechnen. Dazu verwenden wir die Formel 5) meiner ersten Arbeit:

$$\Delta g = 2 k^2 \vartheta[(m+p) (\varphi_{22} - \varphi_{12} - \tan \varphi_{22} \log \sin \varphi_{22} + \\ + \tan \varphi_{12} \log \sin \varphi_{12}) \\ -m(\varphi_{21} - \varphi_{11} - \tan \varphi_{21} \log \sin \varphi_{21} + \\ + \tan \varphi_{11} \log \sin \varphi_{11})] \quad 20)$$

oder

$$\Delta g \equiv 2 k \vartheta [(m+p)(f_{22}-f_{12})-m(f_{21}-f_{11})],$$

wenn f die Bedeutung hat:

$$f = \varphi - \tan \varphi \log \sin \varphi.$$
 21)

Die Größen φ sind gegeben durch

$$\tan \varphi_{11} = -\frac{l}{m} - = \frac{x_1}{y_1} \qquad \tan \varphi_{12} = \frac{l}{m+p} = \frac{x_1}{y_2}$$
$$\tan \varphi_{21} = \frac{l+s}{m} = \frac{x_2}{y_1} \qquad \tan \varphi_{22} = \frac{l+s}{m+p} = \frac{x_2}{y_2}.$$

Die Bedeutung von l, m, p und s ist nach p. 8 und Fig. 3 verständlich.

Für das Prisma ADA'C' und Punkte, die auf der Strecke CD gelegen sind, vereinfacht sich die Formel dadurch, daß

 $\phi_{11} \equiv \phi_{12} \equiv 0$

und daher auch $f_{11} \equiv f_{12} \equiv 0$ wird. Somit

$$\Delta g = 2 k^2 \vartheta[(m+p) f_{22} - m f_{21}].$$
 23)

Für Punkte zwischen D und C' setzt man das Prisma aus zweien zusammen. Der angezogene Punkt liegt dann selbst [891]

in der Kante des Prismas und es ist nicht nur $\varphi_{11} = \varphi_{12} = 0$, sondern auch $\varphi_{21} = \frac{\pi}{2}$ und m = 0. Für ein solches Teilprisma ist dann

$$\Delta g \equiv 2 \, k^2 \vartheta p \, . f_{22}. \tag{24}$$

Dieselbe Formel 20) kommt auch zur Anwendung für die Störung durch den Defekt in Hypothese II; für Hypothese I (Platte) reduziert sie sich auf

$$\Delta g = 2k^2 \vartheta p (\varphi_2 - \varphi_1) \quad \text{mit} \quad \text{tg } \varphi_2 = \frac{l+s}{m} \quad \tan \varphi_1 = \frac{l}{m} \quad 25)$$

nach Formel I) meiner ersten Arbeit.

Nach diesen Formeln wurden die Schwerestörungen von 200 zu 200 m Seehöhe berechnet; das Resultat dieser Rechnung, aber bereits dividiert durch die normale Schwere g, also der Wert $\frac{\Delta g}{g}$, findet sich in der folgenden Zusammenstellung. Da die Störungen nach Hypothese I und II nie mehr als eine Einheit der letzten Stelle von einander verschieden sind, wurde zwischen beiden kein Unterschied gemacht.

	Seehöhe in Meter							
	0	200	400	600	8 00	1000	1200	1400
Alpen Defekt Gesamtstörung dh in Zentimeter Summe	10 ⁻⁶ - 321 - 156 - 477 	$ \begin{array}{r} 10^{-6} \\ - 280 \\ - 155 \\ - 435 \\ + 9 \cdot 1 \\ + 9 \cdot 1 \\ + 9 \cdot 1 \end{array} $	$ \begin{array}{r} 10^{-6} \\ - 235 \\ - 155 \\ - 390 \\ + 8 \cdot 2 \\ + 17 \cdot 3 \end{array} $	$ \begin{array}{r} 10^{-6} \\ - 190 \\ - 155 \\ - 345 \\ + 7 \cdot 4 \\ + 24 \cdot 7 \end{array} $	$ \begin{array}{r} 10^{-6} \\ - 145 \\ - 155 \\ - 300 \\ + 6 \cdot 5 \\ + 31 \cdot 2 \end{array} $	$ \begin{array}{r} 10^{-6} \\ - 101 \\ - 154 \\ - 255 \\ + 5 \cdot 5 \\ + 36 \cdot 7 \end{array} $	$ \begin{array}{r} 10^{-6} \\ - 58 \\ - 154 \\ - 212 \\ + 4.7 \\ + 41.4 \end{array} $	$ \begin{array}{r} 10^{-6} \\ - 13 \\ - 154 \\ - 167 \\ + 3 \cdot 8 \\ + 45 \cdot 2 \\ \end{array} $

	Seehöhe in Meter							
	1600	1800	2000	2200	24 00	2600	2800	3000
Alpen Defekt Gesamtstörung d h in Zentimeter Summe	$ \begin{array}{r} 10^{-6} \\ + 31 \\ - 154 \\ - 123 \\ + 2 \cdot 9 \\ + 48 \cdot 1 \end{array} $	$10^{-6} + 76 - 154 - 78 + 2.0 + 50.1$	$ \begin{array}{r} 10^{-6} \\ + 120 \\ - 153 \\ - 33 \\ + 1 \cdot 1 \\ +51 \cdot 2 \end{array} $	$ \begin{array}{r} 10^{-6} \\ + 164 \\ - 153 \\ + 11 \\ + 0.2 \\ + 51.4 \\ \end{array} $	$ \begin{array}{r} 10^{-6} \\ + 208 \\ - 153 \\ + 55 \\ - 0.6 \\ + 50.8 \end{array} $	$ \begin{array}{r} 10^{-6} \\ + 251 \\ - 153 \\ + 98 \\ - 1.5 \\ + 49.3 \end{array} $	$ \begin{array}{r} 10^{-6} \\ + 294 \\ - 152 \\ + 142 \\ - 2 \cdot 4 \\ + 46 \cdot 9 \end{array} $	$ \begin{array}{r} 10^{-6} \\ + 338 \\ - 152 \\ + 186 \\ - 3 \cdot 3 \\ + 43 \cdot 6 \\ \end{array} $

Bezeichnen wir vorübergehend mit h die Distanz zweier benachbarter Niveauflächen in ihrer ungestörten Lage, so gibt die Potentialtheorie die bekannte Beziehung

$$dh = -\frac{\Delta g}{g} \cdot h,$$

wo nun dh die durch die Schwerestörung Δg hervorgerufene Störung im Parallelismus der Niveauflächen ist. Nehmen wir in der obigen Zusammenstellung für $\frac{\Delta g}{g}$ in jedem einzelnen Intervall das Mittel aus den einschließenden Werten und multiplizieren dasselbe mit h = 200 m, so erhalten wir die Werte von dh, die in der vorletzten Zeile gegeben sind. Summieren wir sie der Reihe nach, so erhalten wir die Werte der letzten Zeile, die nun die Verschiebung der Niveauflächen gegen die unterste vorstellen.

Wir ersehen hieraus zunächst, daß die Niveaufläche durch C um 43.6 cm höher gehoben wird als die durch C'; vergleichen wir dies mit den Werten von p. 13 und 14, so finden wir in voller Übereinstimmung

$$\delta N_1 - \delta N_1' \equiv 11 \cdot 71 - 11 \cdot 28 \equiv 0 \cdot 43 \ m$$

$$\delta N_2 - \delta N_2' \equiv 12 \cdot 63 - 12 \cdot 19 \equiv 0 \cdot 44 \ m.$$

Damit sind alle bisherigen Rechnungen einer durchgehenden Kontrolle unterworfen.

Ferner zeigt sich, daß die am stärksten gehobene Niveaufläche der Seehöhe 2200 m entspricht, und zwar beträgt die Erhebung 51 cm mehr als bei der Nullfläche. Die Gesamterhebung ist also

$$\delta N_1 = 11 \cdot 28 + 0.51 = 11 \cdot 79$$

$$\delta N_2 = 12 \cdot 19 + 0.51 = 12 \cdot 70.$$
III)

Sie gilt für den entsprechenden Punkt der Linie CC'.

IV.

Um nun endlich den Punkt zu finden, wo die Niveaufläche die größte Erhebung hat, untersuchen wir noch die Lotablenkungen, da jener Punkt die höchste Erhebung besitzt, für welchen die Lotablenkung gleich Null wird. Obwohl wir dazu nur die Werte in der Nähe von C oder C' brauchen, wurde doch, um einen Überblick über die Verhältnisse zu gewinnen, das ganze System berechnet. Die Berechnung erscheint am bequemsten, wenn man das Arrangement Fig. 6 entsprechend vornimmt, d. h. erst die Lotabweichungen durch

das ganze Prisma A''CB bestimmt und dann den Einfluß des kleinen Prismas AA'A'' abzieht.

Die Rechnung vollzieht sich ganz nach den Helmertschen Formeln,¹ nur mit dem Unterschied, daß wegen $L \equiv \infty$ dieselben auch für Punkte außerhalb ganz streng sind.

Für das kleine Prisma AA'A'' vereinfachen sich die Formeln etwas, weil der Winkel A' ein rechter ist. Der Vollständigkeit halber seien die Ausdrücke, nach denen gerechnet wurde, hier angeführt. Wir zählen die Distanzen von der Kammlinie nach Süden positiv, nach Norden negativ. Es sei also

$$A''C' = c_1 = -93120 \ m$$
 $C'B = c_2 = 145000 \ m$
 $A'C' = c_2' = -77600 \ m.$

 σ sei die Entfernung eines beliebigen Punktes E der Basis von C' und endlich

$$CC' = h \qquad AA' = h'$$

$$tg \psi = \frac{h}{\sigma} \qquad tg \psi' = \frac{h'}{\sigma - c'_2}$$

$$CE = \frac{\sigma}{\cos \psi} = p \qquad AE = \frac{\sigma - c'_2}{\cos \psi'} = p'.$$

¹ Helmert, Theorien, II, p. 283.

Wir haben dann für die Lotstörung λ : *E* rechts von *B*:

$$\begin{split} \lambda &= \frac{2k^2 \vartheta}{g} \left\{ (\sigma - c_1) \left[(\psi - \psi') \sin^2 A - \frac{1}{2} \sin 2A \log \frac{p}{p'} \right] + \right. \\ &\left. + (\sigma - c_2') \psi' - (\sigma - c_2) \left[\psi \sin^2 B + \frac{1}{2} \sin 2B \log \frac{p}{\sigma - c_2} \right] \right\} \\ &E \text{ zwischen } B \text{ und } A': \end{split}$$

$$\begin{split} \lambda &= \frac{2k^2 \vartheta}{g} \left\{ (\sigma - c_1) \left[(\psi - \psi') \sin^2 A - \frac{1}{2} \sin 2A \log \frac{p}{p'} \right] + \right. \\ &\left. + (\sigma - c_2') \psi' - (c_2 - \sigma) \left[(\pi - \psi) \sin^2 B - \frac{1}{2} \sin 2B \log \frac{p}{c_2 - \sigma} \right] \right\} \\ & E \text{ links von } A': \end{split}$$

$$\lambda = \frac{2k^2\vartheta}{g} \left\{ (\sigma - c_1) \left[(\psi - \psi') \sin^2 A - \frac{1}{2} \sin 2A \log \frac{p}{p'} \right] + (c_2' - \sigma) (\pi - \psi') - (c_2 - \sigma) \left[(\pi - \psi) \sin^2 B - \frac{1}{2} \sin 2B \log \frac{p}{c_2 - \sigma} \right] \right\}.$$
(6)

Zur Berechnung der Lotabweichungen, die durch den Defekt hervorgerufen werden, verwenden wir die Formeln 2) und 6) meiner ersten Arbeit:

Hypothese I:

$$\lambda = \frac{2k^2 \vartheta}{g} \cdot p \log \frac{\cos \varphi_1}{\cos \varphi_2}$$
Hypothese II: 27)

$$\lambda = \frac{2k^2\vartheta}{g} \left[l(\varphi_{12} - \varphi_{11} + \operatorname{ctg} \varphi_{12} \log \cos \varphi_{12} - \operatorname{ctg} \varphi_{11} \log \cos \varphi_{11}) - (l+s)(\varphi_{22} - \varphi_{21} + \operatorname{ctg} \varphi_{22} \log \cos \varphi_{22} - \operatorname{ctg} \varphi_{21} \log \cos \varphi_{21}) \right]$$

oder

$$\lambda = \frac{2k^2\vartheta}{g} [l(g_{12} - g_{11}) - (l+s)(g_{22} - g_{21})],$$

wenn g allgemein die Funktion bedeutet:

$$g \equiv \varphi + \operatorname{ctg} \varphi \log \cos \varphi. \tag{28}$$

Man kann die Funktion g leicht auf die Funktion f[Gleichung 21)] zurückführen, wenn man $\varphi = 90 - \psi$ setzt. Es ist dann

$$g(\varphi) \equiv 90 - \psi + \tan \psi \log \sin \varphi \equiv 90 - f(\psi).$$

Es ist also

$$\lambda = \frac{2k^2\vartheta}{g} [l(f_{12} - f_{11}) - (l+s)(f_{22} - f_{21})]_{\psi = 90 - \varphi}.$$
 29)

Für die Funktion f habe ich in meiner ersten Arbeit eine Tafel gegeben.

Das Resultat der Rechnung findet sich in der folgenden Zusammenstellung (Tabelle I). Die erste Kolonne gibt die Distanz von der Kammlinie, von 10 zu 10 km von Süden nach Norden fortschreitend.¹ Die weiteren Kolonnen geben die Lotabweichungen durch die Alpenmasse und den Defekt in beiden Hypothesen und dann den kombinierten Effekt in beiden Fällen.

Kilo-		Def	ekt	Ges wirk	amt- ung	Joch-	Ges wir	samt- kung
Entfernung in meter	Alpenmasse	Hypothese 1	Hypothese II	Hypothese I	Hypothese II	Bayerisches I land	Hypothese I	Hypothese II
240 230 220 210 200 190 180 170	$+12$ \cdot 68 +13 \cdot 36 +14 \cdot 13 +15 \cdot 01 +16 \cdot 00 +17 \cdot 17 +18 \cdot 57 +20 \cdot 28 +22 \cdot 49	$ \begin{array}{c} -11 & 24 \\ -11 & 73 \\ -12 & 27 \\ -12 & 86 \\ -13 & 50 \\ -14 & 20 \\ -14 & 97 \\ -15 & 81 \\ -16 & 72 \end{array} $	-10 $66-11 \cdot 09-11 \cdot 56-12 \cdot 08-12 \cdot 64-13 \cdot 24-13 \cdot 89-14 \cdot 61-15 \cdot 41$	$+ 1^{*} 44 + 1 \cdot 63 + 1 \cdot 86 + 2 \cdot 15 + 2 \cdot 50 + 2 \cdot 97 + 3 \cdot 60 + 4 \cdot 47 + 5 \cdot 77$	$\begin{array}{r} + 2^{\circ}02 \\ + 2 \cdot 27 \\ + 2 \cdot 57 \\ + 2 \cdot 93 \\ + 3 \cdot 36 \\ + 3 \cdot 93 \\ + 4 \cdot 68 \\ + 5 \cdot 67 \\ + 7 \cdot 08 \end{array}$	+0.45 +0.46 +0.47 +0.48 +0.50 +0.51 +0.53 +0.56 +0.58	+ $1^{"}89$ + $2 \cdot 09$ + $2 \cdot 33$ + $2 \cdot 63$ + $3 \cdot 00$ + $3 \cdot 48$ + $4 \cdot 13$ + $5 \cdot 03$ + $6 \cdot 35$	+ $2^{v}47$ + $2 \cdot 73$ + $3 \cdot 04$ + $3 \cdot 41$ + $3 \cdot 86$ + $4 \cdot 44$ + $5 \cdot 21$ + $6 \cdot 23$ + $7 \cdot 66$
150 145 140	$+25 \cdot 68$ +28 \cdot 51 +31 \cdot 12	-17.70 -18.21 -18.72	$-16 \cdot 29$ $-16 \cdot 75$ $-17 \cdot 25$	+ 7.98 +10.30 +12.40	+ 9:39 +11:76 +13:87	+0.61 +0.61 +0.62 +0.63	+ 8.59 +10.92 +13.03	+10.00 +12.38 +14.50

Tabelle I.

¹ Die Werte für einige kritische Punkte sind ebenfalls in die Tafel aufgenommen.

		A.	Prey,				
	Defekt		Ges wirk	amt- ung	foch-	Ges wirl	amt- cung
	Hypothese I	Hypothese II	Hypothese I	Hypothese II	Bayerisches F land	Hypothese I	Hvpothese II
97	-19"73	-18"31	+14'24	+15"66	+ 0"66	+14"90	+16

Kilo-		Def	ekt	Ges wirk	amt- tung	Hoch-	Gesamt- wirkung	
Entfernung in meter	Alpenmasse	Hypothese I	Hypothese II	Hypothese I	Hypothese II	Bayerisches F land	Hypothese I	Hypothese II
$\begin{array}{c} 130\\ 120\\ 110\\ 100\\ 90\\ 83 \cdot 95\\ 80\\ 70\\ 60\\ 50\\ 40\\ 30\\ 20\\ 10\\ -20\\ 10\\ -20\\ -30\\ -20\\ 10\\ -20\\ -30\\ -40\\ -50\\ -60\\ -70\\ -77 \cdot 60\\ -70\\ -77 \cdot 60\\ -70\\ -77 \cdot 60\\ -90\\ -100\\ -120\\ -130\\ -140\\ -150\\ -160\\ -170\\ \end{array}$	$\begin{array}{r} +33 {}^{*}97 \\ +35 {}^{*}38 \\ +35 {}^{*}93 \\ +35 {}^{*}78 \\ +35 {}^{*}78 \\ +35 {}^{*}78 \\ +35 {}^{*}78 \\ +31 {}^{*}69 \\ +29 {}^{*}11 \\ +25 {}^{*}83 \\ +21 {}^{*}74 \\ +16 {}^{*}70 \\ +10 {}^{*}38 \\ +2 {}^{*}08 \\ -9 {}^{*}98 \\ -22 {}^{*}01 \\ -29 {}^{*}98 \\ -35 {}^{*}72 \\ -39 {}^{*}84 \\ -42 {}^{*}71 \\ -44 {}^{*}47 \\ -45 {}^{*}65 \\ -55 {}^{*}28 \\ -32 {}^{*}85 \\ -27 {}^{*}91 \\ -26 {}^{*}39 \\ -22 {}^{*}14 \\ -20 {}^{*}19 \\ -26 {}^{*}39 \\ -17 {}^{*}25 \\ -16 {}^{*}11 \\ -15 {}^{*}12 \\ \end{array}$	$\begin{array}{c} -19"73\\ -20.62\\ -21.20\\ -21.27\\ -20.61\\ -\\ -\\ -19.23\\ -17.27\\ -14.97\\ -12.50\\ -\\ 9.98\\ -\\ 7.45\\ -\\ 4.95\\ -\\ 2.47\\ -\\ 0.00\\ +\\ 2.47\\ +\\ 4.95\\ +\\ 7.45\\ +\\ 7.45\\ +\\ 9.98\\ +12.50\\ +14.97\\ +17.27\\ +18.79\\ +19.23\\ +20.61\\ +21.27\\ -\\ -\\ +21.20\\ +20.62\\ +19.73\\ +18.72\\ +17.70\\ +16.72\\ +15.81\\ \end{array}$	-18, 31 $-19 \cdot 47$ $-20 \cdot 76$ $-22 \cdot 17$ $-23 \cdot 70$ $-24 \cdot 68$ $-23 \cdot 47$ $-20 \cdot 50$ $-17 \cdot 65$ $-14 \cdot 90$ $-12 \cdot 25$ $-9 \cdot 70$ $-7 \cdot 22$ $-4 \cdot 78$ $-2 \cdot 38$ $0 \cdot 000$ $+2 \cdot 38$ $+4 \cdot 78$ $+7 \cdot 22$ $+9 \cdot 700$ $+12 \cdot 255$ $+14 \cdot 900$ $+12 \cdot 255$ $+14 \cdot 900$ $+17 \cdot 655$ $+23 \cdot 477$ $+24 \cdot 688$ $+23 \cdot 707$ $+24 \cdot 688$ $+23 \cdot 707$ $+19 \cdot 477$ $+19 \cdot 477$ $+117 \cdot 255$ $+16 \cdot 299$	$\begin{array}{c} +14 {}^{!} 24 \\ +14 {}^{!} 76 \\ +14 {}^{!} 73 \\ +14 {}^{!} 71 \\ +14 {}^{!} 71 \\ +14 {}^{!} 71 \\ +14 {}^{!} 71 \\ +14 {}^{!} 71 \\ +14 {}^{!} 72 \\ +14 {}^{!} 13 \\ +11 {}^{!} 76 \\ +9 {}^{!} 25 \\ +5 {}^{!} 33 \\ +11 {}^{!} 76 \\ +9 {}^{!} 25 \\ +5 {}^{!} 33 \\ -19 {}^{!} 54 \\ -25 {}^{!} 03 \\ -28 {}^{!} 28 \\ -25 {}^{!} 03 \\ -28 {}^{!} 28 \\ -29 {}^{!} 50 \\ -28 {}^{!} 38 \\ -30 {}^{!} 21 \\ -29 {}^{!} 50 \\ -28 {}^{!} 38 \\ -36 {}^{!} 49 \\ -24 {}^{!} 33 \\ -12 {}^{!} 24 \\ -6 {}^{!} 64 \\ -3 {}^{!} 41 \\ -1 {}^{!} 52 \\ -3 {}^{!} 41 \\ -1 {}^{!} 52 \\ -3 {}^{!} 41 \\ -1 {}^{!} 52 \\ -3 {}^{!} 41 \\ -1 {}^{!} 52 \\ -3 {}^{!} 41 \\ -1 {}^{!} 52 \\ -3 {}^{!} 41 \\ -1 {}^{!} 52 \\ -3 {}^{!} 41 \\ -1 {}^{!} 52 \\ -3 {}^{!} 41 \\ -1 {}^{!} 52 \\ -3 {}^{!} 41 \\ -1 {}^{!} 52 \\ -3 {}^{!} 41 \\ -1 {}^{!} 52 \\ -3 {}^{!} 41 \\ -1 {}^{!} 52 \\ -3 {}^{!} 41 \\ -1 {}^{!} 52 \\ -3 {}^{!} 41 \\ -1 {}^{!} 52 \\ -3 {}^{!} 41 \\ -1 {}^{!} 52 \\ -3 {}^{!} 41 \\ -1 {}^{!} 52 \\ -3 {}^{!} 41 \\ -1 {}^{!} 52 \\ -3 {}^{!} 41 \\ -1 {}^{!} 52 \\ -3 {}^{!} 51 $	$\begin{array}{c} +15^{\circ}66\\ +15^{\circ}91\\ +15^{\circ}17\\ +13^{\circ}61\\ +11^{\circ}32\\ +9^{\circ}60\\ +10^{\circ}20\\ +11^{\circ}19\\ +11^{\circ}46\\ +10^{\circ}93\\ +9^{\circ}49\\ +7^{\circ}00\\ +3^{\circ}16\\ -2^{\circ}70\\ +3^{\circ}16\\ -2^{\circ}70\\ -32^{\circ}22\\ -33^{\circ}01\\ -32^{\circ}22\\ -32^{\circ}01\\ -32^{\circ}01\\$	+ 0.66 + 0.69 + 0.72 + 0.75 + 0.79 + 0.81 + 0.83 + 0.89 + 0.94 + 1.01 + 1.07 + 1.17 + 1.26 + 1.38 + 1.50 + 1.68 + 1.90 + 2.18 + 1.50 + 1.68 + 1.90 + 2.18 + 1.50 + 1.68 + 1.90 + 2.18 + 1.90 + 2.18 + 1.90 + 2.18 + 1.90 + 2.18 + 1.90 + 2.56 + 3.14 + $1.6.99$ + 9.04 + 3.37 - 1.85 - 5.21 - 9.33 - 1.85 - 5.23 - 2.36	$\begin{array}{c} +14, 90\\ +15, 45\\ +15, 45\\ +15, 26\\ +15, 20\\ -15, 20\\ +15, 20\\ +15, 20\\ +15, 20\\ +15, 20\\ +15, 20\\ +15, 20\\ +15, 20\\ +15, 20\\ +12, 83\\ +12, $	$\begin{array}{c} +16^{}32\\ +16^{}60\\ +15^{}89\\ +14^{}36\\ +12^{}11\\ +10^{}41\\ +11^{}03\\ +12^{}08\\ +12^{}40\\ +11^{}94\\ +10^{}56\\ +8^{}17\\ +4^{}42\\ -1^{}32\\ -10^{}86\\ -20^{}83\\ -25^{}70\\ -28^{}76\\ -30^{}06\\ -29^{}87\\ -28^{}76\\ -30^{}06\\ -29^{}87\\ -28^{}14\\ -24^{}61\\ -21^{}31\\ -16^{}87\\ -28^{}89\\ -3^{}81\\ -2^{}04\\ -2^{}76\\ -5^{}18\\ -8^{}76\\ -5^{}18\\ -8^{}76\\ -4^{}02\\ -2^{}50\\ -1^{}19\\ -1^{}19\\ \end{array}$

Man erkennt zunächst, daß die Lotabweichungen nicht auf dem Kamm, sondern südlich davon den Nullwert erreichen, und zwar im ersten Falle etwa $10.03 \ km$, im anderen $12.80 \ km$. Dort, wo die Lotabweichungen gleich Null werden, dort liegt auch die höchste Erhebung der Niveaufläche. Um zu berechnen, um wie viel die Niveauflächen von der Linie CC'an noch steigen, kann man die Näherungsformel benutzen

$$dN \equiv \int \lambda dh.$$

Das Integral bestimmt man leicht durch ein graphisches Verfahren und man erhält für

Hypothese I:
$$+0.24 m$$

Hypothese II: $+0.38 m$,

so daß wir endlich folgende Schlußwerte der Verschiebung der Niveaufläche durch die Alpenmasse und den Alpendefekt erhalten:

Hypothese I:
$$\delta N_1 = 11 \cdot 79 + 0 \cdot 24 = 12 \cdot 03 m$$

Hypothese II: $\delta N_2 = 12 \cdot 70 + 0 \cdot 38 = 13 \cdot 08 m$. IV)

Wir finden also volle Übereinstimmung mit dem Werte den Helmert¹ auf Grund einer Schätzung annimmt.

Es bleibt nun noch übrig zu untersuchen, inwieweit die oben auf Grund einer schematischen Massenlagerung berechneten Lotabweichungen mit den Beobachtungen stimmen, obwohl ein solcher Vergleich von vornherein nicht vielversprechend ist, weil gerade bei Lotabweichungen nicht nur die individuelle Lagerung der Massen in der Nähe der Beobachtungspunkte außerordentlich wichtig ist, sondern auch noch weit entfernte Massen, für unseren Fall solche, die vielleicht nicht mehr zu den Alpen gehören, wirksam sind. Bevor wir daher zu einem solchen Vergleich schreiten, muß die von uns eingeführte Massenanordnung wenigstens in einem Punkte dem Falle der Natur näher gebracht werden. Der Absturz von 500 m Höhe, der bei uns den Nordrand der Masse bildet,

[897]

¹ Helmert, Geoid und Erdellipsoid. Zeitschrift der Gesellschaft für Erdkunde, Berlin 1913.

existiert nicht, weil sich hier die bayerische Hochebene anschließt. Wir berücksichtigen nun den Einfluß der letzteren auf die Lotabweichungen, indem wir sie als Platte von $50 \ km$ Breite, $500 \ m$ Dicke und einer Dichte von $2 \cdot 2$ ansehen. Das Resultat für sich und in Verbindung mit den Resultaten unserer beiden Hypothesen ist in den letzten Kolonnen der Tabelle I gegeben.

Dadurch verschwindet der außerordentlich hohe Wert, den die Lotabweichung an der kritischen Stelle, 77.6 km, angenommen hat, und der neue Wert fügt sich nun ganz gut in die Reihe.

Die Zahl der Lotabweichungswerte, welche durch Beobachtungen an dem betrachteten Gebiete gegeben sind, ist sehr gering. Der Bericht über die Lotabweichungen von Helmert¹ enthält außer den Punkten, die v. Orff² zusammengestellt, nur noch die drei Punkte Höhensteig, Ischenberg und Kampenwand, auf denen Bauernfeind seine Untersuchungen über terrestrische Refraktion angestellt hat.

Die folgende Zusammenstellung (Tabelle II) enthält in den ersten Kolonnen den Namen, geographische Breite und Länge (von Greenwich) der Stationen, endlich die reduzierte Distanz, d. i. die senkrechte Entfernung der Station von der Mittellinie der Alpen. Als solche gilt eine Linie, welche durch die Station Brenner geht und mit der Ost-Westrichtung einen Winkel von 10°, von Ost gegen Nord gezählt, bildet. Die nächste Kolonne bringt die berechneten Lotabweichungen, graphisch interpoliert aus Tabelle I und zur Reduktion auf die Nord-Südrichtung multipliziert mit dem Kosinus von 10°, und zwar für Hypothese I, die im allgemeinen besser mit den Beobachtungen stimmt als II.

Wenn mir mit v. Orff den Lotabweichungswert für München gleich Null nehmen, so haben wir von den Werten

¹ Helmert, Bericht über Lotabweichungen. Verhandl. der permanenten Kommission der internationalen Erdmessung in Nizza, 1887.

² v. Orff, Bestimmung der geographischen Breite der Königl. Sternwarte bei München. Supplement zum XXI. Bande der Annalen.

dieser Kolonne den für München geltenden Wert -7.71 abzuziehen und erhalten die Werte der nächsten (sechsten) Kolonne. Die vorletzte Kolonne endlich enthält die beobachteten Werte ebenfalls reduziert auf München und die letzte die Werte B-R.

Т	a	b	e1	1	e	II.
---	---	---	----	---	---	-----

	<u>.</u>	-		1 .		÷					T
	een-		122		Lotabweichung						
Station		Brei	te	Länge von Gr	wich	Reduzierte Distanz	berechnet	reduziert auf München	beobachtet	BR	
München	48	° 8	'46"	11	°35'	+123'5	- 7.7	0.0	0.0		
Holzkirchen	47	53	3	11	4 2	+ 94·4	- 7.5	+ 0.2	- 4.0	$-4 \cdot 2$	l
Höhensteig	47	52	6	12	9	+ 86.0	-11.3	- 3.6	- 5.4	-1.8	
Irschenberg	47	4 9	56	11	55	+ 85.1	-11.8	- 4.1	- 8.1	- 4 •0	
Peißenberg	47	48	7	11	1	+ 94.6	- 7.5	+ 0.2	- 3.0	$-3 \cdot 2$	Į
Kampenwand	47	45	31	12	22	+ 71.1	-21.2	-13.5	-12.8	+0.2	
Benediktenbeuern	47	42	41	11	24	+ 79.2	-15-6	- 7.9	- 9.2	-1,•3	.
Wendelstein	47	42	27	12	1	+ 70.6	-21.5	-13.8	-14.1	-0.3	
Mittenwald	47	26	40	11	16	+ 51.8	-26.4	-18.7	-11.2	+7.5	
Lanserkopf	47	14	57	11	25	+ 28.3	-24.2	-16.5	<u>-13·5</u>	+3.0	
S. Salvatore	45	50	50	12	14	-134.9	+13.8	+21.5	+14.0	-7.5	ŀ
Mailand	45	27	59	9	11	-134.6	+13.8	+21.5	+18.5	-3.0	
Venedig	45	25	56	12	2 0	-181 · 8	+ 3.8	+11.6	+ 7.4	$-4 \cdot 2$	
Padua	45	2 4	3	11	52	-179.7	+ 4.1	+11.8	+ 5.6	$-6 \cdot 2$	
ł	l		1					-	4		l

Die Stationen auf der Nordseite stimmen wider Erwarten ziemlich gut, abgesehen etwa von der Station Mittenwald, die als Talstation jedenfalls lokal stark beeinflußt ist. Selbst die Station Lanserkopf, die, was lokale Unregelmäßigkeiten anbelangt, wohl das denkbar möglichste leistet, ist ziemlich gut dargestellt.

¹ Dieser Wert ist einigermaßen willkürlich angenommen, da die Interpolation in der Nähe des Plattenrandes nicht mehr tunlich erschien.

Dagegen scheint sich im Süden ein systematischer Unterschied geltend zu machen, etwa der Einfluß der südlich gelegenen Gebirge. Man kann diese Stationen auch dadurch zu besserer Übereinstimmung bringen, daß man die Lotabweichung für München nicht dadurch zum Verschwinden bringt, daß man das Referenzellipsoid entsprechend orientiert, sondern durch Annahme weiterer störender Massen im Norden, die wohl in der Tat auch vorhanden sind. Wir hätten dann die Südstationen nicht um den ganzen Betrag von 7°7 zu korrigieren, sondern wegen der großen Entfernung nur um einen unwesentlichen Bruchteil. Die Übereinstimmung wird dann im Süden besser, im Norden dafür etwas schlechter.

Ein kleinerer Wert für die Station München, wie man ihn sofort erhielte, wenn man die bairische Platte um wenige Kilometer breiter nimmt, so daß München nicht so nahe an den Rand kommt, würde die Übereinstimmung bedeutend besser erscheinen lassen.

Daß namentlich in der Mitte des Gebirges die lokalen Verhältnisse sehr viel ausmachen, zeigt das Beispiel der Station Lanserkopf. Pechmann¹ berechnet mit vieler Mühe und unter Berücksichtigung sehr weit entfernter Massen die Lotabweichung für Lanserkopf mit 18^s5, ohne Rücksicht auf irgendwelche Kompensation. Der entsprechende Wert aus der zweiten Kolonne unserer Tabelle I wäre 34¹⁷ und mit Berücksichtigung des bayerischen Hochlandes noch immer 32[°]6. Da es ausgeschlossen scheint, daß der Unterschied in der Berücksichtigung noch weiter entfernter Massen liegt - Pechmann gibt keine Details -, so kann der Grund nur in zwei Punkten gefunden werden. Entweder sind bei Pechmann die Annahmen über die Alpenmassen ganz andere oder es hat die Schematisierung der Massenlagerung einen solchen Einfluß. Das erstere ist in der Tat nicht der Fall. Aus den von Pechmann gegebenen Übersichtsblättern über die angewendeten

¹ Pechmann, Die Abweichung der Lotlinie bei astronomischen Beobachtungsstationen und ihre Berechnung als Erfordernis einer Gradmessung. Denkschriften der Kaiserl. Akad. der Wissenschaften in Wien, Bd. XXII und XXIV (1863 und 1865).

Höhen findet sich die Alpenmasse aus 13 Querschnitten durch die Tiroler Alpen zu 866.10⁶ Tonnen pro 1 *m* der Längsrichtung, während meine Untersuchungen hierfür 965.10⁶ Tonnen gegeben haben. Der Unterschied ist also nur etwa ein Neuntel und klärt die Differenz in der Lotabweichung nicht auf. Es bleibt also nur übrig, die Massenlagerung dafür verantwortlich zu machen.

Die Punkte am Nordrande des Gebirges, wo also die ganze Alpenmasse im Süden liegt, scheinen weniger empfindlich zu sein.

Bringt man übrigens an die von Pechmann berechnete Lotabweichung 18'5 den Einfluß der Kompensation nach Kolonne 3 oder 4 der Tabelle I an, so erhält man

> Hypothese I: $-18^{\circ}5+7^{\circ}0 = -10^{\circ}5$ Hypothese II: $-18^{\circ}5+4^{\circ}4 = -14^{\circ}1$.

Hypothese II bringt also in diesem Falle eine gute Übereinstimmung mit dem Beobachtungswert 13[°]6.

Obwohl, wie oben bemerkt, von den Lotabweichungen hier keine verläßlichen Aufschlüsse zu hoffen sind, so scheint dies doch für die Brauchbarkeit unserer Annahmen über den Massendefekt zu sprechen.

Resultat.

Auf Grund der auf p. 2 auseinandergesetzten Annahmen über die Größe und Lagerung der Alpenmasse sowie des zugehörigen, die sichtbaren Massen vollkommen kompensierenden unterirdischen Defektes ergeben sich folgende Werte für die dadurch bedingten Verschiebungen der Niveauflächen:

Verschiebung der Niveaufläche durch den Kamm des Gebirges:

Hypothese I: $\delta N_1 \equiv +11 \cdot 71 \ m$ Hypothese II: $\delta N_2 \equiv +12 \cdot 63 \ m$.

Verschiebung der Niveaufläche im Fußpunkt unter dem Kamm:

Hypothese I: $\delta N_1 = +11 \cdot 28 m$ Hypothese II: $\delta N_2 = +12 \cdot 19 m$. Die größte Verschiebung der Niveaufläche zwischen Kamm und Fußpunkt erfolgt in 2200 m Seehöhe mit:

> Hypothese I: $\delta N_1 = +11.79 m$ Hypothese II: $\delta N_2 = +12.70 m$.

Die größte Verschiebung einer Niveaufläche überhaupt erfolgt nicht an der Kammlinie selbst, sondern wegen der unsymmetrischen Massenlagerung südlich derselben, und zwar:

Hypothese I: $\delta N_1 = +12 \cdot 03 \, m$, $10 \cdot 0 \, km$ südlich des Hypothese II: $\delta N_2 = +13 \cdot 08 \, m$, $12 \cdot 8 \, km$ Kämmes.

Die durch den gesamten Massenkomplex hervorgerufene Hebung der Niveauflächen beträgt also 12 bis 13 m.

28