<u>Safaei Farouji, Majid</u>¹; Misch, David¹; Sachsenhofer, Reinhard¹; Kostoglou, Nikolaos¹; Junussov, Medet²; Fustic, Milovan²

CO2 Storage Potential of Low-rank and Medium-rank coal deposits from Austria and Kazakhstan

¹Montanuniversität Leoben, Österreich; ²Nazarbayev University, Kazakhstan; majid.safaei-farouji@unileoben.ac.at

To assess the CO₂ storage capacity of coals with different ranks, coal samples were collected from an abandoned coal mine in Austria (Fohnsdorf) and a highly productive coal seam in Kazakhstan (D6 seam in the Lenina mine; Karaganda Basin). A variety of techniques, including Rock-Eval pyrolysis, organic petrography, and measurements of ash yield and sulfur content measurements, were applied to compare the coal composition and characteristics. Additionally, low-pressure N2 and CO2 adsorption measurements were employed to investigate the pore structure characteristics and gas storage capacity of the coals. The thermal maturity assessment indicated that Austrian coals are subbituminous coals with a mean vitrinite reflectance (%Ro) value of 0.46% and a mean temperature of maximum hydrocarbon generation (T_{max}) of 414 °C. In contrast, Kazakh coals are medium-volatile bituminous coals with mean %Ro and T_{max} values of 1.21% and 466 °C, respectively. The mean total organic carbon (TOC) content in Austrian coals was 66.2%, while in Kazakh coals, it was 80.4% reflecting the differences in maturity. Sulfur and ash measurements showed mean values of 1.3% and 5.48% for Austrian coals and 0.4% and 11% for Kazakh coals, respectively. According to the N2 adsorption measurements at 77 K, subbituminous coals showed a lower BET-specific surface area (BET-SSA) (avg. 1.91 m²/g) and BJH pore volume (avg. 0.007 cm³/g) than medium-volatile bituminous Kazakh coals (avg. BET-SSA = 2.98 m²/g; BJH pore volume = 0.01 cm³/g). The lower BET-SSA and pore volume of subbituminous coals resulted in a lower N2 adsorption capacity of subbituminous coals (4.68 cm³/g @STP vs. 6.65 cm³/g @STP). However, the CO2 volume adsorbed at 273 K by subbituminous coals was higher (18.26 cm³/g) than that of medium-volatile bituminous coals (11.46 cm³/g). This could show that the BET and BJH methods applied in the N2 adsorption data may not sufficiently estimate CO2 adsorption capacity trends in the investigated sample set. Additionally, the existence of a hysteresis loop between CO2 adsorption and desorption isotherms in all subbituminous and medium-volatile bituminous coals indicates the occurrence of weak chemisorption during CO2 adsorption. This process enhances CO2 uptake and storage safety, as the bonds that are established via the weak chemisorption process are stronger than those formed by pure physisorption. Overall, this study revealed that low-rank coals (Austrian subbituminous coals) had a higher CO₂ storage capacity than medium-rank coals (medium-volatile bituminous Kazakh coals). This could be due to the filling of pores by generated hydrocarbons in the medium-rank coals, leading to a lower CO2 adsorption capacity.

Session: Pangeo workshop: Mineral Raw Materials, and Energy Transition **Keywords:** Coal, pore structure, CCS, chemisorption, Austria, Kazakhstan