Experimental and petrological constraints on brine ($\mathrm{H}_{2} \mathrm{O}-\mathrm{KCl}$) apatite interactions in hornfelses

MAIR, P., TROPPER, P., ZÖLL, K.

University of Innsbruck, Institute for Mineralogy, Innrain 52, 6020 Innsbruck, Austria, email: philipp.mair@uibk.ac.at

Brines are increasingly recognized as playing an important role in high pressure and temperature metamorphic and magmatic systems. Apatite $\left(\mathrm{Ca}_{5}\left(\mathrm{PO}_{4}\right)_{3}(\mathrm{OH}, \mathrm{F}, \mathrm{Cl})\right.$ is a ubiquitous accessory mineral in many crustal rocks and is of major geochemical importance, being one of the minerals in which the light rare-earth elements (LREE) and halogens concentrate. This study focuses on the petrology of a hornfels from the diorite contact aureole at the Kloster Säben, South Tyrol, Italy which contains the contact metamorphic mineral assemblage plagioclase + K-feldspar + biotite + quartz \pm pyrite \pm rutile \pm titanite \pm ilmenite. In addition to this assemblage abundant texturally and chemically zoned F-apatite showing two stages of apatite growth was found in the hornfels. Monazite formed both as an inclusion within the second LREE-poor generation of apatite as well as on its rims. These textures can be explained by metasomatic activity involving apatite and an externally derived brine-rich fluid. Hence in agreement with the petrographic evidence for fluid mobility and metasomatism in the hornfels sample we investigate the hypothesis that aqueous fluids in the systems $\mathrm{KCl}-\mathrm{H}_{2} \mathrm{O}$ influence the solubility behaviour of synthetic F - and Cl -apatite and natural Durango F -apatite at fixed P - T conditions of $800^{\circ} \mathrm{C}$ and 1 GPa in a piston cylinder apparatus. The first experimental results in the system F-apatite- $\mathrm{H}_{2} \mathrm{O}-\mathrm{KCl}$ yielded a strong increase in solubility at low X_{Kcl} but in contrast to the $\mathrm{NaCl}-\mathrm{H}_{2} \mathrm{O}$ system the solubilites at high salt concentrations are much lower in our system since we use pure synthetic F -apatite.

