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1. Introduction 
 

For the reconstruction of Alpine tectonics, the Permian to Lower Triassic Haselgebirge Fm. of the Northern 
Calcareous Alps (NCA) (Austria) plays a key role for: (1) the origin of Haselgebirge bearing nappes, (2) the 
potentially primary or tectonic inclusion of magmatic and metamorphic rocks revealing tectonic processes not 
preserved in other units, and (3) debated mode of emplacement, namely gravity-driven or tectonic. With these 
aims in mind, we studied the sulphatic Haselgebirge exposed to the east of Golling, particularly the gypsum 
quarry Moosegg and its surroundings located in the central NCA (Figs. 1, 2, 3).  Here, we show new observations 
and most important analytical data, which shed significant new insights on the tectonic evolution of this segment 
of the NCA. For further details, the reader is referred to Schorn (2010), Schorn and Neubauer (2011) and Schorn 
et al. (Tectonophysics, revision submitted). 
In central NCA, the Tirolic units are widespread and nearly subhorizontal within the so-called Tirolic arc 
(Tollmann, 1985). The overlying Juvavic units are subdivided into the Lower Juvavic unit with the Haselgebirge 
Fm. and mainly lenses and blocks of Middle-Upper Triassic pelagic limestone of the Hallstatt facies realm. These 
units are tectonically overlain by the Upper Juvavic units of the Untersberg and Dachstein nappes, and in the 
study area, by the Schwarzer Berg klippe (Figs. 2, 3). In the Moosegg area, the Haselgebirge Fm. (lower part of 
the Juvavic nappe), overlying the Lower Cretaceous Rossfeld Fms., forms a tectonic klippe (Moosegg klippe) 
preserved in a synform, which is cut along its northern edge by the ENE-trending high-angle normal Grubach fault 
juxtaposing the Haselgebirge Fm. to the Upper Jurassic Oberalm Fm. (Fig. 2). The Lower and Upper Rossfeld 
Fms. comprise synorogenic clastic sediments (mainly sandstones and subordinate conglomerates; Faupl and 
Tollmann, 1978; von Eynatten et al., 1996). 
 

 
 

Fig. 1. a - Overview over Austroalpine units in Eastern Alps and Western Carpathians). b - Overview over Austroalpine 
units in central NCA (modified from Leitner et al., 2011). 
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Fig. 2.. Geological map of the central southern part of the Osterhorn Tirolic nappe and overlying units (modified after 
Geological Map, scale 1:50,000, sheet Hallein (Plöchinger, 1987) updated by own observations); A - A´, section of 
Figure 3. (modified after Schorn and Neubauer, 2011). 
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Fig. 3. - Simplified NW-trending section across the study area showing the Moosegg klippe, the Grubach normal fault, 
the Haselgebirge thrust fault, synclines, anticlines and the Schwarzer Berg thrust fault (after Schorn and Neubauer, 
2011). 
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Fig. 4. Geological map of Moosegg quarry (after Schorn and Neubauer, 2011). The numbers 1 to 9 mark the excursion 
stops. JN – Juvavic nappe.  
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2. Lithology and structures of the Moosegg klippe 
 

An overview on the study area and a section is shown in Figures 2 and 3. The gypsum mine Moosegg at Grubach 
(GPS-coordinates 47°36’56.41 N13°13’00.50 E) (Figs. 4, 5a) was first documented in 1613. Fibrous gypsum of 
the Moosegg quarry, which was dated by sulphur-isotope measurements, yield an Upper Permian age (Pak, 
1978). In the course of our research, the Moosegg quarry was mapped in detail in terms of its geology and 
geological structure (Figs. 4, 5a). The levels of the quarry were numbered from I to X with increasing altitude.  
In principle, the main parts of the quarry are composed of a partly karstified cap of gypsum (Fig. 5a and b). A 
syncline of light-coloured massive gypsum with lenses of anhydrite in the centre (Petraschek, 1947) (excursion 
stop 5) is surrounded by more or less foliated dark gypsum breccia. Furthermore, some decimeter- to meter-sized 
blocks of exotic rocks including different types of plutonic rocks, greenstones and various claystone/mudstones as 
well as dolomite lenses are of great importance. Furthermore, a carbonatic breccia with red and green claystone 
and mudstone (Fig. 5f), dark jointed anhydrite (Fig. 5g) and dark gypsum shear bands (Fig. 5j) are observed. 
A breccia with a groundmass of gypsum (Fig. 5a and c) makes up the bulk of the quarry, and components vary in 
size between 1 cm and 1 m. Apart from gypsum and anhydrite clasts they consist of several different types of 
magmatic rocks. These include biotite-diorite (Figs. 5d,  8a; excursion stop 6), meta-syenite, then meta-doleritic 
blueschists, ultramafitites, and heavily altered, carbonatic volcanic rocks and a rare, banded meta-psammitic 
schist (Fig. 8d).  
In the south-eastern part of level I (Fig. 6a) ductile structures related to thrusting of the Haselgebirge Fm. over the 
Lower to lowermost Upper Cretaceous rocks is preserved close to the structural base of the Moosegg klippe in 
folded, nearly vertically dipping anhydrite and carbonate mylonites (Fig. 6b and d). The carbonate mylonite 
comprises millimeter-sized pyrite grains with pressure fringes indicating a well-expressed subhorizontal stretching 
lineation. The banded mylonites are nearly subvertically or steeply N-dipping and folded (Fig. 6c and d). Shear 
sense criteria indicate a top-west movement of the Haselgebirge nappe (Fig. 7a-d).  The banded mylonites are 
folded with subhorizontal fold axes, here assigned as fold axes F2, and a cogenetic fracture cleavage S2 (Fig. 6e).  
The Moosegg quarry and its vicinity received a significant thermal overprint reaching a maximum temperature of 
ca. 290 - 300°C (Table 1).  
 

Table 1. Temperature conditions of eo-Alpine metamorphism within the Moosegg area, central NCA (from Leitner et al., 
2011). For full sources, see cited manuscript. CAI - conodont color alteration index, FI - fluid inclusions, VR - vitrinite 
reflectance. 

Location Method

Temperature

range

(°C)

Temperature, 

best estimate 

(°C)

Author(s)

Northern Calcareous Alps, southern margin FI 270 - 360 315 Götzinger and Grum (1992)

Sazkammergut, Juvavic nappes CAI 80 - > 350 80 Gawlick et al. (1994)

Moosegg FI 220 - 262 240 Spötl et al. (1998)

Moosegg FI > 300 300 Wiesheu (1997)

Moosegg FI 300 300 Wiesheu (1997)

Lammer unit (Juvavic unit) VR max. 290 290 Rantitsch and Russegger (2005)
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Fig. 5. Field photographs from the lithologies in the Moosegg quarry (after Schorn and Neubauer, 2011). a - Overview of 
Moosegg quarry: Note the lenses of brown, banded dolomite (BBD), green and dark clayey mudstone (GM), light-
brownish claystone (BC), dark anhydrite with fibrous blue Na-amphibole (NA) and red and green claystone (RGC) on 
the left side and light-coloured white gypsum (G) with small lenses of anhydrite (A) on the right side, embedded in 
dark, foliated gypsum breccia (DGB). b - Karst caveats in the uppermost part of the quarry. c - Strongly foliated 
gypsum breccia of level VIII. d - Dark gypsum breccia with two types of dark components of level III containing a well 
preserved biotite-diorite block (small picture). e - Boundary between grey siliceous marl and rauhwacke (cellular 
limestone; upper side) and red and green claystone and mudstone. f - Carbonatic breccia with red and green claystone 
and mudstone. g - Dark jointed anhydrite. h - Brown banded dolomite of level III. i - Dark anhydrite with fibrous blue 
amphibole. j - Shear zones of level V.  



PANGEO AUSTRIA 2012 15. – 20. September  Exkursion 01 

 

10 

 
Fig. 6. a - Overview of the southern part of level I with BCM - banded carbonate mylonite, BACM - banded anhydrite-
carbonate mylonite and ACM – anhydrite-carbonate mylonite (after Schorn and Neubauer, 2011). b - Foliation in banded 
anhydrite-carbonate mylonite.  The foliation S1 intersects bedding with an acute angle. c - Stretching lineation in 
banded anhydrite-carbonate mylonite. The stretching lineation is underlined by elongated rigid pyrite porphyroclasts 
with pressure fringes subparallel to the stretching lineation. d - Well foliated carbonate and anhydrite mylonite with 
folds at level I of the Moosegg quarry. e - A peculiar case of the fracture cleavage S2 in well foliated carbonate 
mylonite. f - Gypsum-filled extensional veins. Note two sets of veins and a similar orientation of fibres in both sets. For 
explanation, see text.  
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Fig. 7. Examples of shear sense criteria showing top W motion (after Schorn and Neubauer, 2011). a – Thin section-
scale isoclinal intrafolial fold (scan of a thin section). b – Microphotograph showing an isoclinal intrafolial fold.  c - 
Asymmetric pressure fringes indication a top west movement. d - Microphotograph showing oblique orientation of 
subparallel anhydrite grains in respect to elongated subhorizontal aggregates of ore grains.  

 

3. Petrography of magmatic blocks 
 

In the following, a representative sample from each group of rocks is described, which was also used for 
geochemical investigations. The main emphasis is on preservation of relictic magmatic minerals, the degree and 
nature of secondary alteration of primary magmatic rocks, and the metamorphic neocrystallization. 
The biotite-diorites (Figs. 5d, 8a) comprise mostly brown-coloured biotite, which has marginally transformed to 
leucoxene or a fine-grained aggregate of chlorite and white mica. The more common secondary peripheral 
change to green biotite is important for the age interpretation. The xenomorphic or lath-shape ore grains (0.1 – 
0.5 mm) are often overgrown by brown biotite. Furthermore, the rock contains titanium-rich brown amphibole 
(kaersutite), which is well preserved in relicts, primarily intergrown with biotite, marginally intergrown with other 
minerals and fragmented. Some margins are transformed to a fine-grained aggregate (with grains sizes of 0.02 
mm) of chlorite, white mica and possibly epidote. Fragments of colourless to pale green actinolite occur, which 
are also in part frayed marginally. Larger aggregates of plagioclase – presumably oligoclase (15 – 20% anorthite) 
– are sometimes nearly completely transformed to sericite. Nevertheless, they partly still show polysynthetic 
twinning. Moreover, pseudomorphs composed of chlorite, secondary green biotite, green actinolite and much 
clinozoisite and epidote (slightly Ca- and Fe-enriched in the cores) are quite common. The average grain sizes of 
these minerals vary between 0.05 – 0.1 mm. The thin section also comprises relicts of primary pyroxene, which 
have transformed to chlorite and actinolite.  In addition, there are also abundant leucoxene and apatite grains. 
The latter are mostly idiomorphic and hexangular but also occur in unusual prolate shapes or as inclusions in 
plagioclase.  
The fabric of the meta-syenite is principally consistent with the other meta-dolerites. Furthermore, it contains, 
apart from abundant brown biotite, up to 0.2 mm long brown amphibole (kaersutite) with rims of greenish 
amphibole and some K-feldspar. 
The meta-dolerites are a quite fine-grained amphibole-rich rock type, which contain abundant 0.1 to 0.3 mm large 
brown amphibole (kaersutite) showing a greenish rim, many Ti-mineral inclusions and a partial overgrowth by 
fine-grained white mica. The thin section also comprises brown biotite with many ore segregations. It is 
transformed peripherally to green biotite, which is in turn altered marginally to white mica. Furthermore, some 
rutile grains, large aggregates of epidote and relicts of plagioclase and pyroxene are found. Very fine-grained 
aggregates are composed of a mixture of fine-grained ore minerals, chlorite, leucoxene and white mica.  
The meta-doleritic blueschists comprise a strongly altered bluish amphibole with a doleritic, subvolcanic fabric, 
which is characterised by intergrown 0.3 – 0.7 mm long and 0.5 mm wide laths of plagioclase and pseudomorphs 
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after plagioclase. They have mainly been altered to fine-grained sericite with average grain sizes from 0.01 – 0.02 
mm, and maximum length of 0.1 mm and carbonate (Fig. 8c). Pseudomorphs of other minerals are less frequent 
and can be classified into two different types: (1) Dark pseudomorphs are completely decomposed and consist of 
leucoxene with boundaries diffusely intergrown ore grains and fine-grained relicts of pyroxene (probably 
orthopyroxene). (2) The second type is characterised by relicts of actinolitic amphibole, epidote and 
clinopyroxene. Furthermore, the rock partly contains well preserved green amphibole and brown biotite, both 
minerals sometimes transformed to green biotite, isometric ore grains (probably titanium-magnetite), apatite and 
secondary chlorite. 
The ultramafitite comprises relicts of olivine, which is predominantly serpentinized. Furthermore, relicts of well 
preserved clinopyroxene showing cleavage and twinning and few box-shaped orthopyroxene grains also occur.  
The Banded meta-psammitic schist represents one of the few foliated metamorphic clasts and was found within 
the brown, banded dolomite. The sample is essential for the (white mica) dating of a metamorphic event in the 
source rocks of the block embedded within the gypsum breccia and shows a highly ductile metamorphic fabric 
including foliation and exemplarily well developed isoclinal folding. There are three different types of layers: (1) 
The light-colored layers represent a quartz-muscovite-biotite schist (Fig. 8d) and are composed of slightly 
stretched, 0.05 – 0.10 mm long quartz grains with amoeboid grain boundaries and much chlorite. Furthermore, 
white mica with grain sizes from 0.1 to 0.3 mm occurs, then brown biotite, which is very often intergrown with 
chlorite, 0.02 mm long ore grains and rare chloritoid. (2) The dark layers are polymineralic and rich in amphibole, 
strongly corroded, and largely transformed to other minerals. Some relicts of colorless to light green amphibole 
are zoned. The green/brown amphibole (kaersutite) is overgrown by secondary, blue Na-amphibole (riebeckite) 
(Fig. 8b). (3) The carbonatic layers are intergrown with chlorite. They contain approximately 10 – 15 modal % of 
chlorite with ore inclusions indicating an origin from biotite and some white mica. The protolith is probably a 
quartz-rich sandstone with carbonatic layers. 
 

 
Fig. 8. Photomicrographs (after Schorn et al., Tectonophysics, revision submitted): a - Brown biotite (bt) with 
peripheral transformation to green biotite (gbt) of thin section IV-E (biotite-diorite), parallel polarizers. b - Amphibole 
(actinolithe – act), overgrown by secondary, blue Na-amphibole (riebeckite - rie) of II-A (banded meta-psammitic 
schist), parallel polarizers. c - Back-scattered electron image showing fabrics the meta-doleritic blueschist III-T with 
relictic cpx-cores with blue amphibole rims (winchite-ferro winchite), strong exsolution phenomena in magmatic 
minerals and celadonite-rich white mica and carbonate pseudomorphs after plagioclase. Sample III-T. Abbreviations: 
amph – amphibole, car – carbonate, cpx – clinopyroxene, plag – plagioclase, sph – sphene, wm – white mica.  d - 
Quartz-muscovite-biotite schist layer of II-A (banded meta-psammitic schist) ms - muscovite, crossed polarizers.  
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4. Composition of magmatic minerals in biotite-diorite 
 

We selected a few samples with well preserved magmatic minerals from the biotite-diorite, meta-dolerite, meta-
syenite and meta-doleritic blueschist for microprobe work. We investigated various minerals of the biotite-diorite 
and here only report data from the kaersutitic amphiboles and their rims and from clinopyroxene, which are 
important for the interpretation of the tectonic setting of the magmatic suite. Representative analytical results are 
graphically shown in Fig. 9. 
Clinopyroxene occurs in the core of partly well preserved grains or in shape relicts, which are surrounded by a 
fine-grained mixture of blue amphibole rims (winchite – ferro-winchite). Celadonite-rich white mica and carbonate 
pseudomorphs after plagioclase are abundant. In the same rock type, brownish kaersutitic amphibole is observed 
(Fig. 8c). Clinopyroxene is mostly augite (Fig. 9a). The brownish amphibole is kaersutite and the rims are 
composed of actinolite (Fig. 9b and c).  
 

 
Fig. 9. Composition of a - Clinopyroxene, b - Kaersutitic amphibole and c - Actinolite of biotite-diorite and meta-dolerite 
(after Schorn et al., Tectonophysics, revision submitted). 
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5. Geochemistry of magmatic blocks  
 

We used the TAS (total alkalies-silica) graph for plutonics after Cox et al. (1979) (Fig. 10a). One of the meta-
dolerites plots near the ijolite field, the remaining others plot close to the gabbro field just as the biotite diorites 
and one of the meta-dolerites. The meta-dolerites are located near the meta-syenite within the nepheline-syenite 
field. We also used the Q’(F’)-ANOR discrimination diagram for plutonics of Streckeisen and LeMaitre (1979; not 
shown). The meta-dolerites are located in the fields of foid-syenite, foid -monzonite, foid-monzodiorite and foid-
monzogabbro. The biotite-diorite samples plot in the foid-monzodiorite and foid-monzogabbro fields. The meta-
dolerites show a broad distribution: they plot in the monzo-gabbro/diorite field as well as on the border of foid-
syenite to foid-monzonite and together with the meta-syenites in the foid-syenite fields. 
In the following multi-variation diagram analysis, we distinguish five different rock types. The REE (normalized CI 
chondrite after McDonough and Sun, 1995) (Fig. 10c) of meta-dolerite and meta-syenite are extremely enriched 
(thousand-fold) with light rare earth elements, which is typical for alkaline magmatites (e.g., from rifts). 
Furthermore, they show a high La/Lu ratio and a characteristic negative Eu anomaly, which is caused by a 
plagioclase fractionation in the melt. The meta-doleritic blueschist shows a plain pattern with low enrichment in 
elements and no Eu-anomaly, which means that plagioclase has never been removed from the melt. The La 
concentration is lower than that of Ce, which is particular for N-MORB (normal mid-ocean ridge basalt) or T-
MORB (transitional MORB) rocks. Together, these samples are very meaningful and surely indicate an N-MORB-
origin of blue meta-dolerites. The biotite-diorite samples show a significant enrichment in REEs but no negative 
Eu-anomaly. Both facts are representative for alkaline rocks. In the Ta/Yb–Th/Yb discrimination diagram after 
Pearce (1982) (Fig. 10b), the meta-doleritic blueschist plots in the MORB field, the biotite-diorites and one meta-
dolerite in the alkaline transition zone. The remaining meta-dolerites are assigned to the shoshonite–calkalkaline 
field and the meta-syenite to the volcanic arc basalts. 
The ultramafitite sample shows a flat pattern and is notably less enriched in all elements than the previous rocks. 
It also has no Eu-anomaly, which is typical for ultramafic rocks. This rock represents a cumulate, which probably 
developed from the parent melt of the meta-doleritic blueschist protolith. 
In the multi-variation diagram of trace elements versus primitive mantle composition using normalization values of 
Sun and McDonough (1989), all samples show more or less flat patterns with partially very distinct anomalies 
(Fig. 10d). They are all enriched with Cs and Rb and show, except for the blue meta-dolerite samples, a 
prominent negative Ba anomaly. 
We suggest that both the blue meta-dolerites and biotite-diorites derived from a primitive mantle melt. The meta-
doleritic blueschists show an affinity to MOR basalts while the biotite-diorites originate from the alkaline milieu of a 
shallow magma chamber without any influence of a subduction zone. In detail, the results are as follows. The 
meta-dolerites and the meta-syenite show positive anomalies of Cs, Rb, Th, La/Ce, Pr, Nd, Sm, Y and a negative 
one for Nb, Ta and Ba. The metadoleritic blueschist bears positive anomalies in Cs, Rb and Pb as well as a 
slightly negative one in Ba. Biotite-diorites exhibit positive anomalies for Cs, Rb, Pb and Sr. The ultramafitite 
shows positive anomalies for U, Pb, Sr and negative ones for Nb, Sm and Hf.  
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Fig. 10. a -TAS (Total Alkalies-Silica) graph for plutonic rocks according to Cox et al. (1979). b - Ta/Yb–Th/Yb 
discrimination diagram according to Pearce (1982). VAB - volcanic arc basalt, SHO - shoshonite, CA - calcalkaline, TH - 
tholeiitic, MORB - mid ocean ridge basalt,  TR - trachytic , ALK - alkaline, WPB - within plate basalt. c - Spider diagram 
normalized to CI chondrite (McDonough and Sun, 1995). d - Multi-element variation diagram All Trace P mantle (Sun 
and McDonough, 1989); m.-d. blueschist – meta-doleritic blueschist (after Schorn et al., Tectonophysics, revision 
submitted). 

 

6. Age dating results on magmatic and metamorphic minerals 
 

As mentioned above within the Moosegg quarry of central NCA gypsum/anhydrite bodies are tectonically mixed 
with lenses of sedimentary rocks and decimeter- to meter-sized tectonic clasts of plutonic and subvolcanic rocks 
and rare metamorphics. We examined various types of (1) widespread biotite-diorite, meta-syenite (2) meta-
dolerite and rare ultramafic rocks (serpentinite, pyroxenite) as well as (3) rare metamorphic banded meta-
psammitic schists and meta-doleritic blueschists. For the first time, plutonic and subvolcanic rocks and rare 
metamorphics were found in the Upper Permian to Lower Triassic Haselgebirge Fm.  
The 40Ar/39Ar biotite ages from three biotite-diorite, meta-dolerite and meta-doleritic blueschist samples with 
variable composition and fabrics range from 248 to 270 Ma (e.g., 251.2 ± 1.1 Ma) (Fig. 11) indicating a Permian 
age of cooling after magma crystallization or metamorphism. The chemical composition of biotite-diorite and 
meta-syenite indicates an alkaline trend interpreted to represent a rift-related magmatic suite. These and Permian 
to Jurassic sedimentary rocks were incorporated during Cretaceous nappe emplacement forming the sulphatic 
Haselgebirge mélange. The scattered 40Ar/39Ar white mica ages of a meta-doleritic blueschist (of N-MORB origin) 
and banded meta-psammitic schist are at ca. 349 and 378 Ma (Fig. 11), respectively, proving the Variscan age of 
pressure-dominated metamorphism. These ages are similar to detrital white mica ages reported from the 
underlying Rossfeld Fms., indicating a close source-sink relationship. According to our new data, the 
Haselgebirge bearing nappe was transported over the Lower Cretaceous Rossfeld Fms., which include many 
clasts derived from the Haselgebirge Fm. and its exotic blocks deposited in front of the incoming nappe 
comprising the Haselgebirge Fm. (Fig. 12b).   
(U-Th-Sm)/He apatite ages of two biotite-diorite samples (IV-E and IV-F) show two different age groups at ~ 25-27 
Ma and ~ 12 Ma. These ages were measured at the (U-Th-Sm)/He Laboratory at Göttingen (István Dunkl). We 
consider the younger as the significant one. This might indicate that a cooling below 60°C has taken place after 
12 Ma and that the sedimentary cover, which was about 2 km thick, was eroded after 12 Ma.  
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Fig. 11. Diagram showing the 40Ar/39Ar ages of all samples and their interpretation. For explanation, see text (after 
Schorn et al., Tectonophysics, revision submitted). 
 

7. Tectonic models 
 

At the base of the Haselgebirge Fm., strongly foliated fine-grained anhydrite-carbonate mylonite is preserved with 
a WNW-trending stretching lineation together constituting a L-S fabric indicating emplacement of the 
Haselgebirge evaporite mélange within ductile conditions. In other places at the base of the Haselgebirge, 
anhydrite is transformed into foliated gypsum leaving behind a still well preserved L-S fabric. The main 
Haselgebirge body comprises foliated, massive and brecciated anhydrite and gypsum. Gypsum breccias with 
foliated gypsum clasts are quite common, and some of these breccia lenses are again foliated and clasts are 
stretched implying several stages of ductile deformation. Because of peculiar fabrics, we interpret formation of 
gypsum and anhydrite breccia by fluid overpressure, possibly in part related to dehydration reactions of gypsum 
to anhydrite.  
For Late Permian, we propose an asymmetric rift setting (Fig. 12a) with a principally ductile low-angle normal fault 
cutting through the whole lithosphere. This causes the following consequences, which fit with all the observations. 
The initial rift resulted in the formation of a halfgraben which is filled by clastic sediments exposed along the 
southern margin of the NCA. We interpret this stage as the synrift phase. In an advanced stage of rifting, mantle 
melts were produced through an uprise of an asthenospheric dome, which is shifted towards the upper plate. A 
few gabbroic bodies intruded into a high level of the crust and a few volcanic successions are known, specifically 
from the eastern Salzkammergut area (e. g., Grundlsee; Kirchner, 1979; Vózarova et al., 1999). These volcanic 
rocks are in direct contact with Haselgebirge which argues for an emplacement during deposition of the 
evaporites. We interpret the time of deposition of the Haselgebirge as post-rift phase. 
The new (U-Th-Sm)/He apatite ages of ~ 12 Ma indicate a Miocene denudation of ca. 2 km thick sedimentary 
coverburden (“Augenstein” Fm.) from the Oligocene Dachstein plateau. This is significantly younger as suggested 
before (Frisch et al., 2001). 
As mentioned above the Haselgebirge bearing nappe was transported over the Lower Cretaceous Rossfeld Fms., 
which include many clasts derived from the Haselgebirge Fm. and its exotic blocks deposited in front of the 
incoming nappe comprising the Haselgebirge Fm. (Fig. 12b).   
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Fig. 12. Tectonic models for two steps of the tectonic evolution of the Austroalpine unit of Eastern Alps (after Schorn 
et al., Tectonophysics, revision submitted). a - Model of an asymmetric rift setting during Late Permian. b - Model of the 
tectonic emplacement of the Haselgebirge nappe over the Rossfeld Fms. of the Tirolic nappe complex. 
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8. Excursion stops 
 

In the following the excursion points are shortly described (for their location see Fig. 3). 

 

Stop 1: Anhydrite-carbonate mylonites 

In the south-eastern part of level I (Fig. 6a) ductile structures related to thrusting of the Haselgebirge Fm. over the 
Lower to lowermost Upper Cretaceous is preserved close to the structural base of the Moosegg klippe in folded, 
nearly vertically dipping anhydrite and carbonate mylonites (Fig. 6b, d). The carbonate mylonite comprises 
millimeter-sized pyrite grains with pressure fringes indicating a well-expressed stretching lineation. The banded 
mylonites are nearly subvertically or steeply N-dipping, folded (Fig. 6c and d) and shear criteria indicate a top-
west movement of the Haselgebirge nappe (Fig. 7a-d).   
The banded carbonate mylonite (Fig. 6a) is about 10 meter thick, strongly foliated and shows a centimetre-scale, 
here subvertical, banding respectively foliation. The uppermost 50 cm of the carbonate mylonite are rich in pyrite, 
and show evidence for an axial plane foliation. Note, that banded mylonites are folded with subhorizontal fold 
axes, here described as fold axes F2, and a cogenetic fracture cleavage (Fig. 6e), here tentatively assigned to S2.  
The banded anhydrite-carbonate mylonite (Fig. 6b and d) is exposed with a thickness of about four meters. It 
consists to ca. 75% of 0.5 – 4 cm thick anhydrite layers, which are separated by 3 - 4 cm thick layers of dark 
claystone (Fig. 6b). In addition to the pyrite lineation (Fig. 6c), we found evidence for an intersecting δ-lineation 
and evidence for an axial plane foliation.  
The anhydrite-carbonate mylonite is 5 – 6 m thick and contains, in the lower part of the outcrop, a lot of pyrite, 
which shows a distinct stretching lineation (Fig. 6c). Furthermore, the banded mylonite rock comprises ca. 1 – 3 
cm wide extension veins filled with in part fibrous gypsum (Fig. 6f). These are arranged in two orientations. The 
main orientation is subvertical, and fibres are oriented subperpendicular to vein walls. The subordinate veins are 
stepply E-dipping, and fibres have a similar orientation as in the main set. The similar orientation of fibres in both 
sets proves a cogenetic origin of both sets of gypsum-filled extensional veins.  
The strongly foliated fine-grained anhydrite and carbonate mylonite is preserved with a WNW-trending, 
subhorizontal stretching lineation constituting together an L-S fabric indicating emplacement of the Haselgebirge 
evaporite mélange within ductile conditions (T > 240°C) taking the peak temperature estimates of Spötl et al. 
(Spötl et al., 1998, see Table 1). Furthermore, the steeply dipping axial plane foliation indicates E-W-folding.  
 

Stop 2: In the south-eastern part of level I a ca. three meter thick, a strongly alterated greenstone lens mainly 
composed of meta-dolerites, meta-syenites and ultramafitites is exposed. 
 
Stop 3: Brown, banded dolomite shows a dark brown lamination and is located in the western part of the levels II 
and III (Fig. 5h). This rock type has never been described before as a part of the Haselgebirge nappe and is quite 
rich in extension joints and blue Na-amphibole (riebeckite according to microprobe data).  
 
Stop 4: Dark anhydrite with fibrous blue amphibole is located in the western part of level III (Fig. 5i). The 
numerous filaments of fibrous blue Na-amphibole (riebeckite) fill extension veins within the anhydrite. Their origin 
is likely due to rock/hydrothermal brine interaction, which is probably associated with ocean floor metamorphism.  
 
Stop 5: As mentioned above the light gypsum, which is outcropped on level III, occurs in a syncline in the centre 
of Moosegg quarry (Fig. 5a). It is commonly massive and only in the upper rim partially foliated. Furthermore, 
some lenses of darker and internally strongly foliated lenses of coarse-grained anhydrite are interbedded (Fig. 
5a). 
 
Stop 6: Outcrops of biotite-diorite within dark gypsum breccia with two types of dark components are exposed on 
levels III and IV. The strongly foliated gypsum breccia contains two types of dark components (Fig. 5d). The first 
lenses are composed of cataclastically deformed, broken dark dolomite, which are rich in veins of white gypsum 
and very sulphurous in the centre of the lenses. The second type consists of dark, banded siliceous mudstone. 
Furthermore, some well preserved biotite-diorite blocks are embedded within the breccia. 
 
Stop 7: The thin-bedded, brownish mica-rich greywacke is intercalated by shale and is located on the western rim 
of level III and can also be interpreted as an abyssal deposition. Thin-bedded brownish micritic limestones occur 
in a thick lens, but their assignment to the Werfen Fm. is not assured. 
 
Stop 8: Red and green claystone comprise the bulk of a non-mined hill in the north-western part of level VI (Fig. 
5e). These rocks were originally considered as siltstones of the Lower Triassic Werfen Fm.. However, the 
lamination and missing detrital white mica as well as the siliceous contents disprove this correlation.  
 
Stop 9: The ductile Haselgebirge thrust fault is also exposed in the eastern part of level VIII (Fig. 4) within 
strongly weathered, dark and red gypsum mylonite. The gypsum crystals are ca. millimetre-sized, and we 
tentatively assume that the gypsum crystals were formed by secondary transformation from anhydrite. 
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