Im dritten Abschnitte werden die Ergebnisse der Theorie in eine praktisch handsame Form gebracht und die Benützung einer die Resultate umfassenden Tabelle an mehreren Beispielen dargelegt.

Einige mitgetheilte Versuche zeigen die Übereinstimmung der theoretisch gewonnenen Resultate mit der Erfahrung.

Im vierten Abschnitte wird auf theoretischem Wege eine eigenthümliche Mischungsmethode von Schnee mit Schwefelsäure abgeleitet, welche zur Erzeugung sehr tiefer Temperaturen, deren untere Grenze sich bis jetzt noch gar nicht bestimmen lässt, dienen kann. Ez werden schliesslich die Grundzüge eines Apparates angedeutet, welcher es ermöglichen soll, solche tiefe Temperaturen auf einfache und continuirliche Weise hervorzubringen. Eine der Abhandlung beigegebene Tafel erläutert die etwas verwickelten Verhältnisse nach graphischer Methode.

Das c. M. Herr Oberbergrath v. Zepharovich in Prag, übersendet die sechste Folge seiner mineralogischen Mittheilungen, welche krystallographische Beobachtungen am Aragonit von Eisenerz und Hüttenberg und am Arsen von Joachimsthal enthalten.

Durch die Untersuchung der Aragonit-Krystalle von den genannten alpinen Siderit-Lagerstätten wurde die Kenntniss der Formen dieses Minerales nicht unwesentlich bereichert. Von den neuen Flächen haben mehrere eine, dem bisher allein angegebenen Prisma (110) mehr weniger genäherte Lage, und wurde für diese erkannt, dass sie dem Aragonit eigenthümliche, nicht als Störungserscheinungen aufzufassende seien, gleich wie dies von Websky für die analog auftretenden vicinalen Flächen des Adular nachgewiesen wurde. Die beobachteten neuen Formen sind: (403), (13.0.2), (701), (13.0.1), (14.0.1); (21.25.0), (24.25.0), (57.50.0), (59.50.0), (32.25.0), (34.25.0); (13.13.2), (771), (14.14.1); (17.12.5), (215), (312), (518).

An feinen nadelförmigen Arsen-Zwillingen, die neuester Zeit auf dem Geschieber-Gange in Joachimsthal angetroffen wurden, ist trotz der äusserst geringen Dimensionen der Kryställ-

25

chen eine Reihe von Messungen gelungen, aus welchen sich die Polkante des Grundrhomboeders 85° 6′ ergab, wenig abweichend von der Angabe G. Rose's (85° 4′), der jedoch nur einen Winkel an einem Krystalle gemessen hatte, während der obige Werth das Mittel von 33 Bestimmungen an 19 Krystallen ist. Diese Messungen dürften auch die ersten sein, die an natürlichen Krystallen ausgeführt wurden. Nach Janovsky's Analyse enthält die feinkörnige Masse, welche die Nadeln trägt, 90.91 As, 1.56 Sb, 4.64 Ni, 2.07 Fe, 0.55 Kieselsäure, nebst Spuren von Mangan und Schwefel.

V. Zepharovich verdankt das Materiale zu den vorliegenden Untersuchungen dem Sectionschef Freiherrn von Schröckinger, sowie den Professoren R. Niemtschik und H. Höfer.

Herr Dr. C. O. Čech, Privatdocent für Chemie am Prager Polytechnikum, d. Z. am Berliner kgl. Universitäts-Laboratorium, übersendet eine Abhandlung: "Zur Entwicklungsgeschichte der chemischen Industrie in Croatien".

Herr Emil Koutny, Professor der k. k. technischen Hochschule in Graz, übersendet eine Abhandlung: "Über die Sätze von Pascal und Brianchon im Sinne der beschreibenden Geometrie und bezügliche Constructionen von Kegelschnittslinien."

Dieselbe ergänzt zwei vorhergehende, im LVII. und LXIII. Bande der Sitzungsberichte veröffentlichte Arbeiten des Verfassers, und erschliesst neue Gesichtspunkte, welche die Behandlung einer Reihe von Problemen ermöglichen, die früher auf rein geometrischem Wege nur höchst umständlich, oder mit Hilfscurven höherer Ordnung und theilweise mittelst der Methoden der neueren Geometrie gelöst werden konnten. Hiebei wurde der Verfasser zu einer neuen und höchst einfachen Ableitung der wichtigen Sätze von Pascal und Brianchon geführt, durch Betrachtung der elementarsten Beziehungen zwischen drei Kegeln und einer allgemeinen Fläche zweiter Ordnung.

Wenn es auch dem Verfasser schon früher gelang, auf rein constructivem Wege die collineare Beziehung zwischen einem