Das c. M. Herr Prof. E. Mach in Prag übersendet eine Arbeit von Herrn Dr. V. Dvořák "über die Schwingungen des Wassers in Röhren".

Herr Prof. Mach theilt ferner mit, dass er bei Gelegenheit von Versuchen über die Doppelbrechung des Quarzes durch Druck, die er mit Herrn Studiosus Merten angestellt hat, auf die Construction eines Apparates verfallen ist, welcher für manche Untersuchungen grosse Bequemlichkeit bietet.

Denkt man sich das mit einem kleinen achromatischen Prisma fest verbundene Ocularnicol eines Polarisationsapparates um seine Längsaxe rasch gedreht, so erscheint jeder Punkt des Objecttisches dem Beobachter als Kreis. Liegt z. B. ein senkrecht zur Axe geschnittener Quarz, der bis auf eine kleine Stelle durch einen schwarzen Schirm verdeckt ist, auf dem Objecttisch, so sieht der Beobachter einen Ring, in welchem alle den verschiedenen Azimuten des Oculars entsprechenden Farben nebeneinander und zugleich erscheinen. Man kann dann z. B. auf einen Blick sehen, dass bei rechts drehendem Quarz der ganze Farbenkreis sich im Sinne des Vorzeigers dreht, wenn man den Quarz senkrecht auf die Axe drückt.

Da sich nun die virtuellen Bilder dieses Apparates leicht in reelle verwandeln und auf einen Schirm projiciren lassen, so eignet er sich auch zur objectiven Darstellung vieler Erscheinungen, z.B. der verschiedenen Polarisationsarten des Lichtes.

Man kann statt des achromatischen Prismas auch ein Prisma mit kleiner Dispersion anwenden und erhält dann eine übersichtliche spectrale Auflösung vieler Polarisationserscheinungen.

Ein rotirendes Nicol ist schon von Dove zu einem andern Zweck angewandt worden und Stefan hat mit Hilfe eines Kegelspiegels die Dispersion der Polarisationsebene im Quarz demonstrirt. Doch möchte der hier beschriebene Apparat schönere und exactere Bilder geben.