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Abstract
In shallow-water limestones of the Plassen Formation in the Tirolic nappe of the Northern Calcareous Alps, bauxite was 
formed on karstified and tilted platform margin grainstones to boundstones around the ?Kimmeridgian/Tithonian bound-
ary, or in the Early Tithonian as proven by Protopeneroplis striata Weynschenk, Labyrinthina mirabilis Weynschenk, and 
Salpingoporella pygmaea Gümbel. The platform established on top of the obducted ophiolite nappe stack. The onset of 
unroofing at the Kimmeridgian/Tithonian boundary exposed ophiolites to weathering, forming laterites, and bauxites. The 
weathered ophiolitic material was shed on the tilted, emerged, and karstified platform, where the bauxite accumulated. 
Continued subsidence led to flooding, and a Tithonian transgressive carbonate sequence sealed the bauxites. XRD analysis 
of the bauxite yields a composition of mainly boehmite with hematite and some berthierine, kaolinite, and chromite. SEM 
analysis verified magnetite, hematite, rutile, chromite, zircon, ferropseudobrookite, ilmenite, monazite, xenotime, and garnet 
distributed in pisoids and within the matrix. The pisoids reach a millimeter in size and partly show cores of older, larger 
pisoids. The composition of the chromites indicates an ophiolitic origin. Geochemical examination using major- and trace 
elements points to a mafic andesitic to basaltic parent material contaminated with highly fractionated rocks from an island 
arc. Formation of Early Tithonian bauxites in shallow-water limestones confirms Middle to Early Late Jurassic ophiolite 
obduction. This was followed by uplift and unroofing of the orogen from the Kimmeridgian/Tithonian boundary onwards 
after a period of relative tectonic quiescence with an onset of carbonate platforms during the Kimmeridgian on top of the 
nappe stack and the obducted Neo-Tethys ophiolites.
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Introduction

Although considerable work was already done on the geo-
dynamic reconstruction of the Mesozoic-Cenozoic sequence 
of the Eastern Alps, their geodynamic history, especially in 

Late Jurassic times, is not fully understood and controver-
sially discussed (see Gawlick and Missoni 2019 and Schmid 
et al. 2020 for a comprehensive overview and outlook).

Bauxites are final residues of the continental weather-
ing process and restricted to areas with intense chemical 
weathering. Recent bauxites formed under conditions of a 
tropical monsoon climate (Bárdossy and Aleva 1990). This 
makes bauxites valuable to unravel the geodynamic history 
as a marker for long-lasting, intense weathering. Longer last-
ing subaerial exposure can be best explained by tectonic 
uplift (D’Argenio and Mindszenty 1995). Natural processes 
like weathering do not entirely terminate or eradicate the 
affected rocks, and remnants of the parent rocks, at least 
heavy minerals, can be found in bauxites. The analysis of 
heavy minerals is a common tool to determine the prov-
enance of the parent material of bauxites. Standard meth-
ods of sedimentary provenance analysis (Blatt 1967; Zuffa 
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1980; Lewis and McConchine 1994) can also be applied for 
bauxites and therefore used for hinterland reconstructions. 
In addition to other siliciclastic components, heavy miner-
als are especially powerful tools for provenance studies of 
the original material weathered to bauxites (Kelemen et al. 
2017, and references therein).

The Lugberg bauxite, first described by Schadler (1948) 
and later by Mindszenty et al. (2005), was attributed to the 
"Mid-Cretaceous" before the Gosauic transgression. This 
research clarifies the stratigraphic position of the bauxite, 
provides a reliable dating by examination of the carbonates 
from the footwall and the hangingwall, and the analysis of 
heavy minerals in the bauxite to trace the provenance of the 
weathered ophiolitic parent material.

One of the yet not fully explored problems is the palaeo-
geographic setting and the evolution of the different isolated 
platforms of the Plassen Carbonate Platform. In the latest 
models, at least three platforms with a slightly different evo-
lution were reconstructed and supposed to have formed on 
top of propagating nappe fronts (Gawlick et al. 2009, 2012; 
Missoni and Gawlick 2011a, b). These nappe fronts with 
platforms on top are preserved today as tectonic blocks cut-
up and scattered by the Late Jurassic, "Mid-Cretaceous", and 
Miocene tectonics (Frisch and Gawlick 2003). In general, 
the Plassen Platform has a stratigraphic range from Late 
Oxfordian/Kimmeridgian to Late Early Berriasian (Gaw-
lick and Schlagintweit 2006; Auer et al. 2009) and evolved 
from a basinal to slope facies and via a reefal facies to a 
restricted lagoon with transgressive–regressive cycles. The 
different platforms did not drown contemporaneously: some 
drowned in the Late Tithonian, others at the beginning of the 
Cretaceous (Schlagintweit et al. 2003, 2005; Gawlick and 
Schlagintweit 2006), and some uplifted in the Late Tithonian 
(Gawlick et al. 2009 and references therein). This model 
needs to be slightly modified according to the results of Auer 
et al. (2010), Krische et al. (2014), and Gawlick et al. (2015). 
However, there are only few data about the ophiolites of 
the Neotehyan belt and the unroofing from the alpine realm 
(Missoni and Gawlick 2011a, b).

In the Northern Calcareous Alps, the rarely existing baux-
ites are exclusively karst bauxites (Bárdossy 1982; Combes 
and Bárdossy 1996), i.e., bauxite deposits formed and rest-
ing on karstified carbonate rocks. Practically all bauxites 
are believed to have formed slightly before the Gosauic 
transgression (Tollmann 1985, 1986 and references therein), 
i.e., in the "Mid-Cretaceous" (Aptian-Cenomanian) after the 
main thrusting period in the Early Cretaceous according to 
the classical concept (Tollmann 1985, 1986; Neubauer et al. 
2000; Leitner et al. 2014 and references therein). Late Early 
Cretaceous tectonic motions are related to the shortening 
between the Bavaric and Tirolic nappe systems and the effect 
on the Tirolic nappes is minor (Frisch and Gawlick 2003). 
The concept to explain the Jurassic tectonics in respect to 

the (partial) closure of the Neo-Tethys (Lein 1985; Gawlick 
et al. 1994, 1999a) is still rarely used, although the alterna-
tive nappe concept presented by Frisch and Gawlick (2003) 
solved numerous unsolved questions. Later, Missoni and 
Gawlick (2011a, b) and Gawlick et al. (2015) proved ophi-
olite obduction as known from the Dinarides/Albanides/
Hellenides (Gawlick et al. 2008; Schmid et al. 2008) as the 
triggering mechanism of Middle/Late Jurassic thrusting also 
for the Northern Calcareous Alps. For a recent overview, 
see Gawlick and Missoni (2019) and Schmid et al. (2020). 
The configuration of the ophiolitic nappe stack in the eroded 
southern Calcareous Alps and the formation of a Kimmerid-
gian-Tithonian carbonate platform on top (similar to what 
is known in the Albanides as shown by Schlagintweit et al. 
2008) and its subsequent uplift and erosion in the frame of 
mountain uplift and unroofing in the Tithonian like proven 
in the Dinarides/Albanides/Hellenides (Gawlick et al. 2020 
for a recent review) is still relatively unknown and existing 
reconstructions of this realm based on pebble analysis in the 
different resediments (Missoni and Gawlick 2011a, b). The 
discovery of bauxites in Tithonian shallow-water carbonates 
and their provenance from obducted and weathered ophi-
olites closes an important knowledge gap in the geodynamic 
history of the Northern Calcareous Alps.

In comparison with the evolution of the known Late 
Jurassic carbonate platforms in the Northern Calcareous 
Alps, Mt. Lugberg shows differences, which do not strictly 
allow to assign the succession to any of the time-equivalent 
platforms. The northernmost Wolfgangsee Carbonate Plat-
form shows an evolution with prograding reefs during Kim-
meridgian Tithonian times and a Late Tithonian drowning. 
The Plassen Carbonate Platform s. str. in a central position 
started to evolve in the Early Kimmeridgian and drowned in 
the Late Berriasian. From the Plassen Platform s.str. Late 
Kimmeridgian to Early Tithonian transgressive–regressive 
cycles are described (Schlagintweit et al. 2005; Schlagint-
weit 2011). The southern Lärchberg Carbonate Platform dif-
fers only slightly in the sedimentary evolution and evolved 
during the Kimmeridgian-Tithonian timespan and uplifted 
in the latest Tithonian. Bauxite is not known from any of 
the platforms. Equivalents from a more southern carbonate 
platform formed on top of the obducted Neo-Tethys ophi-
olites, as known from Greece (Carras et al. 2004), Albania 
(Schlagintweit et al. 2008), or Serbia (Gawlick et al. 2020 
and references therein) were so far not detected in the East-
ern Alps. Late Jurassic shallow-water components associated 
with ophiolitic detritus in the Kimmeridgian (Missoni and 
Gawlick 2011a, b; Gawlick et al. 2015) may have derived 
from this platform, but a direct proof for the existence of an 
equivalent of the Kurbnesh Platform (Schlagintweit et al. 
2008) is still missing.

The recent discovery of the Lugberg bauxite provides 
further important data for a more detailed reconstruction of 
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Late Jurassic geodynamic history of the eroded southern rim 
of the Northern Calcareous Alps after ophiolite emplace-
ment and their overlying Kimmeridgian-Tithonian shallow-
water carbonate platform.

Geological setting

The Lugberg bauxite deposit is located halfway between 
Russbach and the Schwarzensee lake in Upper Austria at the 
WGS84 coordinates 47°44′36.7′′ N 13°30′ 34.1′′ E. Here, the 
bauxite crops out at the rims of an unusually wet meadow 
(Fig. 1).

The Late Jurassic Plassen Limestone of Mt. Lugberg 
is interpreted as a part of the Wolfgangsee Carbonate 
Platform (Gawlick et  al. 2007) that differs in its gen-
eral sedimentary evolution from other Plassen Carbon-
ate Platforms. Here, shallow-water formation started in 
the Early Kimmeridgian and ended in the Late Tithonian 
by drowning. The Wolfgangsee Carbonate Platform is 
predominantly composed of fore-reefal and reefal lime-
stones. In contrast to the Plassen Carbonate Platform s. 
str. (Schlagintweit et al. 2003) or the Lärchberg Carbon-
ate Platform (Gawlick et al. 2009), here thick lagoonal 
limestones are missing. However, the small northeastern 

part of Mt. Lugberg hosting the bauxites consists of plat-
form margin (upper slope) Plassen Limestone underlain 
by ooidal grainstones and is separated by an ancient fault 
containing ophiolitic mélange from the rest of the Wolf-
gangsee Carbonate Platform and presumably has a differ-
ent palaeogeographic origin. On a large scale, Mt. Lugberg 
is located in the Tirolic unit just north of the Wolfgangsee 
fault (Plöchinger 1964, Fig. 2).

Materials and methods

A Panalytical X’Pert3 Powder Diffractometer with a Cu 
anode measuring from 0° to 90° was used for XRD meas-
urements. Actlabs performed the chemical analyses with 
the packages 4E-Res + ICPMS, or 4LITHO 4B-INAA(4B) 
4B1, respectively. The SEM measurements were taken 
with a Zeiss Evo MA 10 operated at 15 kV with a Bruker 
EDX detector. The geochemical analysis was performed 
using the statistical software R with the GCDkit (Janoušek 
et al. 2006); image analysis was performed with ImageJ 
using Fiji (Schindelin et al. 2012).

Fig. 1  Airborne laser scan image of the bauxite bearing area of the Lugberg with the bauxite occurrence. The areas marked in yellow numbered 
1–5 are outcrops of the siliciclastics covering the bauxite
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Results

Bauxite

Examination of the powdered bauxite by XRD (Fig. 3) 
yielded boehmite as the main mineral; minor minerals are 
berthierine, hematite, some kaolinite, and some chromite. 
No mixed-layer clay minerals were detected; therefore, the 
sample was not treated for further examinations. This is 

consistent with the results of Mindszenty et al. (2005), 
although they also found plagioclase.

SEM analysis and microscopy yielded rutile, chromite, 
zircon, ferropseudobrookite, ilmenite, monazite, and garnet 
as heavy minerals. The bauxite is rich in  Fe2O3 and magnet-
ite and hence shows macroscopically magnetic properties. 
 Fe2O3 could be present as hematite or maghemite, a distinc-
tion is not possible by SEM analysis, however, XRD analy-
sis only prove hematite. The pisoids, in some cases, have 
a core of broken older, even larger pisoids (Fig. 4a, b) and 

Fig. 2  a Tectonic sketch map of the Eastern Alps and study area 
(marked by the thick-lined box; b) in the central Northern Calcare-
ous Alps (modified after Frisch and Gawlick, 2003, and Tollmann, 
1977). GPU Graz Paleozoic unit; GU Gurktal unit; GWZ Greywacke 
Zone; RFZ Rhenodanubian Flysch Zone. b Recent block configura-

tion of the Tirolic nappes in the central Northern Calcareous Alps 
with major faults during Miocene lateral tectonic extrusion (simpli-
fied after Frisch and Gawlick 2003). Studied locality Lugberg indi-
cated in bold

Fig. 3  XRD spectrum of the Lugberg bauxite. The boehmite, berthierine, and hematite peaks are clearly visible; the kaolinite and the chromite 
peaks are relatively small but distinct
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are often enriched in clastic grains in the core. The pisoids 
are enriched in Al with respect to the matrix (Fig. 4c, d) 
but are sometimes entirely composed of hematite (Fig. 4c). 
Frequent clasts in pisoids are rutile and ilmenite, whereas 
chromite and zircon are rare. Chromite is often rounded. 
Magnetites have broadly varying amounts of Al, Mg, and 
Cr (each up to 10 atomic percent) and probably formed as 
alteration product from chromite either by serpentinization 
(when present as clastic grains) or during the bauxitisation 
(when present as spongy structures often intergrown with 
hematite, Fig. 5a). Heavy mineral grains can be found both 
in the matrix and in the pisoids, although rutile and chromite 
tend to concentrate in the pisoids while zircon and xenotime 
are more frequent in the matrix. As an accessory mineral, 
xenotime carrying REE contents was observed (Fig. 5b). 

Microfacies of the Plassen limestone

The footwall of the bauxite comprises ooidal grainstones 
(Fig. 6a). The bauxite is hosted by karst depressions in the 
ooidal grainstones and is partly eroded. Deep bauxitic infil-
trations in the ooidal grainstones underlying the bauxite are 
common (Fig. 7). The under-ore breccia comprises cm-sized 
angular to subangular clasts of the underlying limestones as 

well as Plassen Limestones with a bauxitic matrix (Fig. 6b, 
for bulk analysis, see Table 1). Directly above the bauxite 
follows a siliciclastic silty sand layer overlain by carbonates. 
The siliciclastic unit crops out over a far larger area than 
the bauxite (Fig. 2). The carbonates above start with fine-
grained packstones with small foraminifers (Fig. 6c), above 
follow platform margin (upper slope) Plassen Limestones 
(Fig. 6d). The Plassen Limestones comprise grainstones and 
boundstones with abundant dasycladales, crinoids, foramini-
fers, bivalves, gastropods, and encrusting organisms [mainly 
Crescentiella morronensis (Crescenti)].

Biostratigraphy of the Plassen limestone

Typical, but not exactly datable platform margin (upper 
slope) sediments of the Plassen Formation form the hang-
ingwall of the bauxite. The following microfossils were 
found (Fig.  7): Radiomura cautica (Senowbari-Daryan 
and Schäfer), Crescentiella morronensis (Crescenti), Pro-
topeneroplis striata (Weynschenk), Labyrinthina mirabilis 
(Weynschenk), and Salpingoporella pygmaea (Gümbel), 
Neuropora lusitanica (Termier and Termier). The first two 
taxons point to a reef near position. In the Plassen Forma-
tion, P. striata has a stratigraphic range from Kimmeridgian 

Fig. 4  a Sedimentological features of the Lugberg bauxite; an over-
view image of the Lugberg bauxite comprising large pisoids, some of 
them with broken fragments of older pisoids as cores and hematite 
(Hem) concretions; b similar image in transmitted light; c pisoid con-

taining clasts of rutile (Rt) and chromite (Chr); d Same image as c as 
element map, note the pisoids enriched in Al and the matrix enriched 
in Si. All scale bars are 200 µm



1852 International Journal of Earth Sciences (2021) 110:1847–1862

1 3

to Upper Tithonian, L. mirabilis has a stratigraphic range 
from Upper Kimmeridgian to Lower Tithonian, and S. pyg-
maea has a stratigraphic range from Upper Kimmeridgian 
to Lower Berriasian (Schlagintweit et al. 2005). Hence, the 
hanging wall of the bauxite can be dated as Late Kimmerid-
gian to Lower Tithonian, most likely Early Tithonian. The 
direct footwall consisting of ooidal grainstones is not pos-
sible to date, but as the under-ore breccia contains Plassen 
Limestone pebbles it can be dated as Kimmeridgian, as it is 
older than the hanging wall and the oldest known Plassen 
Limestone is of Early Kimmeridgian age.

Geochemistry

Determining the dominant parent rock is possible using the 
FMW diagram (Ohta and Arai 2007, Fig. 8a) and comparing 
the dataset with several other proxies relying on normalized 
ratios of immobile trace elements. The FMW diagram is the 
result of a principal component analysis of chemical data 
of igneous rocks and their weathering profiles. The result 
indicates two principal components covering ~ 75% of the 
total variability, which can be used to construct the FMW 
triangle. F represents the felsic component, M represents the 
mafic component, and W is the superimposed weathering 
component (Ohta and Arai 2007). The data of the bauxite 

plots directly on the right sideline of the FMW diagram, the 
composition of the parent material was most likely at least 
andesitic—if not basaltic. This is in accordance with the 
Nb/Y-Zr/Ti plot (Winchester and Floyd 1977 modified by 
Pearce 1996, Fig. 8b), pointing to an andesitic bulk parent 
rock composition. If some highly fractionated material con-
taminated the presumably basic main contributing material, 
the result would still have a basic bulk composition in terms 
of the main elements, but the trace element composition 
would be shifted noticeably towards the fractionated mate-
rial. This is exactly what can be observed in the Lugberg 
samples.

The Nb-Zr-Y diagram (Meschede 1986, Fig. 8c), the 
La/10-Y/15-Nb/8 plot (Cabanis and Lecolle, 1989, Fig. 8d), 
and the geotectonic diagram for (ultra-)basic rocks used for 
tectonic discrimination of basalts (Agrawal et al. 2008, 
Fig. 8e) are in accordance and point to a source material 
derived from an oceanic island arc formed in a compres-
sional setting. The multi-element spider diagram normalized 
to mid-ocean ridge basalt (MORB, Dilek and Furnes 2011) 
points to a supra-subduction zone (SSZ) origin of the baux-
ite with a boninitic contribution.

Chromites

The Lugberg spinels can be divided (compare Fig. 4a) into 
comparatively fresh and altered former chromites. Fresh 
grains are compact and rounded; altered grains often have 
irregular shapes and a high compositional variability. The 
fresh grains are chromites and Al-chromites, while the 
altered grains are Al, Mg, and Cr bearing magnetites. Al, 
Cr, Mg, and Ti contents of chromites can be used to deter-
mine the tectonic provenance. The model of Kamenetsky 
et al. (2001) uses Ti and Al for discrimination. Aside from 
major outliers, which were recognized as altered grains, 
most grains plot in the fields of SSZ peridotite and MORB 
peridotite (Fig. 9a). The discrimination chart of Pearce et al. 
(2000) plots the Cr# versus the  TiO2 content of the spinels 
(Fig. 9b). The lower-left of the diagram illustrates the cal-
culated melting trend of fertile MORB mantle. From the dif-
ferently depleted mantle rocks, the lherzolite and the dunite 
reactions originate. The lherzolite reaction is typical for the 
chemical evolution of a MORB. The dunite reaction is typi-
cal for the chemical evolution of SSZ melts. Boninites form 
from high rates of partial melting of depleted mantle under 
the influence of dehydration of the subducting slab (Johnson 
2012). Island arc tholeiites represent melts formed from less 
depleted mantle material (Johnson 2012). The chromites plot 
in the range of the dunite reaction field pointing to boninites 
and island arc tholeiites as host rocks. One chromite has a 
less Cr-rich composition close to the depleted mantle array. 
This confirms that the chromites originated in a SSZ setting 
consistent with the result of the whole rock geochemistry.

Fig. 5  a Rutile and chromite grains; magnetite and traces of hematite 
are authigenic formations in the matrix; b Two REE-mineral grains, 
the lower is monazite-(Ce, La), the upper is xenotime-(Y, Dy). The 
scale bar is 20 µm
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Discussion

The provenance of the pre-bauxitic material deposited 
on karstified platforms is controversially discussed in the 
literature (Bárdossy 1982; Combes and Bárdossy 1996; 
Marković 2002; Pajović et al. 2017). Silicate material (clay) 
intercalated in such carbonates, volcanic ashes, and/or other 
windblown material generally was used to explain the for-
mation of karst bauxites as in  situ weathering products 
(Bárdossy 1982; Combes and Bárdossy 1996; Muhs et al. 
2012). Exposed platform carbonates providing the karstified 
surfaces on which karst bauxites occur are extremely poor 
in clay minerals often thought to be possible sources for 
bauxites. Nevertheless, volcanic ashes might be alternative 
sources, and thick Early Tithonian volcanic ash layers are 
also known in the Northern Calcareous Alps (Gawlick et al. 
1999b). However, in contrast to the widely favored model of 

Fig. 6  Microfacies of the Late Jurassic Plassen Formation in the sur-
rounding of the bauxite outcrops; a ooidal grainstone with bauxitic 
infiltration; b Under-ore breccia of the central part with fresh and 
recrystallized fragments of Plassen limestone; c Fine-grained trans-

gressive limestone with fragments of decapod crab shells; d platform 
margin (upper slope) Plassen Limestone: grainstone with crinoids and 
encrusting organisms. The scale bar is 1 mm

Fig. 7  The ooidal grainstones below the bauxite. Circled is a large 
bauxite-bearing infiltration



1854 International Journal of Earth Sciences (2021) 110:1847–1862

1 3

wind-blown material as source for bauxites (Pajović 2000, 
2009), the source material for the Lugberg bauxite was more 
likely transported by surface waterflows: the grain size of 
the resedimented material (the largest single heavy mineral 
grains reach 200 µm) excludes long-distance wind transport 
in a climate suitable for bauxite formation. Additionally, 
long-distance wind transport would produce a geochemistry 
similar to loess instead of the observed pattern.

This bauxite can be therefore classified as a parautochtho-
nous to allochthonous bauxite according to the classification 
of Combes and Bárdossy (1996).

The heavy minerals and their geochemistry, and the 
transportation of pre-bauxitized material, including slightly 
older broken pisoids, led to the following reconstruction 
of the area where the Lugberg bauxite developed: Uplift 
and unroofing started around the Kimmeridgian/Tithonian 
boundary (Missoni and Gawlick 2011a, b; Gawlick and 
Missoni 2019; Gawlick et al. 2020) the time frame of the 
bauxite formation—and uplift movements affected mainly 
the obducted ophiolites with the platform on top (equivalent 
to the Kurbnesh platform in Albania: Schlagintweit et al. 
2008) and the Lärchberg Carbonate platform (Figs. 10, 11). 
Uplift of the orogen caused local extension and block tilting. 

Traces of such a platform with very similar facies and micro-
fossils are documented by Gawlick et al. (2020) in the Dinar-
ides in basinal sediments, and it can be assumed that mount 
Lugberg is the first occurrence of this platform type in the 
Eastern Alps. Based on these results, the formation of the 
Lugberg bauxite can be reconstructed as follows:

• In the Kimmeridgian, carbonate platforms formed in 
front and on top of the propagating ophiolite nappe 
stack (Fig. 10c). The equivalent of this southeasternmost 
carbonate platform in the Eastern Alps is the Kurbnesh 
Platform on top of the Mirdita ophiolites (Albania; 
Schlagintweit et al. 2008), to the northwest follows the 
Lärchberg Carbonate Platform (LCP).

• At the Kimmeridgian/Tithonian boundary, unroofing 
started with uplift in the south, exposing ophiolites to 
weathering (Fig. 10d) under tropical climatic conditions 
suitable for the carbonate platforms to flourish and induc-
ing bauxite formation. At the same time on the exposed 
ophiolites, deep weathering resulted in lateritisation, and 
probably even bauxitisation comparable to nowadays 
Haiti (Boulègue et al. 1989). Under such conditions, 
bauxite-minerals may form in time intervals of even 

Table 1  Analytical data of the Lugberg bauxite and the under-ore breccia

Analyte Unit Analytical method Bauxite under-ore breccia Analyte Unit Analysis Method Bauxite Under-
ore 
breccia

SiO2 % FUS-ICP 12.78 5.45 Gd ppm FUS-MS 28.8 2.82
Al2O3 % FUS-ICP 45.46 4.97 Ge ppm FUS-MS 2 0.5
Fe2O3(T) % FUS-ICP 25.47 4.37 Hf ppm FUS-MS 13.9 1.7
MnO % FUS-ICP 0.045 0.024 La ppm FUS-MS 183 14.2
MgO % FUS-ICP 1.22 0.4 Lu ppm FUS-MS 2.39 0.183
CaO % FUS-ICP 0.09 46.36 Nb ppm FUS-MS 45 4.5
Na2O % FUS-ICP 0.02  < 0.01 Nd ppm FUS-MS 138 15.3
K2O % FUS-ICP 0.03 0.03 Ni ppm TD-ICP 802 20
TiO2 % FUS-ICP 2.177 0.251 Pb ppm TD-ICP 90 12
P2O5 % FUS-ICP 0.17 0.03 Pr ppm FUS-MS 35.3 3.72
LOI % GRAV 12.75 38.02 S % TD-ICP 0.008 0.004
Total % FUS-ICP 100.2 99.92 Sc ppm FUS-ICP 56 8.04
As ppm INAA 20.8 5 Sm ppm FUS-MS 27.7 3.03
Ba ppm FUS-ICP 105 14 Sr ppm FUS-ICP 27 40
Bi ppm FUS-MS 0.9 0.1 Ta ppm FUS-MS 3.3 0.32
Ce ppm FUS-MS 219 27.3 Th ppm FUS-MS 38.5 5.98
Co ppm INAA 75 3.2 U ppm FUS-MS 6.9 1.12
Cr ppm INAA 2990 71.9 V ppm FUS-ICP 310 74
Cu ppm TD-ICP 32 3 W ppm FUS-MS 7  < 1
Dy ppm FUS-MS 27.6 2.31 Y ppm FUS-ICP 240 14
Er ppm FUS-MS 17 1.3 Yb ppm FUS-MS 15.6 1.24
Eu ppm FUS-MS 6.23 0.687 Zn ppm TD-ICP 68 14
Ga ppm FUS-MS 56 12 Zr ppm FUS-ICP 502 60
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10.000 years (Valeton 1972), while their accumulation to 
form bauxite is possible within 100.000 years (Boulègue 
et al. 1989) leaving enough time for the accumulation of 
bauxite on the emerged platform.

• Ongoing unroofing affected the carbonate platforms 
resulting in block tilting, karstification, and shedding of 
weathered ophiolitic material on the platforms (Fig. 10d). 
The ooidal horizon below the bauxite represents the shal-
low-water conditions just before the emergence of the 

platform. The formation of the bauxite may have been 
short-lasting, as the bauxite was already pre-weathered, 
and not much time for the final bauxitization is needed. 
This is also supported by the occurrence of numerous 
transported broken large pisoids.

• Continued subsidence led to flooding of the bauxite 
deposit indicated by the transgressive sequence sealing 
the bauxite deposit (Fig. 10e).

Fig. 8  Microfossils from the hanging wall of the bauxite a Radi-
omura cautica (Senowbari-Daryan and Schäfer); b Crescentiella 
morronensis (Crescenti); c Protopeneroplis striata (Weynschenk); d 

Labyrinthina mirabilis (Weynschenk) (right below) and Salpingopo-
rella pygmaea (Gümbel) (left); e Salpingoporella pygmaea (Gümbel); 
f Neuropora lusitanica (Termier and Termier). The scale bar is 1 mm
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Similarities to the spinels found in the Kimmeridgian 
of the Sillenkopf basin (Gawlick et al. 2015) are outlined 
in Fig. 9a, b (red ellipses). Also, the assemblage of micro-
fossils is remarkably similar; for instance, Crescentiella 
morronensis is rare in other time equivalent platforms and 
typical for the slope of the southern Lärchberg Carbonate 
Platform. Therefore, it is highly plausible that the Sillen-
kopf basin received material not only from the Lärchberg 
Carbonate Platform but also from the platform formed 
on top of the ophiolitic nappe stack and examined in this 
study (Fig. 10b).

Fig. 9  a FMW diagram (Ohta and Arai 2007) with both samples 
plotting on the right sideline of the triangle indicating a basic-mafic 
protolith, Rhyo rhyolite, Gra granite, Dac dacite, And andesite, Bas 
basalt, Kom Komatiite; b Nb/Y-Zr/Ti plot (Winchester and Floyd 
1977 modified by Pearce 1996) for magma discrimination using 
immobile elements; c Nb-Zr-Y diagram (Meschede 1986), abbrevia-
tions: AI, AII = within-plate alkaline basalts; AII, C = within-plate 
tholeiites; B = P-type MORB; D = NMORB; C, D = Volcanic arc 
basalts; d La/10-Y/15-Nb/8 diagram (Cabanis and Lecolle 1989) 
for discrimination of the tectonic setting; e Geotectonic diagram for 
(ultra-) basic rocks (Agrawal et al. 2008), IAB island arc basalt, OIB 
oceanic island basalt; f MORB (Dilek and Furnes 2011) normalized 
spider plot diagram of the REE elements. Even though the under-ore 
breccia is significantly diluted by carbonate clasts, the pattern of the 
bauxite is still clearly visible

◂

Fig. 10  a Chromite provenance diagram (modified from Kamenet-
sky et al. 2001), LIP large igneous province, OIB ocean-island basalt, 
ARC  island arc, BABB back-arc spreading; b chromite discrimination 
diagram of Pearce et al. (2000)

Fig. 11  Model for the formation of the Lugberg bauxite (indicated by 
the star): Bauxite formation in the fold-and-thrust belt of the Dinar-
ides in the Tithonian. Uplift of the core complex from the Kimmerid-
gian/Tithonian boundary resulted in unroofing, further westward 
transport of the obducted ophiolites, and propagating deformation 
of the already slightly folded Outer Dinarides with bauxite forma-
tion in emerged areas. Paleogeographic reconstruction and cross-
section modified from Gawlick and Missoni (2019), including results 
from Vlahović et  al. (2005), Picotti and Cobianchi (2017), Gawlick 
et al. (2020). Bauxites of ?Kimmeridgian-Tithonian age from Grubić 
(1963), Mindszenty et al. (1995), Meço and Aliaj (2000), Timotijević 
(2001), Marković (2002), Mindszenty and D’Argenio (2002), 
Janković et al. (2003), Pajović and Radusinović (2012), Pajović et al. 
(2017)
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Its unique features differentiate the Lugberg bauxite 
clearly from other well-known Tithonian bauxites in the 
wider Adriatic plate, i.e., the bauxites in Istria or the Dinara 
Mt. region (Marković 2002) in Croatia or the main baux-
ite belt in Montenegro (Janković et al. 2003; Pajović et al. 
2017). Theories for the source material for these baux-
ites range from weathering of clays or even limestones 
(Marković 2002, and references therein) to aeolian trans-
ported material (Pajović 2000, 2009). These bauxites most 
probably formed on anticlines developed in the frame of 
Middle to early Late Jurassic west-directed ophiolite obduc-
tion. Related to the overriding ophiolites the wider Adria 
plate attained a lower plate position and a thrust-and-fold 
belt established. Whereas the Inner Dinarides are charac-
terized by a Middle-Late Jurassic nappe stack, ophiolite 
obduction affected the Outer Dinarides by folding and crea-
tion of syn- and anticlines (Fig. 11). An alternative model 
interpreted these effects as far-field compression (Picotti and 
Cobianchi 2017) related to ongoing west-directed transport 
of overriding ophiolites onto wider Adria. Bulging of the 
External Dinarides in Late Jurassic (Kimmeridgian) times 
as an alternative model (Durn 2003) for uplift and bauxite 
formation as proposed for various Mesozoic bauxites in the 
Circum-Pannonian region (D’Argenio and Mindszenty 1995; 
Mindszenty et al. 1995) can be excluded as the uplift was 
induced by the westward transported nappe stack, including 
the obducted ophiolites. (Fig. 12).

Conclusions

At Mount Lugberg in the Northern Calcareous Alps, bauxite 
is hosted by Late Kimmeridgian-Early Tithonian platform 
carbonates. Based on the results of the analysis of these 
bauxites and included heavy minerals it can be concluded 
that:

• The obducted Neo-Tethys ophiolites are the parent mate-
rial of this Early Tithonian bauxite in the Northern Cal-
careous Alps; the bauxite can be classified as parautoch-
thonous to allochthonous.

• Bauxite formed from an andesitic to basaltic parent mate-
rial originating in a supra-subduction zone/island arc set-
ting with some input of higher fractionated rocks formed 
in the island arc. The geochemical results are comparable 
with obducted Jurassic ophiolites known in the Dinar-
ides/Albanides/Hellenides (Bortolotti et al. 2013; Dilek 
and Furnes 2009; Dilek et al 2007, 2008; Furnes et al. 
2020; Koller et al. 2006; Hoeck et al. 2002; Robertson 
et al. 2009; Saccani et al. 2008, 2015).

• Deep weathering and erosion of the ophiolites and the 
overlying platform carbonates was triggered by an oro-
genic collapse with uplift and unroofing, which caused 
block-tilting and angular unconformities in the platform 
evolution. Block-tilting provided the accommodation 
space for the accumulation and bauxitization of the 
weathered ophiolites. Their weathered debris was trans-
ported fluviatile on subaerially exposed platform sectors.

• Rapid subsidence in the frame of ongoing extension 
caused a transgressive carbonate cycle shortly after baux-
ite formation.

Early Tithonian bauxite formation due to uplift of the 
Neotethyan Belt proves that ophiolite obduction onto the for-
mer wider Adria shelf started in the Middle Jurassic (Gaw-
lick and Missoni 2019 and references therein) and not in the 
latest Jurassic or around the Jurassic/Cretaceous boundary 
as proposed by Schmid et al. (2020 and references therein).
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Fig. 12  Tectonic sketch of the evolution of the Neo-Tethys through-
out the Jurassic modified from Gawlick and Missoni (2019) and Mis-
soni and Gawlick (2011a,b). WCP Wolfgangsee Carbonate Platform, 
TB Tauglboden Basin, PCP s.str. Plassen Carbonate Platform s.str., 
SB Sillenkopf Basin, LCP Lärchberg Carbonate Platform, KCP Kurb-
nesh type Carbonate Platform, DH Dietrichshorn position (Gawlick 
et al. 2015); a Middle Triassic to Early Jurassic: wider passive margin 
configuration bearing various facies belts; b Late Bajocian/Batho-
nian: interoceanic subduction and northwest directed thrusting lead-
ing to the formation of arc volcanites; c Late Kimmeridgian to Early 
Tithonian: thrusting reaches the continental crust in the northeast, 
formation of carbonate platforms on geographically higher nappes; 
d Tithonian: unroofing and extension leading to block tilting, local 
uplift, shedding of weathered ophiolitic material on the carbonate 
platforms, and formation of bauxites; e Late Tithonian: continuing 
subsidence and growth of the carbonate platforms

◂
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