KOLLERITE, (NH₄)₂Fe³⁺(SO₃)₂(OH)·H₂O, A NEW SULFITE MINERAL

Ende, M.¹, Effenberger, H.¹, Fehér, B.² Sajó, I.³, Kótai, L.⁴, Szakáll, S.⁵

¹University of Vienna, Institut für Mineralogie und Kristallographie, Althanstraße 14, 1090 Wien, Austria
²Herman Ottó Museum, Department of Mineralogy, Kossuth u. 13, 3525 Miskolc, Hungary
³University of Pécs, Szentágothai Research Centre, Ifjúság u. 6, 7624 Pécs, Hungary
⁴Institute of Materials and Environmental Chemistry, Hungarian Academy of Sciences, Research Centre for Natural Sciences, Magyar tudósok u. 2, 1117 Budapest, Hungary
⁵University of Miskolc, Department of Mineralogy and Petrology, 3515 Miskolc-Egyetemváros, Hungary e-mail: herta.silvia.effenberger@univie.ac.at

Sulfite ions are rare constituents of minerals; so far only eight minerals containing $[SO_3]^2$ -groups have been approved by the IMA-CNMNC. During field work in the coal open pit near Köves Hill (Pécs-Vasas, Mecsek Mts., South Hungary) the new mineral kollerite was detected: $(NH_4)_2Fe^{3+}(SO_3)_2(OH)\cdot H_2O$, Cmcm, a=17.803(7) Å, b=7.395(4) Å, c=7.096(3) Å, V=934.2(7) Å³, Z=4. Data for structure investigation were collected on a Stoe StadiVari four-circle diffractometer (Dectris Pilatus 300 K pixel detector, MoK α radiation, 100 W air-cooled Incoatec I μ S micro-focus X-ray tube, 50 kV, 1 mA).

The Fe³⁺ ion ($\langle \text{Fe}^{[6]} \text{—O} \rangle = 1.963(2) \text{ Å}$) has site symmetry 2/m; the atoms S, O1, N, and two of the H atoms belonging to the NH₄ group are located at a mirror plane, the hydroxyl group as well as the O atom belonging to the water molecule (O_w) have site symmetry m2m. The water molecules exhibit an orientational disorder with (static or dynamic) half-occupied H atom positions. However, there is no hint for a long-range order. Despite the small size of the crystal used for data collection (6H7H65 μ m), the atomic coordinates and isotropic displacement parameter of all H atoms could be refined without any restraints.

<S^[3]—O> = 1.538(2) Å and O—S—O = 102.71(12) to 104.58(9)° accord with a sulfite group. The [Fe(O_s)₄(O_h)₂] octahedra are corner linked to buckled chains *via* the O_h atoms and represent the backbone of the [Fe(OH)(SO₃)₂]²⁻ chains running parallel to [001]. Similar chain topologies but with [XO₄]²⁻ tetrahedra instead of the [SO₃]²⁻ groups are known from the minerals tancoite, sideronatrit, and sideronatrite-2M.

Intercalated between the $[Fe(OH)(SO_3)_2]^{2-}$ chains are the water molecules and the ammonium cations. Linkage is achieved by hydrogen bonds only. Despite the loose connection, the $(NH_4)^+$ group is ordered and forms clearly defined hydrogen bonds. The N atom of the $(NH_4)^+$ cation has a tetrahedral environment: H—N—H and $O\cdots N\cdots O$ are 101.14(11) to $115.24(8)^\circ$. The bond lengths N— H_n (0.81(3) and 0.90(5) Å), O_n — H_h (0.65(7) Å), and O_w — H_w (0.84(7) Å) are in the range expected for X-ray data. The hydrogen bonds are close to linearity (N/O— $H\cdots O = 169(4) / 176(4)^\circ$). The hydrogen bond lengths in general are relative long emphasising the loose connection of the $[Fe(OH)(SO_3)_2]^{2-}$ chains: N— $H_n\cdots O$ is 2.803(4) to 2.958 Å, O_n — $H_h\cdots O_w$ and O_w — $H_w\cdots O^2$ are 2.747(6) and 3.104(4) Å, respectively. The atomic arrangement accords with the needle-like shape of the crystals: the crystals are elongated parallel to [001], *i.e.*, the direction of the $[Fe(OH)(SO_3)_2]^{2-}$ chains.

Two further phases were found at the same locality: $(NH_4)_9Fe^{3+}(SO_3)_6$ is metastable; $(NH_4)_2Fe^{2+}(SO_3)_2$ crystallizes trigonal, $R\overline{3}m$, a = 5.3879(8) Å, c = 19.980(4) Å, V = 502.3 Å³.