THE 4-CENTER 2-ELECTRON BONDED CLUSTER CATIONS [Ag₃Hg]³⁺ AND [Ag₂Hg₂]⁴⁺

Effenberger, H.1

¹Institut für Mineralogie und Kristallographie, Universität Wien, Althanstraße 14, 1090 Wien, Austria e-mail: herta.silvia.effenberger@univie.ac.at

 $[Ag_3Hg]^{3+}$ and $[Ag_2Hg_2]^{4+}$ are rare cation complexes. The first evidence was found in tillmannsite, $[Ag_3Hg][(V,As)O_4]$, which was described from an old copper mine of Roua (Alpes-Maritimes, France): space group $I\overline{4}$ (SARP et al., 2003). Later on, WEIL et al. (2005) synthesized the V-end member besides the compounds $[Ag_2Hg_2]_3[VO_4]_4$ and $[Ag_2Hg_2]_2[HgO_2][AsO_4]_2$ ($I\overline{4}2d$ and P31c). Just recently, rudabányaite - $[Ag_2Hg_2][AsO_4]Cl$ was found in cavities of siliceous sphaerosiderite and limonite rocks at the Rudabánya ore deposit (Adolf mine area, NE Hungary; $F\overline{4}3c$; EFFENBERGER et al., 2019).

The M = (Ag, Hg) atoms in all these $[M_4]$ clusters are located at the corners of an empty tetrahedron; the complex is stoichiometric with Ag:Hg = 2:2 or 3:1, respectively. The M atoms are ~1.66 Å apart from their vacant centres; thus, the size of the $[M_4]$ tetrahedra corresponds with the arsenate and vanadate tetrahedra. The M—M bond distances of ~2.60 to 2.72 Å suggest predominantly covalent bonding. Order between Ag and Hg atoms is not verified. The M atoms are [6] coordinated by each three M atoms and by three anions. In rudabányaite a partial displacement of the M atoms was observed (about 0.5 Å). Remarkable is the pronounced one-sided [3] coordination of the Cl⁻ ions in rudabányaite.

Only in $[Ag_2Hg_4][XO_4]_2$ (X = P,As) (MASSE et al., 1978; WEIL, 2003) the Ag and Hg atoms are ordered: each two $[Ag_2Hg_2]$ tetrahedra share a common Ag—Ag edge forming an $[Ag_2Hg_4]^{6+}$ -cluster cation. The shared edge (~2.85 Å) is slightly shorter than in native silver but larger than the *M*—*M* distance in the $[Ag_2Hg_2]$ complex. The other *M*—*M* bond distances are comparable to the $[M_4]$ clusters.

On interest are some crystal chemical, structural, and topological similarities: In kuznetsovite ([Hg₃][AsO₄]Cl, space group $P2_13$; WEIL, 2001) trigonal [Hg₃]⁴⁺ clusters substitute for the larger [Hg₂Ag₂]⁴⁺ metal clusters of rudabányaite; the Cl atom is planar [3] coordinated. – In tillmannsite, two distinct column-like arrangements built solely by [Ag₃Hg]³⁺ cation clusters respectively [(V,As)O₄]³⁻ tetrahedra are running parallel to [001]; alternatingly arranged [Ag₃Hg] clusters and [(V,As)O₄] tetrahedra are verified parallel to <100>. In rudabányaite [Ag₂Hg₂] clusters and [AsO₄] tetrahedra alternate due to the cubic symmetry in all <100> directions.

The dominance of acentric crystal structures in this group of compounds should be noted.

EFFENBERGER, H., SZAKÁLL, S., FEHÉR, B., VÁCZI, T., ZAJZON, N. (2019): Europ. J. Mineral., 31, 537-547.

MASSE, R., GUITEL, J.-C., DURIF, A. (1978): J. Solid State Chem., 23, 369-373.

SARP, H., PUSHCHAROVSKY, D.Yu., MACLEAN, E.J., TEAT, S.J., ZUBKOVA, N.V. (2003): Europ. J. Mineral., 15, 177-180.

WEIL, M. (2001): Zeitschr. Naturforschung, 56b, 753-758.

WEIL, M. (2003): Zeitschr. Naturforschung, 58b, 1091-1096.

WEIL, M., TILLMANNS, E., PUSHCHAROVSKY, D.Yu. (2005): Inorg. Chem., 44, 1443-1451.